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The adsorption state is one of the main states for shale gas occurrence, and the

gas adsorption behavior in shale directly affects shale gas content under

reservoir conditions. This paper provides a comprehensive literature review

on shale gas adsorption behavior and its affecting factors that have been

developed in recent years. Influence factors of gas adsorption behavior are

examined, including total organic carbon content (TOC), organic matter type,

organic matter maturity, minerals and clay minerals, moisture content, pore

characteristics and other characteristics of the shale itself. The characteristics of

gas adsorption behavior under high temperature and pressure conditions

showed that adsorption behaviors were difficult to describe by the Langmuir

equation. This review indicates that shale contains higher organic matter

content and organic matter maturity and has a higher adsorption capacity.

The adsorption capacity with type III kerogen is higher than that for type II or

type I. Clay minerals can provide free space for gas adsorption and promote

adsorption. Normally, as the moisture content increased, adsorption capacity

decreased. Micro pores provided a larger specific surface area for gas

adsorption. As the temperature increased, the adsorption capacity

decreased. As the pressure increased, shale adsorption characteristics

showed two different behaviors as follows: one obeyed the Langmuir

equation, and the other presented an inverted, U-shaped, single-peak

distribution. However, there are some controversies surrounding adsorption,

especially regarding the aspects of clay minerals, water content, pore

characteristics, etc. The key is that the mechanism of adsorption in shale is

unclear. There will be many new challenges in the field of shale gas adsorption

research. Such challenges include studying the organic matter chemical

structure, understanding the interaction between organic matter and clay

minerals and how they affect adsorption, clarifying gas adsorption behavior

changes, predicting favorable areas of adsorbed gas with the coupling of

reservoir temperature and pressure, and building a better theory and model

of shale gas adsorption.
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1 Introduction

With the increasing worldwide demand of natural gas, shale

gas, as a new and unconventional natural gas resource, has

attracted more and more attention. In the United States.

Energy Information Administration’s International Energy

Outlook 2016 and Annual Energy Outlook 2016, global shale

gas is expected to account for 30% of the world’s total natural gas

output by the end of 2040. At present, commercial development

of shale gas has been achieved in the United States, Canada,

Argentina and China. The United States successfully drilled the

first shale gas well in the Appalachian Basin in 1821 and shale gas

production has continued to develop for the last 200 ears. In the

21st century, shale gas production has increased rapidly in the

United States. That production reached 3,800×108 m3 in 2015,

accounting for more than half of total natural gas production.

The rapid development of shale gas production has changed the

US natural gas supply pattern, leading to significant drops in

natural gas and liquefied natural gas imports (Zhang, 2012).

Since 2005, China has evaluated geological conditions and

conducted development tests for shale gas. Now, China has

made significant breakthroughs in geological theory,

exploration and development techniques (Dong et al., 2012),

especially in the study of marine and continental organic-rich

shales in the southern Paleozoic/northern Mesozoic areas of the

Sichuan Basin, the Triassic area in the Ordos Basin, as well as

several other regions and ages (Zou et al., 2010; Lin et al., 2012;

Ren et al., 2014; Yu et al., 2014), and has made great progress in

geological characteristics with rich organic, formation,

occurrence and reservoir conditions, prospective zone

optimization for shale gas, etc. In the past 5 years, more than

700 shale gas wells have been drilled in China. Shale gas

production surpassed 50×108 m3 in 2016. Shale gas is

primarily a natural gas preserved in dark mud and high

carbonaceous shale (Yang et al., 2014a). Zhang et al. (2008)

showed that adsorbed gas and free gas are mainly states. The

adsorption effect is one important mechanism of shale gas

accumulation. Mavor, 2003 showed that adsorbed gas

accounts for 61% of original geological reserves of shale gas in

the Barnett Formation. Li et al. (2007) showed that adsorbed

shale gas occupies at least 40% of the total gas content. Nie and

Zhang, 2010 and Rani et al. (2015) reported that 40%–60% of gas

is adsorbed. According to Barnett shale gas characteristics, shale

gas is stored in matrix pores and accounts for more than 50% of

the total gas content (Montgomery et al., 2005; Bowker, 2007;

