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Geochemical investigation on the origin and circulation of geothermal water is

crucial for better understanding the interaction between hydrosphere and

lithosphere. Previous studies on the Himalayan geothermal belt mainly distributed

in the central and eastern Tibetan Plateau. In this study, water samples (8 hot springs

and 1 cold spring) from the Karakorum fault (KKF) zone of western Tibetan Plateau

were analyzed for the hydrogeochemical characteristics and isotopic compositions.

Three types of spring water along the KKF were classified on basis of ionic

concentration and Sr isotopic composition: type A water (HCO3–Mg or Ca), type

B water (HCO3–Na) and type C water (Cl–Na). Type A water is originated from the

infiltration ofmeteoric water and the dissolution of silicate/evaporite. Type Bwater is

mainly leached from the metamorphic and granitoid rocks. Type C water is formed

by the dissolution of chlorides and sulphates. δD and δ18O isotopes indicate that

geothermal fluid along the fault zone was mainly recharged by local precipitation.

Moreover, reservoir temperatures of 144.2–208.6°C were estimated by the

silica–enthalpy mixing model, and the thermal waters have a relatively deep

circulation depth (≥ 7.0 km). Meanwhile, the thermal waters are characterized by

extremely high Li, B, Fe and As concentrations and earthquakes frequently happened

in the vicinity, suggesting that the KKF is a deep and active fault, which also indicates

that the thermalfluids are strongly associatedwith seismicity. Therefore, thermal fluid

can potentially be used as continuous monitoring sites for earthquake forecasting.
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1 Introduction

Geothermal energy is one of the most competitive resources

with the potential to substitute fossil fuels in the future (Wang,

2009; Vakulchuk et al., 2020). Hot spring water, a geothermal

resource that develops mostly along faults, acts as a window of

deeper and shallower crusts, and is closely related to deep

thermal systems (Bianchi et al., 2010; Guo, 2012). The

geochemical characterisation of geothermal water not only

contributes to the exploration and development of geothermal

resources but also provides information about the geothermal

reservoirs (Guo et al., 2014a, b; Brahim et al., 2020), the tectonic

setting, activity and penetration depth of related faults (Du et al.,

2005; Zhao et al., 2014; Daniele et al., 2020). New findings have

been made in understanding the genesis type, recharge source,

reservoir temperature, circulation depth and formation

mechanisms of geothermal water and even some earthquake

precursor signals (Skelton et al., 2019; Barberio et al., 2020;

Franchini et al., 2021; Yan et al., 2022). In addition,

geothermal water is one of the important windows to study

the interaction between the lithosphere and hydrosphere.

The India-Eurasia continental collision, ongoing since ca.

60–50 Ma (Molnar and Tapponnier, 1975; Hu et al., 2015; Zhu

et al., 2021), has created the Tibetan Plateau. Many medium-

to high-temperature geothermal resources have developed in

the Tibetan Plateau (Figure 1A) located in the Himalayas

geothermal belt, which is an important part of the

Mediterranean–Himalayas geothermal belt (Guo, 2012) and

provides ideal systems for studying the deep-time interaction

between the lithosphere and hydrosphere. Systematic

geological works, including geochemical investigations and

quantitative assessment of the geothermal reservoirs, have

been conducted in the central and eastern Tibetan Plateau,

such as the Yangyi geothermal system (The Geothermal

Geological Team of Tibet, 1990; Guo et al., 2009; Yuan

et al., 2014), the Rehai geothermal system (Shangguan and

Huo, 2002; Guo et al., 2014a, b), the Yangbajing geothermal

system (Guo et al., 2008, 2010; Yuan et al., 2014) and the

Kangding–Litang–Batang geothermal belt (Tang et al., 2017).

Moreover, it has been verified that the magma chamber or

molten granite is the heat source for most of these high-

temperature (> 150°C) hydrothermal systems (Nelson et al.,

1996; Guo and Wang, 2012). However, due to location

approaching the disputed international boundaries at a

high elevation, relatively few systematic studies have been

conducted on the high-temperature geothermal fields with

non-volcanogenic heat sources in the western Tibetan Plateau

(Wu et al., 2011; He et al., 2016; Wang et al., 2016).

In this contribution, the interaction of deep lithosphere and

hydrosphere was discussed by the study of thermal and cold

springs along the Karakorum fault (KKF) in the western Tibetan

Plateau. Systematical analyses, including physicochemical

characteristics (including pH and electrical conductivity),

hydrochemical characteristics (anion, cation and trace element

concentrations), stable hydrogen and oxygen isotopic

compositions and Sr isotopic compositions, were conducted to

construct a model of the origin and circulation for the geothermal

water. The petrological characteristics and penetration depth of

the KKF were also analyzed to identify whether high-temperature

geothermal fluids in the study area were heated by magma or

other heat source. About the geochemical study of spring waters

along the KKF, it can be used to estimate the circulation depth of

geothermal fluids that have closed relationships to earthquake

distribution. So we speculate that geothermal fluids can be

considered as potential continuous monitoring sites for

forecasting shallow-focus earthquakes and compensating for

the shortcomings of conventional fluid seismic observations in

the future.
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FIGURE 1
(A) Tectonic framework of the Tibet and surrounding regions (modified after Lu et al., 2022); (B)Geological mapwith sampling sites of the study
area. Abbreviations: HB-Himalayan block; LB- Lhasa block; SQB- SouthQiangtang block; NQB-NorthQiangtang block; SB- Songpan-Ganze block;
KS- Kunlun suture; JSJS- Jinshajiang suture; LSS- Longmu Co-Shuanghu suture; BNS- Bangong Co-Nujiang suture; IYZS- India-Yarlung Zangbo
suture.
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2 Hydrogeologic and geological
setting

The KKF is characterised by a highland monsoon climate,

with an elevation range of 4,200–4,900 m, average annual

temperature of 0.4°C and average annual precipitation of

74.8 mm/yr (Wu et al., 2011). The annual solar radiation in

the town of Shiquanhe is as high as 8.16×1015 J/m2, which is the

highest value in Tibet. Geologically, the KKF is a dextral

strike–slip active fault that trends NW–SE, stretching for

more than 1,000 km from the Pamir to the Indus–Tsangpo

suture zone. South of Shiquanhe, the southeastern segment of

the KKF extends along the Indus–Tsangpo suture zone eastward

of the Kailas range for at least 150 km and becomes parallel to the

Indus suture (Lacassin et al., 2004). Its contemporary and late

Pleistocene slip rates are in dispute [InSAR: 1 ± 3 mm/yr (Wright

et al., 2004); GPS: ≈3–5 mm/yr (Kundu et al., 2014; Z. Tian et al.,

2019); ≈11 mm/yr (Banerjee and Bürgmann, 2002)]. Although

investigations on the penetration depth of the KKF have been

carried out (Rai et al., 2006; Priestley et al., 2008; Nábělek et al.,

2009; Zhao et al., 2010; Klemperer et al., 2013; He et al., 2016),

whether the KKF access to the mantle depth remain unclear.

Strata that outcrop in the KKF area are mainly covered by

sediments, including Holocene (Qhalp), Pleistocene (Qp),

Paleogene (N2w), Oligocene to early Miocene (E3N1r) and

Middle Cretaceous (K2s) that consist of carbonate breccia,

calcareous sinter, gravels, sandstones, mudstones and shales.