Kinley et al., 2008). It has been shown that shale gas occurs

primarily in the adsorption state, free state or dissolved state; of

these, adsorption state is the most important. Adsorbed gas

accounts for 20%–85% of the total shale gas content, which

mainly accounts for 40%–60% (Mavor, 2003; Li et al., 2007; Zou

et al., 2011; Chareonsuppanimit et al., 2012). Therefore,

adsorption capacity of shale is one of the key factors that

affect shale gas content. In recent years, with the large-scale

development of shale gas, shale gas exploration depths are

increasing. Exploration depths have increased from

180–2000 m to 2,300–4,500 m, and have reached up to

6,000 m in individual basins in America (Nie and Zhang,

2010). In China, the Weiyuan-Changning gas field was the

first to realize commercialized production, Cambrian-

Ordovician shale has a depth of 1,500–4,500 m (Zou et al.,

2016). The adsorption behavior in shale directly affects

adsorption gas content with increasing burial depth, which

becomes the key to obtaining more accurate information on

the amount of shale gas resources, and has an important

significance for shale gas reserve evaluation, reserve prediction

and productivity predictions.

Therefore, the estimation of initial adsorbed gas in place is

one of the primary concerns in shale gas reservoir studies, and it

is also important for reservoir-engineering analysis, such as gas

production forecasting (Wu et al., 2012; Li et al., 2016).

In this review, based on previous research results, influencing

factors of adsorption capacity in shale are summarized, effects of

different factors on adsorption capacity are analyzed in detail, a

main adsorption theory and adsorption model is noted, and

challenges and development prospects associated with the field of

shale gas adsorption are put forth.

2 Change of gas adsorption behaviors
on shale

In the current environment of rapid changing climate

conditions and increasing human activities, meteorological

and hydrological conditions may change. Bernaola Galvan

proposed a heuristic segmentation algorithm (BG algorithm)

in 2001 (Bernaola-Galvan et al., 2001), which can test the

stationary status of the sequence, detect the mutation point,

and divide the non-stationary sequence into several stationary

sequences. The main ideas are as follows:

Adsorption is a phenomenon by which gas molecules remain

attached or retained on the surface of a solid substance when a

gas interacts with a solid. The gas molecules remain attached on

the surface of a solid by molecular attraction. The attraction of

gas adsorption in shale reserves is mainly Van der Waals force.

Therefore, the adsorption process is reversible and is called

physisorption. Adsorption depends on temperature, pressure,

specific surface area and activation energy of solid. In a given

system of gas-solid, the activation energy of a solid is certain, and

the adsorption volume is a function related to pressure when

temperature is fixed. The relationship is called adsorption

isothermal, which is often used to describe a change in

adsorption behaviors. The isothermal of gas adsorption in

shale can be divided into two types. Type I is Langmuir

pattern. With the increase of pressure, the adsorption volume

first increases, eventually reaches a maximum value, which is

represented by the Langmuir volume constant, and then
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stabilizes. The relationship between adsorption volume and

pressure conforms to the Langmuir equation (Figure 1) (Lu

et al., 1995; Ross and Bustin, 2007; Chalmers and Bustin,

2008; Liu and Wang, 2012). Gas adsorption needs more

binding energies in low pressure. With increases of pressure,

necessary binding energy decreases, and the amount of

adsorption increases (Raut et al., 2007). This is the most

common type of adsorption isothermal that can be explained

by monolayer adsorption theory.

Type II is an inverted “U” pattern. As the pressure increases,

the adsorption volume first increases but then decreases. The

relationship between adsorption volume and pressure does not

completely follow the Langmuir equation. This adsorption

phenomenon has been found by many scholars (Chalmers

and Bustin, 2008; Ross and Bustin, 2008; Chareonsuppanimit

et al., 2012). We studied adsorption capacity of Permian, Triassic

and Jurassic shale in the Jiyuan Depression and the

Carboniferous shale in Ordos Basin and showed that with a

pressure increase, the adsorption isothermal showed two kinds of

changes. One change is that the relationship between the

adsorption volume and pressure obeys the Langmuir equation

(type I); the other is that a “single peak” adsorption phenomenon

is observed (type II), and the maximum adsorption value occurs

between 5 MPa and 12 MPa (Figure 2). The same conclusion has

been found in the study of CH4 and CO2 adsorption on coal, and

the maximum adsorption value appears with an increase in

pressure (Type II) (Nandi and Walker, 1975; Marecka and

Mianowski, 1998; Tang et al., 2003; Yu et al., 2004; Day et al.,

2008; Zhang et al., 2009; Gensterblum et al., 2013). Chilev et al.

(2012) indicated that the maximum gas adsorption in porous

media might appear at the maximum adsorption value in the

range of 10 MPa and 30 MPa above the critical temperature.

Many other researchers also found a similar phenomenon

(Menon, 1965; Malbrunot et al., 1992; Zhou et al., 1994;

Aranovich et al., 2000; Dreisbach et al., 2002; Do and Do,

2005; Siemons and Busch, 2007). Malbrunot et al. (Malbrunot

et al., 1992) and Menon, 1965 noted that the adsorption capacity

reached a maximum value at 10 MPa–30 MPa with a minimum

value between 550 MPa and 650 MPa as the pressure increased.

In view of this phenomenon, it is generally believed that the

adsorption amount follows the Gibbs definition of adsorption.

Gibbs’ definition states that the adsorbate molecules in the

adsorbed phase on the surface of the adsorbent cannot all be

classified as “adsorption,” in which the gas molecule distributed

in adsorbed space by way of the bulk gas density is independent

of the force between the gas and solid. The adsorbed gas amount

FIGURE 1
Types of adsorption isotherms on shale.

FIGURE 2
Relationship between pressure and methane adsorption volume.
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is the excess amount at the interface between the two bulk phases.

The absolute adsorption is a function of the bulk gas phase

density and adsorbed phase density. The Gibbs adsorption is

expressed as:

n � ∫(ρ(z) − ρg)dV (1)

where ρg is the bulk gas density in the free state; ρ(z) is the

adsorbed phase density along the normal direction on the solid

surface; and n is the excess adsorbed amount of substance at

pressure p.

If the density function of the adsorbed phase ρ(z) is known, n
can be obtained from Eq. 1. ρ(z) can be estimated by molecular

simulation but cannot be determined experimentally. Another

expression of n is

n � ns − ρgVa � Va(ρa − ρg) (2)

where ns is the total amount of adsorbed gas, called the absolute

amount adsorbed, and Va is the volume of adsorbed space

(adsorbed phase volume). ρa is the molar density of the

adsorbed phase and represents the mean value of the density

of the adsorbed phase.

The critical temperature of CH4 is 190.6 K, the critical

pressure is 4.54 MPa CH4 is supercritical at room temperature

and cannot be liquefied at high pressure. Therefore, the gas

molecules cannot condense on the surface of solid. The force

between the gas-solid is greater than the force between gas-gas.

The gas adsorption is monolayer. When the gas coverage on the

solid surface is low, the adsorbed gas volume increases with an

increase of pressure, the gas distribution is monolayer, and the

adsorption isotherm shows Type I. The distribution and amount

of adsorption space determine the amount and density of the

adsorbed phase, both of which are capped. The gas cannot

condense, so ρg increases with an increase in pressure. When

the increasing rates of ρg and ρa are equivalent, the maximum

adsorption value is reached. When the pressure increases further,

ρg approaches ρa, and the absolute adsorption is close to zero

(Menon, 1965; Salem et al., 1998).

However, this view could not reasonably explain why a

difference exists in the pressure at maximum adsorption

values of different adsorbents. Some researchers explained this

phenomenon based on other influencing factors. Gensterblum

et al. (2013) considered that differences in the maximum values

of different adsorption capacities in coal are related to coal

characteristics such as temperature, moisture and adsorbed

gas properties. Day et al. (2008) and Siemons and Busch,

2007 (Day et al., 2008) concluded that supercritical absorption

capacities in coal are related to coal rank, porosity, moisture

content and other factors; with the effect of porosity on

adsorption capacity being significant. Chilev et al. (2012)

believed that the appearance of an adsorption maximum value

is related to the following: solid-phase deformation under high

pressure, change of direction of molecular motion, filling of pores

and others, but it is unknownhow these factors influence

absoption maximum. Fang et al. (2010) considered that the

phenomenon of an adsorption anomaly in shale is related to

clay mineral content, moisture content, organic matter and

supercritical adsorption characteristics. Nie and Zhang, 2010

analyzed the cause of the inverted U phenomenon for

adsorption curves from the standpoint of the adsorption

experiment principle, microscopic pore structures, adsorbent,

etc. And concluded that the phenomenon is attributed to the

difference between the experimental adsorption amount and the

actual adsorption quantity. Zhang and Cao, 2003 also noted that

the gas compression rate increases with increasing pressure,

thereby increasing the storage capacity of free gas and

resulting in a decrease in the amount of adsorption gas content.