In addition, Magmatic rocks in the study area mainly contain

Upper Cretaceous granodiorite (K2γδ), the Lower Cretaceous

(K1d and K1l), the Upper Triassic mafic rocks (T3M∑) and

complex rocks (T3M∑m), the Lower Neocene monzogranite

(ηγN1). Overall, the most widespread strata in the KKF are

Cretaceous. Lower Cretaceous shallow marine and terrestrial

deposits intruded by Gangdese granitoids with predominantly

Cretaceous and rarely Cenozoic ages (Schwab et al., 2004),

unconformably overlie ophiolitic mélange and locally Permian

metasediments (Kapp et al., 2003). Strong Cretaceous and

Cenozoic magmatism and metamorphism of the KKF, which

are related to an Andean-type margin along the southern margin

of Asia (Schwab et al., 2004), offer the required conditions for the

development of abundant large-scale geothermal resources along

the KKF. The fault provides channels for the circulation of

geothermal fluids (Sachan et al., 2016), facilitating water–rock

interaction and convection of heat (Wang et al., 2016).

Some previous studies have depended on geological and

geophysical data to examine geothermal water along the KKF.

However, a few geochemical investigations on the hydrothermal

waters of the KKF field have been conducted and examined the

ion origin and phase equilibrium of minerals, the mixing of

thermal and cold waters, and the geothermal reservoir

temperature (e.g., Wu et al., 2011; Wang et al., 2016). No

works have been reported about the circulation depth and

circulation models of the geothermal water along the KKF.

3 Methodology

3.1 Sampling and analytical procedures

A total of nine samples were obtained from eight thermal

springs (DGQ-1, QP-2, XB-3, ZDGB-4, MS-5, BEHZ-6, NM-7,

LJ-8) and the Kalakoram cold spring (KK-9), distributing along

the KKF of the western Tibetan Plateau Figure 1B. The samples

were collected for chemical and isotope analyses on August 2–4,

2019, except for the sample from the Kalakunlun Mountain

spring, which was collected on 8 October 2020, and the sample

from sample ZDGB-4, which was collected on 28 September

2021. The longitude, latitude, elevation, lithology, and aquifer

type of each sampling site were recorded during the sampling.

The physicochemical parameters of the thermal water samples,

including pH and electrical conductivity (EC), were measured on

site using a Thermo Orion 4-Star Meter, which was calibrated

before sampling. The water temperature was determined using a

YF-160 thermometer, and the measurement error was estimated

to be within 0.1°C. The water samples were collected by

underwater sampling and were stored in 50-mL polyethene

(PE) bottles that had been pre-cleaned by immersion in

ultrapure water for 3 days, oscillation in an ultrasonic

oscillator for 15 min, rinsing in ultrapure water and drying in

an oven. One vial was an unacidified sample used for anion

analyses, and another vial was acidified with analytical reagent

(AR) for cation and trace element analyses.

Chemical analysis of the spring water samples was

performed in the Key Laboratory of the Earthquake

Forecasting Institute of the China Earthquake

Administration. The concentrations of cations (K+, Na+,

Mg2+, Ca2+, Li+) and anions (F−, Cl−, NO3
− and SO4

2-) in the

water samples were determined using an ion chromatography

system (Dionex ICS-900) and an autosampler (AS40) with a

detection limit of 0.01 mg/L (Chen et al., 2015). The HCO3
− and

CO3
2- concentrations of the samples were measured with a ZDJ-

3D titrator with 0.05 mol/L HCl, using methyl orange and

phenolphthalein indicators. For the purpose of calibration of

the chromatography, the standard samples were measured

before and after measurement of each batch of water

samples. The deviation of the measurements was within ± 1%.

The concentrations of trace elements were detected by

inductively coupled plasma mass spectrometry (ICP-MS,

Element XR) in the Analytical Laboratory of the Beijing

Research Institute of Uranium Geology (Knappett et al.,

2018). Sr isotope compositions were determined using a

thermoionisation mass spectrometer (TIMS, IsotopX

Phenix), largely according to the experimental procedures

described by Wang et al. (2014). Silica (SiO2)

concentrations were analysed using an inductively coupled

plasma optical emission spectrometer (ICP-OES) (Perkin-

Elmer Optima 5300DV, United States). The O and H

isotopic compositions of the water samples were
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determined using a Thermo-Finnigan MAT253 mass

spectrometer. The O–H isotopic results are reported in

delta (δ) notation versus the international Vienna Standard

Mean Ocean Water (VSMOW) and expressed in per-mile

percentages. The precisions were better than ± 0.2‰ and ±

1‰ for δ18O and δD, respectively (Liu et al., 2013).

3.2 Hydrochemistry and isotopes

The spring waters were classified according to the Schukarev

classification system. The total equivalents of cations and anions

were taken to be 100%, and ions greater than 25% of the

milligram equivalents were considered in the classification.

Piper (1944) proposed an effective tool (Piper diagram) based

on a multiple-trilinear diagram with respect to sources of

hydrochemical constituents and water–rock interaction

processe. A Cl–SO4–HCO3 ternary diagram was used to

determine whether there is a volatile magmatic influence on

the high-temperature geothermal fluid (Giggenbach, 1988). The

triangular Na–K–Mg diagram can be used to evaluate the

equilibrium between hot water and rocks, which can further

distinguish three states of water: fully equilibrated water, partially

equilibrated (mixed) water and immature water.

Stable oxygen and hydrogen isotopes can be used to calculate

the recharge elevation of meteoric waters because of their

relationship with altitude (Craig, 1961), and to trace the

origin of hydrothermal waters (Giggenbach et al., 1983).

Studies of the δD and δ18O values of precipitation related to

altitude (Craig, 1961) suggest that the isotopes of meteoric water

become progressively lighter with increasing altitude. Thus, the

recharge elevation of groundwater can be estimated by using the

following formula:

H � δ18Ogw − δ18Olw

grad18O
+ h

where H (m) is the recharge elevation; δ18Ogw and δ18Olw (‰) are

the oxygen isotope ratios of the groundwater sample and local

meteoric water, respectively; grad18O (‰/km) is the isotope

elevation gradient of meteoric water; and h (m) is the

elevation of the local meteoric water sampling point.

The mixing ratio of magmatic water in geothermal fluid can

be calculated using the following isotopic bivariate mixture

model (Pang, 2006):

δG � λδM + (1 − λ)δP
where δG, δM, and δP represent the δ18O or δD of geothermal fluid,

magmatic water and precipitated meteoric water, respectively. λ is

the percentage of magmatic water mixed in the geothermal fluid.

Strontium isotope ratios are originally used as a

geochronologic tool and a petrogenetic tracer to determine the

age or source of rock formations (Faure, 1977), since rocks or

minerals have different ages and Rb/Sr ratios, resulting in

variable strontium isotopes in different geological terranes

(Hajj et al., 2017). Later, strontium isotopes have been used to

investigate Earth surface processes, such as quantifying the

weathering and erosion rates of rocks and calculating the

contributions of different mixing sources to water bodies

(Gaillardet et al., 1999; Wang and Tang, 2020) Strontium in

rocks is released into water and soil as Sr primarily through

weathering and dissolution. The 87Sr/86Sr values of surface and

ground water are a function of bedrock weathering (Frei and Frei,

2011). Previous studies have concluded that the dominant source

of Sr (water, plants, soils, snail shells and animal and human

tooth enamel and bones) is largely determined by the underlying

geology (Hajj et al., 2017).

3.3 Statistical analysis and geochemical
modeling

As the Lower Cretaceous shallowmarine and terrestrial deposits

were intruded by the Gangdese granitoid (Schwab et al., 2004), the

geothermal water in the KKF area likely interacted with the

intruding granite. So, the corresponding trace element

compositions of granodiorite from Jiangba pluton in the

Shiquanhe area (Yan, 2019) were used as the reference. Ti was

selected as the reference element because of its widespread presence

in the crust, low susceptibility to contamination, stable chemical

properties and lower volatility than other trace elements. In this

study, the enrichment factor (EF), a qualitative indicator used to

assess the water–rock interaction of thermal waters, was calculated

by normalizing the concentrations of trace elements (Li, Be, Al, Ti,

V, Cr, Fe, Co, Ni, Cu, Zn, Sr, Sn, Ba, Tl, Pb, Th and U) using the

following formula:

EFi � (Ci/Ti)ω
(Ci/Ti)r

where Ti is the selected reference element, Ci is an element in the

spring sample, ω is the element concentration of the spring

sample, and r is the element concentration of the reference rocks.