3 Influencing factors of gas
adsorption behaviors

3.1 Organic matter in shale gas reservoirs

Organic matter is one of the factors that affect shale

adsorption capacity. Ross and Bustin, 2009 noted that

approximately 90% of methane adsorption content is related

to organic matter, and approximately 10% is related to the

minerals in shale. Organic matter mainly affects the

adsorption capacity through organic carbon content, organic

matter maturity and organic matter type.

(1) Total organic carbon content (TOC)

Current research has shown that as the TOC increases, so

does the adsorption capacity of shale (Figure 3). Lu et al. (1995)

demonstrated that organic matter was the primary storage media

for adsorbed gas. Hill et al. (2007) showed that there is a positive

FIGURE 3
Relationship between TOC and methane adsorption
capacity.
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linear correlation between TOC and methane adsorption

capacity. Chalmers and Bustin, 2008 studied the adsorption

capacity of the Lower Cretaceous shale in northeastern British

Columbia and the Barnett and Barnett shale in Mitchell

(T.P.Sims well); they all reached the same conclusion, that is,

TOC is higher, and shale gas adsorption capacity is stronger.

There are three main reasons to explain those observations. First,

the TOC is higher, gas generation potential is greater, and shale

gas content is higher; secondly, kerogen, with a large number of

micro porosity channels and higher specific surface areas,

provides more space for gas adsorption (Chalmers and Bustin,

2007; Ross and Bustin, 2009); finally, the kerogen surface is

lipophilic, which favors gas adsorption. In addition, dissolution

of gaseous hydrocarbons in amorphous and non-structured

matrix asphalt bodies also has a significant contribution to the

adsorption capacity (Wu et al., 2012; Lin et al., 2019).

(2) Organic matter maturity

In the field of shale gas adsorption, the current basic

consensus is that increasing the thermal evolution degree of

organic matter increases the gas adsorption capacity (Figure 4).

Jiang et al. (2018) conducted isothermal adsorption tests on

Barnett shale with different amounts of TOC ranging from

6.6% to 7.9% and found that adsorption capacity increased

with an increase in organic maturity. This conclusion can be

explained based on three properties of the TOC. The first is that

thermally mature shale tends to exhibit larger micro pore

volumes and larger specific surface areas than immature shale,

which results in higher adsorption capacities (Chalmers and

Bustin, 2007; Ross and Bustin, 2007; Chalmers and Bustin,

2008; Zhang, 2012). Second, during the stage of low-

temperature evolution, a large amount of asphaltenes and

colloids are generated and fill the pore space; the connectivity

and porosity of pores decreases and leads to a decrease in specific

surface area for gas adsorption (Franco et al., 2013). Lastly, with

an increase in organic maturity, the amount of hydrogen in the

organic matter decreases and enhances the aromatization of

organic matter. Kerogen rich in aromatic structures has a

stronger affinity for methane than kerogen with high aliphatic

hydrocarbon content (Zhang, 2012). The conclusion is consistent

with the gas adsorption capacity in coalbeds (Wang et al., 2018);

namely, as the degree of coalification increases, the adsorption

capacity of coalbed methane also increases.

(3) Organic matter type

Gas adsorption capacity in shale is complex, as shale contains

a high degree of heterogeneity in its organic matter maceral

composition. Maceral composition controls the organic matter

type, influences the surface characteristics and the pore size

distribution of shale, all of which affect the sorption capacity.

Type III kerogen is mainly derived from terrestrial higher plants,

and its microcosmic components are dominated by vitrinite

(Hou et al., 2022). Type I kerogen is mainly derived from

planktonic organisms and is mainly composed of chitin. Type

III has more micro pores than type I, resulting in larger specific

surface areas for gas adsorption, so adsorption capacity is

stronger. The components of type II kerogen are a mixture of

both types I and III. Zhang , 2012 conducted isothermal

adsorption experiments with different types of kerogen and

indicated that type III kerogen has the highest adsorption

capacity, followed by type II and type I. Chen et al. (Chen

et al., 2015) showed that the adsorption capacity of different

kerogen types followed the following order: type II2> type II1>
type I. Generally, the adsorption capacity order of different

kerogen types is as follows: type II/III or type III> type I or

type II (Chalmers and Bustin, 2008; Zhang, 2012; Jiang et al.,

2016) (Figure 5). Chalmers and Bustin, 2007 (Chalmers and

Bustin, 2008) and Wang et al. (2004) studied the adsorption

capacity of the Late Cretaceous Fort St. John shale in the

northeastern British Columbia and indicated that the high

adsorption capacity of shale is related to the amount of

vitrinite and inertinite. Vitrinite contains more micropores,

i.e., more surface area, and has a positive effect on gas

adsorption capacity, while liptinite contains more macropores

than micropores, which has a negative effect on gas absorption

(Perera et al., 2012). This means that type III kerogen has higher

gas adsorption than that of type I. The kerogen types have less of

an effect on adsorption compared with TOC content (Figure 5).

The type I with higher TOC possibly has a larger adsorption

capacity than that of type III.

3.2 Mineral and clay mineral

The mineral composition of shale is complex and includes

the following: clay minerals such as illite, montmorillonite and

FIGURE 4
Relationship between Ro,max and methane adsorption
capacity.
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kaolinite; brittle minerals such as quartz, calcite, feldspar, mica

and other detrital minerals and authigenic minerals. These

minerals can all affect the adsorption capacity. For instance,

brittle minerals can reduce porosity, which leads to a decrease of

adsorption capacity and storage space of the free gas (Figure 6A)

(Li et al., 2007; Loucks and Ruppel, 2007; Chalmers and Bustin,

2008). However, the presence of clay minerals is favorable for gas

adsorption (Figure 6B) (Lu et al., 1995; Cheng and Huang, 2004;

Wang et al., 2004; Loucks and Ruppel, 2007; Ji et al., 2012a; Ji

et al., 2012b). On the one hand, micro pores with apertures of

1 nm–2 nm often exist between the crystal layers of clay minerals,

which have great micro-pore volumes, large specific surface areas

and are the primary sites for gas adsorption (Cheng and Huang,

2004; Wang et al., 2004; Loucks and Ruppel, 2007; Ji et al., 2012a;

Ji et al., 2012b; Niu et al., 2021). On the other hand, a layer of

water film can form on clay mineral surfaces due to

electrochemical characteristics of the clay mineral surface,

which plays an important role in methane adsorption and

FIGURE 5
Relationship between kerogen types and methane adsorption capacity (Data from: Chalmers and Bustin, 2008; Zhang et al., 2012; Jiang et al.,
2016).

FIGURE 6
(A): Relationship between quartz and methane adsorption capacity and (B): Relationship between clay minerals and methane adsorption
capacity.
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might combine with methane to form gas hydrates (Park and

Sposito, 2003). Of course, some scholars hold different views

about the relationship between adsorption capacity and clay

minerals; Liu and Wang, 2012 studied the adsorption

characteristics in marine shale in southern China, and

concluded that the maximum adsorption capacity is not

related to clay mineral composition under the conditions of

similar TOC contents.

Different clay minerals have different chemical

compositions, crystal structures, particle sizes and petro

physical properties, in which crystal spaces, inter-layer and

gap sizes between particles, shapes and surface areas are

different (Lu et al., 1995). Kennedy et al., 2002 found that the

inner surface area of montmorillonite is much larger than that of

kaolinite, approximately 90 times higher than kaolinite, which is

favorable for gas adsorption. Ji et al., (2012b) showed that the

methane adsorption capacity of different clay minerals differed,

and the adsorption capacity order is as follows:

montmorillonite > illite/montmorillonite mixed layer >
kaolinite > chlorite > illite. The influence of clay minerals on

methane adsorption capacity is also affected by their own

digenetic evolution and rock formation.