The AquaChem–PHREEQC software (Parkhurst and

Appelo, 1999) developed by Waterloo Hydrogeologic Inc. was

used to evaluate the geochemical properties and saturation index

of each mineral.

The silica–enthalpy mixing model is another available

method for determining reservoir temperatures of spring

water. The silica–enthalpy mixing model (Fournier and

Truesdell, 1974) assumes that 1) there is no precipitation of

silicon and SiO2 controlled by quartz in thermal water before

mixing with cold water; 2) and no conduction cooling occurs

after mixing. These factors eliminate the effects of the mixing

process and represent the maximum reservoir temperatures of

thermal water before mixing. In this study, sample KK-9 is

selected as the end-member of cold water, while the other
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TABLE 1 Hydrochemical properties and major chemical constituents of the spring waters along the Karakorum Fault. The values were expressed in mg/L.

Sample Type
of sample

T (°C) pH EC
(μs/cm)

Na K Mg Ca Cl SO4 CO3 HCO3 Li F SiO2 TDS Hydrochemical
type

δD
(‰)

δ18O
(‰)

DGQ-1 Geothermal
spring

75.00 7.75 45600 770.67 78.90 10.80 20.90 742.48 57.76 87.94 1299.28 16.16 11.19 81.11 1230.04 HCO3·Cl–Na −142.7 −16.4

QP-2 Geothermal
spring

83.40 8.28 1697 367.97 32.44 0.87 4.05 112.63 86.43 98.58 498.22 2.41 11.87 214.00 679.49 HCO3–Na −136.3 −16.8

XB-3 Geothermal
spring

70.00 8.11 47000 1005.71 97.48 3.00 14.34 676.75 257.83 160.28 1360.56 9.50 6.81 149.59 1694.18 HCO3·Cl–Na −121.8 −15.3

ZDGB-4 Geothermal
spring

69.60 7.29 144.7 118.09 38.42 38.94 148.78 15.05 85.49 0.00 852.78 0.34 3.19 46.87 60.28 HCO3–Ca·Na −128.4 −15.5

MS-5 Geothermal
spring

48.50 6.72 2412 225.44 98.57 177.65 50.25 67.21 181.75 0.00 1307.21 0.68 1.44 32.96 176.00 HCO3–Mg·Na −130.4 −16.5

BEHZ-6 Geothermal
spring

74.00 7.87 62900 1082.17 135.49 21.65 59.11 1822.34 137.11 145.39 845.04 36.88 8.14 153.44 3196.92 Cl–Na −115.8 −13.3

NM-7 Geothermal
spring

77.88 8.10 1245 250.92 8.84 0.21 11.51 179.87 145.00 28.37 135.55 0.96 15.08 77.25 649.49 Cl·SO4–Na −131.4 −14.3

LJ-8 Geothermal
spring

81.17 8.20 2813 573.14 43.65 1.93 24.80 444.78 374.87 73.76 440.54 5.56 10.01 147.45 1478.20 Cl·SO4–Na −119.9 −13.3

KK-9 Cold spring 6.00 7.43 155.10 11.33 0.88 3.81 18.00 1.40 14.54 0.00 79.52 0.00 0.77 8.65 20.66 HCO3–Ca·Na −124.7 −15.5

Note: δD and δ18O were expressed in ‰ vs. V-SMOW, standard.
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medium-to high-temperature spring waters of the KKF are the

another end-member of thermal water.

In addition, we plot the quartz solubility curve under the

conditions of steam separation occurring (maximum steam

loss) or not (no steam loss). In addition, the silica–enthalpy

diagram can quantify the mixing ratio of cold water when

thermal springs ascend. Based on a sequence of enthalpies and

quartz solubilities in various temperatures, the fraction of cold

water (Xt) can be calculated by the follow formula (Fournier

and Truesdell, 1974):

Xt � (HR −HS)
(HR −HC)

where HS is the enthalpy of hydrothermal spring water, HC is the

enthalpy of cold water, and HR is the enthalpy of reservoir waters.

3.4 Circulation depth

The circulation depth of the geothermal fluids can be

calculated as the following formula (Lu et al., 2017):

D � T − T0

G
+ Z0

where D is the circulation depth (km), T is the estimated

reservoir temperature (°C), T0 is the local annual average

temperature (°C), G is the geothermal gradient (°C/km), and

Z0 is the thickness of the constant-temperature zone (km). For

the samples of spring water collected along the Karakorum fault,

the circulation depth was estimated by applying a local annual

average temperature of 0.4°C (Wu et al., 2011), a constant-

temperature zone at 30 m, and a regional geothermal gradient

of 30°C/km (Chen et al., 2013).

4 Results

4.1 Physicochemical properties of the
geothermal system

The geochemical compositions of the spring water

samples collected along the KKF are presented in Table 1.

Except for sample KK-9, a cold spring with a temperature of

TABLE 2 Chemical composition of trace elements of the spring waters along the Karakorum Fault. The values were expressed in μg/L.

Sample DGQ-1 QP-2 XB-3 ZDGB-4 MS-5 BEHZ-6 NM-7 LJ-8 KK-9

Li 16935.00 2251.00 9235.00 320.00 627.00 35553.00 923.00 5091.00 12.80

Be 26.90 5.91 2.10 0.27 0.09 14.10 1.48 4.35 0.08

B 315473.00 40509.00 84849.00 3004.00 10351.00 497014.00 19451.00 52286.00 326.00

Al 70.60 486.00 168.00 8.46 9.10 69.00 96.20 33.40 265.00

Ti 20.50 31.70 29.90 5.14 8.27 32.70 9.38 22.00 23.80

V 3.72 1.16 3.18 2.15 0.96 6.64 1.28 2.25 2.12

Cr 2.07 2.77 2.68 2.52 1.58 1.72 1.56 1.69 2.60

Fe 344.00 259.00 331.00 85.30 12.80 411.00 90.50 97.00 568.00

Co 0.06 0.10 0.16 0.47 0.31 0.09 0.06 0.05 0.31

Ni 0.92 1.20 1.35 7.39 3.65 1.51 0.75 0.65 1.62

Cu 1.42 1.35 2.35 1.82 1.84 1.72 1.19 2.64 31.70

Zn 4.80 3.99 5.02 12.10 5.11 5.58 3.14 4.69 17.00

Sr 1465.00 216.00 2612.00 1825.00 5142.00 1147.00 280.00 1895.00 103.00

Mo 0.26 0.07 1.69 0.14 0.10 0.11 57.30 5.76 1.23

As 29224.00 329.00 3814.00 69.200 30.00 5339.00 4478.00 4324.00 110.00

Ag 0.01 0.03 0.01 0.01 0.02 <0.002 0.01 <0.002 0.01

Cd 0.02 0.05 <0.002 0.00 0.02 0.03 0.10 0.03 0.01

Sn 0.15 0.13 0.09 0.09 0.08 0.16 0.07 0.11 0.61

Sb 31.00 262.00 296.00 16.00 0.19 26.10 4.37 58.90 2.37

Ba 294.00 101.00 137.00 187.00 112.00 4307.00 6.39 90.00 12.90

Tl 0.50 0.71 1.16 0.07 0.01 1.01 0.23 2.16 0.01

Pb 0.12 0.36 0.39 0.14 0.06 0.05 0.10 0.04 0.73

Th 0.08 0.12 0.10 <0.002 0.02 0.05 0.07 0.03 0.03

U 0.04 0.04 0.03 0.04 0.13 0.02 0.01 0.02 1.93

87Sr/86Sr (‰) 0.711531 0.742322 0.724661 0.714484 0.715482 0.711505 0.708902 0.712194 0.710253
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6°C, all the spring water samples were from thermal springs

with temperatures in the range of 48.5–83.4°C at the spring

vent. The pH values of the spring water samples were

6.72–8.28 (neutral to alkaline), and the electrical

conductivity (EC) and total dissolved solids (TDS) values

varied widely, from 144.7 to 62,900 μS/cm and from

20.66 to 3,196.92 mg/L, respectively.