3.3 Pore characterization

On the one hand, pore structure controls storage and output

of shale gas. Heterogeneity of pore size distribution plays an

important role in the adsorption process. Pore structure is more

complex, porosity and surface area are larger, and the

adsorption capacity increases (Heller and Zoback, 2014;

Hinai et al., 2014; Chen et al., 2015; Li et al., 2016)

(Figures 7A,B). Kim et al. (2017) studied the Horn River

Basin shale in northeastern British Columbia and found that

even in the case of low organic carbon content, adsorption

capacity is still strong, as long as the specific surface area is

large. Increasing the specific surface area and the number of

micro pores with a pore size <2 nm increased the adsorption

capacity (Lu et al., 1995; Brandon, 2005; Raut et al., 2007;

Chalmers and Bustin, 2008; Weniger et al., 2010; Yan et al.,

2013). Several groups compared macro pores with micro pores

and found that micro pores had larger specific surface areas and

adsorption capacities and concluded that specific surface area is

the key factor for adsorption capacity (Dubinin, 1975; Cheng

and Huang, 2004; Chalmers and Bustin, 2007; Loucks and

Ruppel, 2007; Pan et al., 2019) (Figure 7B). Kim et al. (Kim

et al., 2017) indicated that the micro pores account for 56.21%–

80.95% of the specific surface area. Wu et al. (Wu et al., 2012)

studied gas adsorption capacity in shale and its controlling

factors from Well Yuye 1 of Longmaxi Formation of Lower

Silurian at the southeast of Chongqing, which indicated that a

saturated adsorption capacity has a negative correlation on pore

volume; this might be related to smaller pore throat sizes in

micro pores that could not reach the kinetic diameter of

methane molecules. In contrast, mesopores and macro pores

have relatively large pore throats and pore diameters compared

to micro pores, making methane molecules more likely to flow

into the pores. Therefore, mesopores and macro pores have

additional effects on methane adsorption capacity (Yang et al.,

2014b). Methane molecules are mainly adsorbed in narrow

micro pores of solid asphalt. However, these relationships are

complex. In micro pores, the methane adsorption phase density

in the smallest pore size is large, and the methane adsorption

capacity increases with a decrease in the volume of micro pores;

however, for samples with larger pore sizes (pore size >1.1 nm),

the amount of methane adsorbed molecules are modest as

porosity increases, since CH4 has a lower density (Suárez-

Ruiz et al., 2016). Qajar et al. (2015) considered that

FIGURE 7
(A): Relationship between porosity and methane adsorption capacity and (B): Relationship between specific surface area and methane
adsorption capacity.
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absorption gas mainly concentrates in pore sizes between 2 nm

and 50 nm.

One the other hand, pore types affect the gas adsorption.

Pores in shale are mainly composed of organic matter pores and

mineral pores. It is considered that gas is adsorbed on organic

pore surfaces and is freely distributed in spaces of clay mineral

pores (He et al., 2022). It can be seen that organic matter pores

play a major role in methane adsorption (Ross and Bustin, 2009;

Huang et al., 2015; Suárez-Ruiz et al., 2016). Hou et al. (2014)

studied the Lower Paleozoic marine shale and Mesozoic

continental shale in the western Yangtze basin and concluded

that clay minerals with low thermal evolution can provide more

specific surface area for methane adsorption and that organic

matter pores gradually became the primary controlling factor in

gas adsorption capacity as the maturity increased.

3.4 Moisture content

Moisture content has an influence on the adsorption capacity

of shale. Water occupies more pore space with higher moisture

content and reduces the surface position of free hydrocarbon gas

shelter volume and adsorption sites on mineral surfaces. Namely,

the adsorption capacity is smaller with higher moisture content

(Figure 8). Ross and Bustin, 2008 found that when water content

is higher (moisture content >4%), adsorption capacity decreases,

and the adsorption capacity of saturated water samples is 40%

lower than for dried samples. However, Chalmers and Bustin,

2008 studied the adsorption of shale with water content from

1.5% to 11% and found that there is no correlation between water

content and adsorption capacity, and that samples with high

water content also might have high methane adsorption capacity.

Research on gas adsorption abilities in coal with different water

content has a certain reference value for understanding the effect

of water content on shale gas adsorption capacity. Effective

adsorption sites on the inner surface of coal that could be

provided for residence of gaseous molecules are limited. As

the moisture content in coal increases, the amount of effective

absorption sites decreases, and fewer effective absorption sites

remain for methane molecules, which decreases the methane

adsorption capacity. However, effective adsorption points

occupied by water are related to the number of oxygen-

containing functional groups. The more oxygen-containing

functional groups there are, the greater the water content is,

which affects the adsorption capacity. The moisture content is

called equilibrium moisture, and once the content exceeds the

equilibrium moisture, an increase in moisture content will no

longer affect the adsorption capacity (Figure 8).

3.5 Temperature, pressure and the burial
depth of shale

Under reservoir conditions, the gas adsorption capacity will

be influenced by not only the above factors but also temperature

and pressure. Currently, most exploration depths for shale gas

has exceeded 1,000 m; this means the reservoir pressure in most

areas is more than 5 Mpa which is greater than the critical

pressure of methane. Therefore, under the high pressure and

reservoir temperature conditions, whether adsorption capacity in

shale still follows the adsorption capacity curve law that changes

are subject to the Langmuir equation. The gas adsorption process

is exothermic. With a temperature increase, gas adsorption

capacity decreases (Figure 9). Liu and Wang, 2012 analyzed

factors that affected the adsorption capacity in marine

mudstone in southern China and found that temperature had

a significant effect on adsorption capacity; the maximum

adsorption gas content decreased by 1.46 cm3/g from 30°C to

120°C. Chalmers and Bustin, 2007 found that the gas adsorption

FIGURE 8
Relationship between moisture content and methane
adsorption capacity.

FIGURE 9
Relationship between temperature and methane adsorption
capacity.
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curve shows a negative exponential state reduction with a

temperature increase and has a greater influence on

adsorption capacity than organic carbon. Loucks et al. (2009)

thought that adsorption gas was negligible and that free gas was

the primary gas at higher temperatures.

Adsorption capacity in shale does not change monotonically

(monotonically increased) with the change of burial depth

because of the combined effect of temperature and pressure,

and it appears at the maximum value. Ji et al. (2015) studied

methane adsorption capacity in marine shale from the Longmaxi

Formation of the Lower Silurian in southern China and found

that the maximum methane adsorption value was in the depth

range of 800−1,350 m.

4 Challenges of gas adsorption on
shale

In the field of shale gas adsorption, although researchers have

carried out a great deal of research on many aspects, such as

affecting factors of adsorption, adsorption characteristics,

adsorption theory, and shale gas adsorption, research in this

area still faces some challenges.

(1) Organic matter in shale has complex physical and chemical

structures that play important roles in gas adsorption. In the

past, the influence of organic matter on adsorption was

studied mainly from the aspects of physical structures.

However, chemical structures with different kerogen types

or different thermal evolution degrees also have effects on

gas adsorption. For example, the surface energy of organic

matter with different structures is different, resulting in

different gas adsorption capacities.

(2) Porosity provides space for shale gas occurrence. Adsorbed

gas mainly occurs on the surface of the matrix layer.

Currently, there are arguments on the influence of pore

size on gas adsorption behavior. On the one hand, micro

pores provide more specific surface area, but many pore

diameters are smaller than the kinetic diameter of methane

molecules. Can the micro pores truly become the main pore

space for gas adsorption? On the other hand, clay minerals

provide micro pore volumes for gas adsorption that account

for 60%–80% of the total pore volumes in shale. It is unclear

whether the important contribution to adsorption is via

organic matter pore volumes or clay mineral pore volumes?

(3) Organic matter and clay minerals are the main adsorbents

for shale gas adsorption. The contribution of clay minerals to

gas adsorption is still controversial. Some researchers believe

that clay minerals contribute little to gas adsorption;

however, the contribution of organic matter and clay

minerals to gas adsorption is not clear. The reason is that

under actual geological conditions, 90% of organic matter

and clay minerals exist in the form of organic-clay

complexes; only a small fraction of organic matter is

associated with mineral particles. Therefore, the

interaction between organic matter and clay minerals and

its effects on adsorption still need further research.