Based on the concentrations (Table 1) in milligram equivalents

from high to low, the main cations of most of the spring water

samples (excluding samples ZDGB-4, MS-5 and KK-9) were Na+

(250.92–1,082.17 mg/L), K+ (8.84–135.49 mg/L), Ca2+

(4.05–59.11 mg/L) and Mg2+ (0.21–21.65 mg/L). The major

cationic concentrations in the sample collected from sample MS-5

wereMg2+ (177.65 mg/L) and Na+ (225.44 mg/L). The major cationic

concentrations in the samples collected from samples ZDGB-4 and

KK-9 were Ca2+ (148.783 and 18mg/L, respectively) and Na+

(118.091 and 11.33 mg/L, respectively). The main anion in

samples BEHZ-6, NM-7 and LJ-8 was Cl− (179.87–1822.34 mg/L),

while that in the rest of the samples was HCO3
− (79.52–1,360.56 mg/

L). The dissolved SiO2 contents were 32.96–214.00 mg/L in the

thermal springs and as low as 8.65 mg/L in the cold spring.

Trace elements were present in a wide range of

concentrations (see Table 2), ranging from fractions to

hundreds of thousands of μg/L. Boron (B), arsenic (As),

lithium (Li), strontium (Sr), barium (Ba), iron (Fe) and

antimony (Sb) were the most abundant elements, present at

concentrations from 326.00 to 497,014.00 μg/L,

30.00–29,224.00 μg/L, 12.8–35,553.00 μg/L, 103.00–5,142.00 μg/

L, 6.39–4,307.00 μg/L, 12.80–568.00 μg/L, and 0.19 μg/L to

293.00 μg/L, respectively. The Li, B, Sr and As concentrations

were higher in the higher-temperature thermal springs than in

the lower-temperature springs (samples ZDGB-4, MS-5 and KK-

9) along the KKF, while the Fe, Cu, Zn, Sn, Pb and U

concentrations in the thermal springs were lower than in the

low-temperature springs. Compared to the concentrations of B,

F, As and Li in typical high-temperature geothermal systems,

such as the Kangding (Tang et al., 2017), Yangbajing (Guo et al.,

2008, 2010), Yangyi (The Geothermal Geological Team of Tibet,

1990; Guo et al., 2009; Yuan et al., 2014), Rehai (Shangguan and

Huo, 2002; Guo et al., 2014a, b) and Cuopu (J. Tian et al., 2019)

systems in the Himalayan geothermal belt, those of the medium-

to high-temperature geothermal springs along the KKF ranged

from 3 to 497.01 mg/L, 1.44–15.08 mg/L, 0.03–29.22 mg/L, and

0.32–35.55 mg/L, respectively, which were consistent with the

typical ‘geothermal suite’ (Kaasalainen et al., 2015).

4.2 Isotopic characteristics of the
geothermal system

The stable oxygen and hydrogen isotopic compositions of the

spring water samples from the KKF ranged from -16.8 to -13.3‰

and from -142.7 to -115.8‰, respectively, versus V-SMOW. The

results are shown in Table 1. A plot of δD-δ18O is shown in

Table 1.

The Sr isotopic compositions of the spring water samples

from the KKF region are shown in Table 2. The ratios varied from

0.7089 to 0.7423. Extremely radiogenic ratios (> 0.724) were

detected for samples QP-2 and XB-3, which are adjacent to Lake

Manasarovar.

5 Discussion

5.1 Origin of thermal springs

5.1.1 Hydrochemical features
Physicochemical parameters (such as temperature, EC and

TDS) can be used to determine the water chemistry and

circulation characteristics of groundwater. Our results

demonstrate that geothermal spring water samples with higher

temperatures exhibit higher EC (>1,000 μs/cm) and TDS

(>650 mg/L) values than type A water (Table 1). In general,

high EC values can be caused by high concentrations of dissolved

minerals in water (Zainal et al., 2016). Higher TDS values reflect a

longer circulation path and residence time (Belhai et al., 2016).

Assuming that the springs belong to the same water source,

geological context and thermal source, temperatures at the spring

vent indicate the circulation depth, time of circulation and

regional geothermal gradients (Zainal et al., 2016).

5.1.1.1 Major elements

The hydrochemical characteristics of most of the geothermal

water samples analysed in this study were those of bicarbonate

types besides samples BEHZ-6, NM-7 and LJ-8. The

concentrations of major cations and anions of springs in the

KKF (Table 2) are shown on a Piper diagram (Piper, 1944)

(Figure 2) with three types of faces: (A) HCO3–Mg·Na (sample

MS-5) or HCO3–Ca·Na (samples ZDGB-4 and KK-9); (B)

HCO3–Na (sample QP-2) or HCO3·Cl–Na (samples DGQ-1

and XB-3); and (C) Cl–Na (sample BEHZ-6) or Cl·SO4–Na

(samples NM-7 and LJ-8). Type A water, especially the cold

spring water (sample KK-9), is characteristic of shallow or

subsurface water in the unsaturated zone and has high

concentrations of Ca2+, Mg2+ and HCO3
−, which may be

caused by the dissolution of Ca2+ and Mg2+ ions in a rock

field of limestone and Marl+CaSO4 origin (Appelo and

Postma, 2004) or in the soil by meteoric water action

(Hiscock, 2005). Therefore, considering the temperature

measured at the spring vent, sample KK-9 (as a cold spring,

6°C), with type A water, can be classified as shallow and as having

closed stable oxygen isotope characteristics with the local

meteoric water (e.g., Shiquanhe station, δ18O: -14.4‰;

altitude: 4,278 m) (Yao et al., 2013). Whereas the relatively

high temperatures of samples ZDGB-4 and MS-5 (69.6°C and

48.5°C, respectively) may be influenced by mixing with thermal
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water. The A and B water types are bicarbonate-type spring

waters formed by chemical reactions between infiltrated meteoric

water and dissolved carbon dioxide, the distinction being that

type B water may be formed by a reservoir rock field of granitic

origin, according to the Piper diagram, that contains albite and

microcline as the major minerals (J. Tian et al., 2019). In

comparison to type A water, type B water is richer in Na+

and deficient in Ca2+ and Mg2+ as a result of deep infiltration

and water–rock interaction processes. The flow pattern of this

type of water is characteristic of the evolution of groundwater

(Stuyfzand, 1999). Unlike the two types mentioned above, type C

water may represent thermal water that probably are at most the

groundwater flow system with a long flow distance and long

residence time in the aquifer. The Cl–Na-type spring shows that

dissolution of chlorides prevails in sample BEHZ-6. In addition,

samples NM-7 and LJ-8 are of the Cl·SO4–Na type, indicating

that the dissolution of chlorides and sulphates prevails in sample

LJ-8.

Three groups of geothermal waters are shown in the lower

right corner of Figure 2: steam-heated waters, mature waters and

peripheral waters. Type A water and type B water are bicarbonate

types. Both were plotted in the peripheral zone and are

considered to be peripheral water with a relatively shallow

heating hydrological circuit in the crust and no obvious

material contribution from a magmatic fluid. Type C water

samples are plotted in the chloride field. Among the type C

water samples, sample BEHZ-6 plot in the chloride mature field

is similar to typical high-temperature geothermal waters from

FIGURE 2
Piper diagram to recognise the hydrogeochemical facies in spring water samples from the KKF. Cl–SO4–HCO3 triangular diagram in the lower
right corner of Piper diagram (based on Nicholson, 1993). The rock field in the Piper diagramwas adopted from Zuurdeeg and Van derWeiden (1985)
and Appelo and Postma (2004). The legend filled blue, yellow, and red color represent the temperatures at the spring vent below 25°C, between 25°C
and 50°C, and above 50°C of spring water samples, respectively.
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Yangbajing and the Yellowstone National Park, which are

generally considered to be heated by underlying magma, and

the water is affected by magmatic fluid (water and volatile) to

various degrees. This conclusion is confirmed by the results of the

analysis of oxygen and hydrogen isotopes (Figure 3), presented in

section 5.1.2. It is widely recognized in the geothermal

community that Cl− in high concentrations in

high–temperature geothermal fluids originates mainly from

mixing with magmatic water (Guo et al., 2014a, b; Tian et al.,

2018). Samples NM-7 and LJ-8 have lower HCO3/Cl ratios than

sample BEHZ-6 and fall in the chloride field away from the

chloride mature field, suggesting these thermal water samples

underwent fast-ascending partial mixing with near-surface water.

5.1.1.2 Trace elements

The enrichment factors (EFi) of trace elements in spring waters

along the Karakorum fault are shown in Figure 4. According to the

concentrations of trace elements, the hot spring water is similar to

granodiorite from the Jiangba pluton in the Shiquanhe area, with

high concentrations of Li, Al, Fe, Sr, Ba and Pb, compared to other

elements (Be, Ti, Cr, Co, Ni, Cu, Sn, Tl, and U), indicating that these

elements in the hot spring water mainly originate from water–rock

interactions. For instance, thermal water has high concentrations of

Sr and Ba, 103–5,142 μg/L and 6.39–4,307 μg/L, respectively. It is

assumed that the geothermal water in the study area has water–rock

interaction with volcanic and magmatic rocks at the depth of the

KKF. During this process, Sr and Ba in potassium feldspar and

hornblende minerals in volcanic and magmatic rocks are often

replaced with Ca and K in geothermal water, thus contributing Sr

and Ba elements to the spring water. In addition, Sr is more easily

migrated and occurs at a higher concentration than Ba in

bicarbonate-type spring water. However, differences in the

chemical properties and migration capacities of various trace

elements lead to Be, Ni, Cu, Tl and U enrichment in addition to

that of Li Sr, and Ba in some springs, compared to the granodiorite

from the Jiangba pluton in the Shiquanhe area (Figure 4). Li is more

enriched than other elements in the spring water samples, except for

sample DGQ-1 (CLi = 0.0128 mg/L), where its concentration was up

to 16.935 mg/L. The enrichment factors for Al, V, Co, Pb, Sn and Th

were less than 1, indicating sources of geothermal water other than

the interaction of Jiangba pluton.

Previous studies on high-temperature geothermal systems

have recognized Li, B, Fe and As being a typical ‘geothermal suite’

(Kaasalainen et al., 2015). The Li, B, Fe and As concentrations of

type A water are 1–3 orders lower than those of type B and type C

waters along the KKF (Table 2; Figure 5) and other typical high-

temperature geothermal systems in the Tibetan Plateau (Guo

et al., 2008, 2009, 2014a, b). This phenomenon is probably due to

a shallow circulation depth of type A water, where there is no

mantle-derived magmatic intrusion in the shallow crust

supplying both heat and volatiles (J. Tian et al., 2019). The

type B and C thermal waters along the KKF have high Li

concentrations (> 0.96 mg/L), a signature of deep fluid

upwelling. Hydrolysis of lithium silicate minerals (such as

FIGURE 3
Plot of stable oxygen and hydrogen isotopes of spring water samples from the KKF. The straight line (δD = 8.0δ18O + 10.0; Craig, 1961)
represents the global meteoric water line (GMWL), and the dashed line (δD= 7.93δ18O + 11.59) represents the local meteoric water line (LMWL) at the
Gangotri station, India. V-SMOW = Vienna Standard Mean Ocean Water. The legend is the same as in Figure 2.
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lepidolite and hydroxyapatite) in granites and granodiorite

during deep circulation processes are speculated to result in

the dissolution of Li entering thermal water (Zhang et al.,

2003). As the solubility of boron (B) in geothermal water

increases with depth, pressure and temperature (Zhang et al.,

2003), a higher boron content in a water sample indicates a

greater depth at which geothermal water is circulating. The

relatively high boron contents of the type B and type C

waters, shown in Figure 5, suggest deep circulation.

Arsenic (As), a toxic trace element, plays an important role in

the study of geothermal resources. The arsenic concentrations of

sample KK-9 vary widely (Figure 5; Table 2). The type B and type

C waters have higher arsenic contents (0.33–29.22 mg/L) than

the type A waters (0.03–0.11 mg/L), especially sample DGQ-1

having an extremely high arsenic concentration (as high as

29.22 mg/L), compared to those in typical high-temperature

geothermal systems that are recognized as being influenced by

underlying magma or hot thickened crust to different degrees

(Guo et al., 2008, 2009, 2014a, b; Wang, 2021). The high arsenic

concentrations in type B and type C waters may be related to

Gangdese granitoids, deeper circulation and water–rock

interaction. This is because arsenic in geothermal fluids

mainly derives from the dissolution of arsenic from As-rich

minerals in upper crustal rocks during water–rock interaction

when deep circulation of geofluids occurs. Arsenic then migrates

to the surface as geothermal fluids rise (Wang, 2021).

5.1.2 Hydrogen and oxygen stable isotopes
As shown in Figure 3, all the spring water samples fall near

the global meteoric water line (GMWL) and the local meteoric

water line (LMWL), providing significant information about the

origin of geothermal water (Craig, 1961; Pang et al., 2017; Duan

et al., 2022), i.e. that the springs are mainly recharged by

infiltrated precipitation.

In this study, the local precipitation isotope data were

selected for the Shiquanhe station (δ18O: -14.4‰; altitude:

4,278 m) of the Tibetan Network for Isotopes in Precipitation

(TNIP) (Yao et al., 2013), which is the closest to the sampling

sites. The δ18O vertical gradient in the Tibetan Plateau was

assumed to be -3.1‰/km (Yu et al., 1984). Consequently, the

recharge elevation range (calculated as 4,568–5,052 m) for the

KKF spring water samples was slightly higher than the elevation

of the local meteoric water sampling point (4,278 m), excluding

type C water (samples BEHZ-6, NM-7 and LJ-8). The recharge

elevation is lower than the snow-capped mountain elevation

around the locations of the spring water samples from the KKF

area (5,500–6,000 m for the Gangdise mountains, 6,000 m for the

Himalayan mountains, 5,500–6,000 m for the Kunlun mountains

and 5,500–6,000 m for the Nyenchen Tanglha and Tanglha

mountains). This suggests that the recharge source of all type

A and B waters (excluding type C waters) is presumably not only

meteoric water but also snowmelt water. Nevertheless, the

recharge elevation of type C water was calculated to be

3,923–4,245 m, and type C water was more enriched in δ18O
(> -14‰) than type A and type B waters, which means that there

should be other recharge sources. We speculate that magmatic

waters enriched in D and 18Omay contribute to these geothermal

fluids.

The δ18O and δD values were plotted for the thermal

springs and cold springs, as well as three end members

FIGURE 4
Trace element distribution for geothermal water samples along the KKF.
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(meteoric water, snowmelt water and magmatic water)

(Figure 3). The snowmelt isotopes are referenced from

glacier data (the Tanglang La in India, elevation 5,210 m)

reported by Pande et al. (2000). The precipitation isotopes and

the local meteoric water line are referenced from the Gangotri

station, India, in GNIP (http://www-naweb.iaea.org/napc/ih/

IHS_resources_gnip.html). The snowmelt water with δD of

-180‰ and δ18O of -24.7‰ falls to the lower left of the global

meteoric water line (GMWL) and the local meteoric water line

(LMWL), which can be explained by an isotopic fraction

during the snow melting process and isotope altitude effect

(Clark and Frintz, 1997). The weighted mean precipitation

isotopes of the Gangotri station (δ18O: -14.5‰; δD: -103.7‰)

plot on the LMWL or close to the GMWL. The magma water is

enriched in δD and δ18O within ranges of -20 ± 10‰ and 10 ±

2‰, respectively (Giggenbach, 1992).