(4) Moisture content is another factor that influences shale

adsorption behavior, but its impact on shale adsorption is

also controversial. Whether the effect of moisture content on

gas adsorption in shale is equal to that of coal is a question

worth exploring, especially regarding how the presence of

expansive minerals impacts adsorption.

(5) With changes in pressure, shale adsorption behavior does

not entirely obey the monolayer adsorption. In the

supercritical state, gas adsorption will be affected not only

by adsorption phase volume but also by the shale’s

morphological characteristics, structural features,

composition, etc. The impact of these many variables on

the mechanism of shale adsorption needs additional study.

(6) Under varying temperature and pressure conditions,

adsorption characteristics in shale are almost blank,

making an adsorption profile difficult to establish in a

geological reservoir. Research has shown that in the

coalbed methane field, the adsorption capacity in coal

increased with an increase in pressure and decreased with

an increase in temperature. Under geological conditions, the

influence of pressure on the adsorption capacity plays a

dominant role when the burial depth is less than

800–1,500 m, while temperature plays a leading role when

the buried depth is more than 800–1,500 m. The influence of

burial depth is different in different regions because of

different effective stress. In other words, when burial

depth is approximately 800–1,500 m, the coal seam has

the largest adsorption capacity. The relationship between

gas adsorption capacity and pressure is complex. With the

influence of temperature, the relationship between the

maximum adsorption capacity and depth is even more

complex. Research in these areas is currently lacking and

needs to be examined in greater detail.

5 Conclusion

Shale adsorption behavior, in addition to its own nature, is

greatly impacted by external factors such as pressure and

temperature. This paper presents a review of gas adsorption

behaviors that can be applied to evaluate the gas content in shale

reservoirs.

The main variables of shale gas adsorption are organic matter

and clay minerals; other variables include moisture content,

TOC, organic matter type and organic matter maturity. It is

generally believed that higher shale TOC, vitrinite content or

organic matter maturity contributes to a higher gas adsorption

capacity. The reason is that there are many of pores in kerogen,

especially type III kerogen that provide a comparatively large area

Frontiers in Earth Science frontiersin.org09

Lin et al. 10.3389/feart.2022.1021983

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1021983


for gas occurrence, and pores in organic matter gradually

increase with the increase of thermal evolution degree. Brittle

minerals will lead to a lower adsorption capacity. Clay minerals

are good materials for gas adsorption due to their micro pores,

large specific surface area and special electrochemical properties

that provide more places for adsorbed gas. There are differences

in shale gas adsorption capacities due to differences in chemical

composition, crystal structure, particle size and petro physical

properties of different clay mineral types. However, the influence

of clay minerals on adsorption properties is still controversial.

Generally, there exists a negative correlation between moisture

content and gas adsorption capacity, but some researchers held

the opposite view.

Under reservoir conditions, in addition to the

abovementioned factors, temperature and pressure both

increase with the increase of burial depth that have an

influence on gas adsorption behavior. Gas adsorption capacity

decreased with an increase in temperature. As the pressure

increases, gas adsorption characteristics mainly show two

characteristics—an adsorption curve that obeyed the Langmuir

equation and another where the adsorption maximum value

appeared as a “single peak” adsorption phenomenon with an

inverted U shape at a pressure value distribution in the range of

5–12 MPa. The latter characteristic is difficult to describe with

the Langmuir equation. In addition to the influence of adsorbed

volume phase, composition, structure and morphology also have

influences on shale.

There are still many problems in the study of adsorption

behaviors in shale that pose a great challenge for research in this

field. These problems include chemical structures of organic

matter in shale; pore size distribution; clay minerals;

interaction between clay minerals and organic matter; and

especially the factor of moisture content which is rich in clay

minerals. All of these variables need to be further studied. Under

reservoir temperature and pressure conditions, the adsorption

characteristics are difficult to describe by the single molecular

layer adsorption theory. The mechanism of adsorption behavior

changes and the adsorption model involving a variety of factors

are problems that urgently need to be solved, with a particular

emphasis on studying the variation of temperature and pressure

with the influence of other factors that directly affect the

estimation of adsorption content in shale under reservoir

conditions.
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