Almost all the spring water samples fall into the mixing area

among the three end members (Figure 3). At the mixing area, the

type C water samples exhibit strong δ18O enrichment and plot in

the mixing zone between snowmelt water and magmatic water,

suggesting that it is a mixture of snowmelt water and magmatic

water. The mixing ratio of magmatic water in the spring waters

was estimated to be 13%–17%. Type A and B waters in KKF are

more likely to be influenced by evaporation or other factors than

only by the magma water, so the actual mixing ratios are

influenced by evaporation and other factors below 6%–13%.

An obvious oxygen isotope shift in geothermal waters is

usually observed as a result of strong water–rock interaction

when the rock is richer in δ18O (Giggenbach, 1992). The positive

δ18O shift is generally ascribed to water–rock interactions

affected by three factors: 1) the high temperature of reservoirs;

2) a long circulation time; 3) high ratios of rock to water (Tian

et al., 2018). Nevertheless, no remarkable oxygen isotope shift

(δ18O: -21.51‰ to -15.25‰; δD: -166.8‰ to -127.4‰) in the

geothermal waters along the KKF was observed, which is

consistent with numerous high-temperature geothermal

systems in the Tibetan Plateau (Guo et al., 2010; Tan et al.,

2014). This is probably because that the geothermal water

circulates too quickly and stays too short a time within the

reservoir to allow the water to attain full equilibrium between

FIGURE 5
Concentrations of Li, B, F and As in geothermal waters along the KKF compared with those from typical high-temperature geothermal systems
in the Himalayan geothermal belt (Guo et al., 2008, 2009; 2014; Wang, 2021).
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water and rocks. This explanation is supported by the finding

that none of the waters in the KKF region attain full equilibrium

between water and rocks. As shown in Figure 3, the higher-

temperature springs in the KKF area are slightly deficient in δD,
with values ranging from -142.7 to -136.3‰ (type B water except

for sample XB-3) or are more enriched in δ18O, with values

ranging from -14.3 to -13.3‰ (type C water) than the lower-

temperature springs (type A spring water). Therefore, the

isotopic compositions with minimal oxygen isotopic shift of

the type A water along the KKF could imply relatively

shallower circulation or lower geothermal gradient than that

of the type B and type C waters.

5.1.3 Water–rock interaction
Samples of DGQ-1, ZDGB-4, MS-5, BEHZ-6 and KK-9 is

distributed in the immature water field (shallow or mixed

waters), while samples QP-2, XB-3, NM-7 and LJ-8 is located

in the partial equilibrium zone or mature field (Figure 6). The

equilibrium temperatures of samples QP-2, XB-3, NM-7 and LJ-

8 range from 160 to 240°C, indicating that these thermal waters

came from deep and hot reservoirs. Therefore, they underwent

water–rock interaction during the deep circulation process, and

then were cooled with shallow cold water mixing during ascent.

However, all the samples from the KKF are distributed in the

immature water zone or partial equilibrium zone and away from

the full equilibrium zone, indicating that none of these waters had

attained full equilibrium between water and rocks. Type A water

(samples ZDGB-4, MS-5 and KK-9) falls closer to the Mg1/2

corner than the other water samples, indicating that mixed

thermal waters are far from equilibrium and at low

temperatures (Giggenbach, 1988). Therefore, the application

of cation geothermometers such as Na–K and K–Mg

thermometers to type A water would be problematic

(Giggenbach, 1988). In contrast, types B and C waters are

closer to the line of full equilibrium, indicating a slightly

higher degree of water–rock interaction than type A water in

the study area. This suggests a deeper or longer circulation which

is less affected by the mixing process for type B and C waters.

Thus, these springs can be used to estimate the reservoir

temperature with cation geothermometers. An interesting

point is that the type B waters (samples DGQ-1, QP-2 and

XB-3) fall along the same isotherm of the reservoir temperature

of ~ 220–240 °C (194.9–207.2 °C as calculated by the Na/K

geothermometer), which suggests that they share a parent

FIGURE 6
Giggenbach Na–K–Mg ternary diagram of spring water samples from the KKF. The legend is the same as in Figure 2.
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geothermal fluid at depth but mix with cold water near the

surface. This phenomenon further confirms that geothermal

water rises along the same conduit underground until it is

dispersed in the anisotropic porous Quaternary sediment

(J. Tian et al., 2019).

5.1.4 Mineral saturation states (SI)
The mineral saturation index (SI) of geothermal springs

reflects mineral thermodynamic behaviours and water–rock

equilibrium processes (Wang et al., 2016). By the PHREEQC

program, we calculated mineral saturation index values for the

spring water samples collected along the KKF at the outflow

temperature. The saturation index values obtained are shown in

Table 3; Figure 7. Almost all the spring water samples were

unsaturated (SI < 0) with respect to sulphates (anhydrite,

celestite, gypsum, alunite, jarosite-K, melanterite), carbonates

(siderite and witherite), feldspars (K-feldspar, albite, anorthite)

and halite. Most carbonates (calcite, aragonite, dolomite,

rhodochrosite, strontianite), barite, silica and fluorite were in

equilibrium (SI ≈I ) with spring water in the KKF at the outflow

temperature. The calculated results for the slightly saturated

calcite and aragonite at the outflow temperature were

consistent with field observations of the calcareous sinter at

the spring vent. All of the hot spring water samples were

saturated (SI > 0) with respect to quartz except sample XB-3,

possibly because of a mixture of cold or snowmelt water during

the thermal water ascent, resulting in a reduction in the quartz

solubility with decreasing temperature. Consequently, the

temperature calculated using the quartz thermometer was

lower than the true temperature.

Interestingly, SI with respect to some minerals vary greatly

for the different spring water types. SI values with respect to

TABLE 3 SI values of minerals in the spring waters along the Karakorum Fault.

Sample DGQ-1 QP-2 XB-3 ZDGB-4 MS-5 BEHZ-6 NM-7 LJ-8 KK-9

Barite −0.18 −0.30 0.06 −0.20 −0.11 1.21 −1.00 0.09 −0.86

Anhydrite −2.51 −2.85 −2.28 −1.47 −2.03 −1.78 −2.01 −1.52 −3.05

Celestite −1.94 −2.37 −1.18 −1.78 −1.23 −1.81 −1.96 −0.96 −3.34

Gypsum −2.68 −3.11 −2.40 −1.58 −1.95 −1.95 −2.21 −1.76 −2.79

Alunite −21.48 −21.42 −27.04 −2.27 −3.92 −15.22 −19.84 −22.84 0.86

Jarosite-K −14.77 −17.44 −21.50 2.17 −6.32 −8.78 −15.30 −16.69 −4.43

Melanterite −18.25 −19.84 −23.00 −8.16 −8.90 −14.39 −17.62 −19.14 −6.67

Calcite 1.11 0.73 1.26 1.30 0.20 1.10 0.54 1.22 −1.00

Aragonite 0.99 0.62 1.14 1.18 0.07 0.98 0.43 1.11 −1.16

Dolomite 2.36 1.11 1.86 2.49 1.46 2.21 −0.34 1.59 −2.64

Rhodochrosite −0.47 −0.81 −0.96 2.29 −1.53 0.32 −0.32 0.24 −1.62

Siderite −9.29 −10.80 −14.19 −0.13 −1.73 −6.17 −9.69 −10.97 −0.38

Strontianite 0.34 −0.08 0.98 −0.38 −0.49 −0.28 −0.73 0.48 −2.69

Witherite −1.36 −1.39 −1.27 −2.30 −3.08 −0.71 −3.20 −1.87 −4.53

K-feldspar −0.86 −0.22 −2.99 1.66 −0.11 1.16 −1.50 −1.43 0.82

Albite −1.69 −0.93 −3.85 0.27 −1.83 0.24 −1.84 −2.08 −0.65

Anorthite −3.08 −1.93 −4.48 2.47 −3.89 −1.46 −2.75 −3.60 −1.02

K-mica 0.23 1.54 −3.77 11.33 6.09 4.07 0.19 −1.69 12.38

Illite −4.72 −4.36 −5.67 −0.44 −2.27 −3.81 −4.41 −5.37 0.15

Kaolinite −3.70 −2.70 −7.68 4.57 0.49 −0.29 −3.99 −5.24 5.14

Ca-Montmorillonite −3.62 −2.76 −7.27 5.37 2.17 −0.59 −2.92 −4.90 7.66

Sepiolite(d) −5.49 −4.34 −10.57 4.69 0.63 −1.39 −4.67 −6.82 6.55

Sepiolite 1.23 0.55 1.82 −5.12 −6.63 0.02 −2.68 0.45 −8.29

Chrysotile 5.25 4.73 5.75 −1.20 −3.16 4.03 1.40 4.60 −5.92

Talc 11.07 10.32 13.89 0.71 −3.31 7.70 5.25 10.19 −9.54

Chlorite(14A) 14.93 14.50 15.88 4.88 0.75 12.75 9.26 14.22 −6.23

SiO2(a) 18.46 18.06 21.46 9.56 −1.32 14.43 9.40 15.78 −8.17

Quartz −0.88 −0.74 −1.81 −0.72 −0.72 −0.29 −0.81 −0.81 −0.96

Chalcedony 0.11 0.22 −0.80 0.30 0.40 0.71 0.17 0.15 0.44

Halite −0.19 −0.06 −1.10 −0.01 0.04 0.41 −0.12 −0.13 −0.06

Fluorite −5.02 −6.13 −4.96 −7.47 −6.53 −4.51 −6.06 −5.37 −9.29

Frontiers in Earth Science frontiersin.org14

Wang et al. 10.3389/feart.2022.1021550

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1021550


siderite, Ca-montmorillonite, K-mica, illite and kaolinite (SI

values from -1.73 to -0.13, -0.63 to 6.55, 6.09 to 12.38, 0.49 to

5.14 and 2.17 to 7.66, respectively) of Type A water is higher

than that of type B and C waters (SI values from -14.19 to

-6.17, -10.57 to -1.39, -3.77 to 4.07, -7.68 to -0.29 and -7.27 to

-0.59, respectively). However, SI values with respect to

FIGURE 7
Saturation indexes of geothermal springs along the KKF zone at the outflow temperature.

Frontiers in Earth Science frontiersin.org15

Wang et al. 10.3389/feart.2022.1021550

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1021550


sepiolite, chrysotile, talc, and chlorite (SI values from -5.92 to

-1.20, -9.54 to 0.71, -6.23 to 4.88 and -8.17 to 9.56,

respectively) of type A water is lower than that of type B

and type C waters (SI values from 1.40 to 5.75, 5.25–13.89,

9.26–15.88, 9.40–21.46, respectively). Relatively high SI values

indicate high contents of these minerals and long residence

times in the aquifer system. This phenomenon may reflect

differences in the thermal reservoirs and the surrounding rock

characteristics. For instance, oversaturation of typical

hydrothermally altered minerals (sepiolite, chrysotile, talc

and chlorite) in type B and type C waters indicates that

Mg-rich carbonates are widely distributed due to

hydrothermal alteration.

5.1.5 Strontium isotopic compositions
The results show a large range (0.708902–0.742322) for the

87Sr/86Sr ratios of the spring water samples from the KKF, which

is consistent with the significantly variable 87Sr/86Sr ratios found

in the terranes of the southern Tibetan Plateau (e.g., the Lhasa

terrane, Qiangtang terrane and Himalaya Block) (Wang and

Tang, 2020). The southern Tibetan Plateau, one of the most

tectonically active regions, has an extremely complex geological

setting, with a large amount of exposed Palaeozoic–Mesozoic

sedimentary rock, low–high metamorphic rock and granitoids,

contributing to the highly heterogeneous Sr isotope range. This

suggests that differences in the Sr isotopic compositions of spring

waters in the KKF region are largely dependent on the divergent

geological conditions of the fracture zone.

The 87Sr/86Sr ratios against the corresponding Sr/Na values

were plotted for different spring water samples (Figure 8) to

examine the genesis of the Sr isotopic compositions. Samples QP-

2 and XB-3, which are much more radiogenic (> 0.724) than the

other springs (0.708–0.716), exhibit a mixing between silicate

EM1 and silicate EM2, which is probably due to the influence of

metamorphic rocks and granitoid sources (Gaillardet et al., 1999;

Noh et al., 2009). Samples DGQ-1, BEHZ-6, NM-7 and LJ-8,

which are less radiogenic (0.708–0.712) and exhibit low Sr/Na

ratios (0.001–0.003), are distributed in the mixing range between

evaporite EM1 and evaporite EM2, indicating that the evaporate

dissolution plays an important role in these spring waters. The

water samples from samples ZDGB-4, MS-5 and KK-9, with

higher milligram equivalent percentages of Ca, Mg andHCO3
− as

well as Sr/Na ratios, are located closer to the carbonate EM than

other samples, reflecting the strong influence of carbonate

weathering on Sr isotopes. Samples ZDGB-4 and MS-5 are

distributed along the mixing line of silicate and carbonate

end-members, suggesting that the water from samples ZDGB-

4 and MS-5 is more likely to be derived from silicate/carbonate

weathering. The 87Sr/86Sr–Sr/Na of sample KK-9 is located

between the mixing lines of evaporite and carbonate end-

members, which suggests that both of the carbonate rock

weathering and evaporite dissolution contribute significantly

to the 87Sr/86Sr ratios of sample KK-9.

5.2 Estimates of geothermal reservoir
temperature

All the studied water samples from the KKF are ploted in

the non-equilibrium field (partially equilibrated or immature)

(Figure 9), indicating that none of these waters attained full

equilibrium between water and rocks. Therefore, different

multi-element geothermometers, such as Na–K and

Na–K–Ca, may not reflect the true thermal reservoir

temperature. In addition, meteoric water or snowmelt water

mixing with ascending thermal water from the KKF leads to a

FIGURE 8
Plots of 87Sr/86Sr versus the corresponding Sr/Na for different spring waters from the KKF. The data for six end-members—silicate–EM1
(Gaillardet et al., 1999; Noh et al., 2009), silicate–EM2 (Xu and Liu, 2010), silicate–EM3 (Gaillardet et al., 1999; Noh et al., 2009), evaporite–EM1 (Liu
et al., 2016), evaporite–EM2 (Moon et al., 2007; Xu and Liu, 2010), and carbonate–EM (Xu and Liu, 2010)—are based on lithological characteristics
observed in China. The legend is the same as in Figure 2.
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decrease in SiO2 concentration. Additionally, classical

geothermometers (e.g., quartz geothermometers) mainly

reflect the reservoir temperatures after the mixing of

thermal water and cold water, the temperature calculated

by quartz geothermometers is lower than the true thermal

reservoir temperature before the mixing. The silica–enthalpy

FIGURE 9
Plots of enthalpy versus silica for geothermal spring waters along the KKF. The legend is the same as in Figure 2.
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TABLE 4 Calculated geothermometers of the geothermal fluids along the Karakorum Fault(°C).

Sample Measured
temperature

Silica geothermometers① Cation geothermometers Silica-enthalpy mixing model Circulation
depth
(km)Quartz Quartz

(steam

loss)

Chalcedony Chalcedony
(steam

loss)

K/
Mg②

Na/
K③

Na-K-Ca④ Maximum steam loss No steam loss

Enthalpy
(kJ/kg)

Temperature Enthalpy
(kJ/kg)=

Temperature

DGQ-1 75.0 125.8 123.1 97.9 98.5 121.0 207.2 235.6 − − 903.6 208.6 7.0

QP-2 83.4 184.6 171.9 164.2 151.1 132.7 194.9 232.8 858.8 198.6 − − 6.6

XB-3 70.0 161.0 152.6 137.2 130.0 148.9 202.6 276.2 806.1 186.8 − − 6.2

ZDGB-4 69.6 98.8 99.97 68.67 74.18 83.3 341.1 102.0 − − 616.9 144.2 4.8

MS-5 48.5 83.3 86.5 52.2 60.2 88.0 387.1 187.8 − − 616.9 144.2 4.8

BEHZ-6 74.0 162.6 153.9 139.0 131.5 127.0 225.4 232.9 796.9 184.7 − − 6.2

NM-7 77.9 123.3 120.9 95.1 96.2 114.3 139.6 121.1 − − 839.0 194.1 6.5

LJ-8 81.2 160.1 151.8 136.2 129.2 129.4 183.9 186.0 759.9 176.4 − − 5.9

KK-9 6.0 34.6 43.1 1.8 15.9 27.9 185.0 12.8 − − − − −

Note: Geothermometers are from ① Quartz geothermometer: If no loss of steam, t(℃) � 1522/5.19 − logSiO2 − 273.15; If maximum steam loss, t(℃) � 1522
5.75−logSiO2

− 273.15; Chalcedony geothermometer: If no loss of steam,

t(℃) � 1032/4.69 − logSiO2 − 273.15; If maximum steam loss, t(℃) � 1264/5.31 − logSiO2 − 273.15 (Fournier, 1977);② TK/Mg � 4410/13.95 − log (K2/Mg) − 273.15 (Giggenbach, 1988);③ TNa/K � 1052/1 + e(1.714×log(Na/K)+0.252) + 76 (Can, 2002);④

TNa−K−Ca � 1647/log(Na/K) + β(log( ���
Ca

√
/Na) + 2.06) + 2.47 − 273.15 (Fournier, 1981).
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mixing model (Figure 9), as an available method for

determining reservoir temperatures of spring water, was

applied. For the samples of DGQ-1 (Figure 9A), NM-7

(Figure 9E), ZDGB-4 and MS-5 (Figure 9G), the

extrapolations of the mixing lines from cold water (point

A) to thermal water in the KKF have an intersection point

C1 with the quartz solubility curve (no steam loss). The

intersection point C1 suggests the enthalpy and SiO2

concentration of the initial thermal fluid if there is no

steam separation before mixing with cold water (largely

meteoric water). It is noteworthy that samples ZDGB-4 and

MS-5 are plotted on one mixing line (Figure 9G), suggesting

that they have the same reservoir temperature. Nevertheless,

for samples QP-2, XB-3, BEHZ-6 and LJ-8 with high SiO2

concentrations (Figures 9B–D,F), no intersection point has

been found between the extended mixing lines (from cold

water to these thermal water) and the quartz solubility curve,

indicating the presence of steam loss of thermal fluid before

mixing with cold water during ascent. The mixing line from

cold water to these thermal water has an intersection with a

assumed vertical boiling line (100°C). Then, a horizontal line

paralleling to the enthalpy axis was drawn from this

intersection to intersect with the quartz solubility curve

(maximum steam loss) at point C2. The intersection point

C2 indicates the enthalpy and SiO2 concentration when the

thermal fluid begins to boil. In summary, the reservoir

FIGURE 10
Conceptual hydrothermal model of the hydrogeochemical cycling process in high-temperature geothermal systems along the KKF. The red
line and blue lines represent the main fault and rivers of the KKF, respectively. The blue, yellow, and red arrows represent the circulation pathways of
hydrothermal fluids with low, intermediate, and high temperatures, respectively. The orange sphere shows the earthquakes that have occurred along
the KKF within 200 km since 1970, and its dimensions (0.8–4.4 mm) correspond to the magnitude of the earthquake (ML 1.0–5.9).
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temperatures of the deep geothermal reservoir were estimated

by the silica–enthalpy mixing model, (Figure 9; Table 4),

varying from 144.2°C to 208.6°C.

Moreover, the thermal water samples exhibit a wide range of

mixing fractions with cold water quantified by the silica–enthalpy

diagram, varying from 19% (sample QP-2) to 72% (sample MS-

5). Varying mixing proportions of cold water indicate a

remarkable decrease in temperatures (enthalpies) and

dissolved silica concentrations. For instance, due to the

different mixing proportions (57% and 72%, respectively) of

cold water, different temperatures (69.6°C and 48.5°C,

respectively) of spring vent were measured for samples

ZDGB-4 and MS-5 in spite of the same reservoir

temperatures (144.2°C) (Figure 9G).

5.3 Circulation model of geothermal fluid
in the KKF

5.3.1 Estimates of geothermal circulation depth
Geothermal genesis can be categorised into three types: 1)

magmatic genesis associated with active magma in the shallow

crust; 2) radiogenic genesis related to the decay of radioactive

elements in S-type granites; 3) tectonic deep circulation genesis

related to regional tectonic movements, high background values

of heat flow and deep circulation of geothermal water (Korhonen

and Johnson, 2015; Wang, 2021). The KKF, a ~1,000-km-long

strike–slip fault, has developed a series of extensional and

transtensional fractures, which act as channels not only for

groundwater infiltration but also for deep-derived geothermal

fluid rising fluently. Many geothermal resources are widely

distributed along the KKF. Previous geophysical studies of the

geothermal system (He et al., 2016) described a low-resistivity

anomaly characterized by resistivity in the range of 1–8Ωm at a

depth greater than 7 km, and suggested that the low-resistivity

anomaly may be indicative of potentially partially melted magma

in the upper crust, representing the heat source of the Qupu

geothermal system. Furthermore, sample BEHZ-6 is located in

the chloride mature field of the Cl–SO4–HCO3 diagram, similar

to typical high-temperature geothermal waters from Yangbajing

and Yellowstone National Park. According to previous studies,

this high-temperature geothermal waters were heated by

underlying magma since the Middle Palaeocene, and the

water was affected by the magmatic fluid (water and volatile)

to various degrees (Guo et al., 2014a, b; Tian et al., 2018).

Nevertheless, there is insufficient evidence for volcanic activity

in the KFF. Thus, we inferred that the high-temperature springs

in the study area are primarily due to deep syntectonic

hydrothermal circulation, and the dependence of the reservoir

temperature on the heat source (the crustal rocks, e.g., granites) is

largely controlled by the fault depth.

Based on the Na-K-Mg1/2 diagram, the reasonable cation

geothermometry and the silica–enthalpy mixing model, the

reservoir temperature range of 144.6°C–208.6°C was

determined for thermal water before mixing. The result

for the circulation depth of geothermal fluids shows a

wide range, from 4.8 km to 7.0 km (Table 4). As a result,

the measured temperature at the spring vent is defined by the

factor combining the mixing ratio of meteoric water or

snowmelt water in the spring waters, the reservoir

temperature and the circulation depth. Specifically, type A

water with low temperature at the spring vent has a

comparatively shallow circulation depth (4.8 km for

samples ZDGB-4 and MS-5). In contrast, type B water

(with circulation depths of 7.0 km, 6.6 km and 6.2 km for

samples DGQ-1, QP-2 and XB-3, respectively) and type C

water (with circulation depths of 6.2 km, 6.5 km and 5.9 km

for samples BEHZ-6, NM-7 and LJ-8, respectively) have

relatively large circulation depths.

5.3.2 Conceptual model
Combining the hydrochemistry characteristic, the

recharge elevation, the reservoir temperature and the

circulation depth of the spring water, we propose a

conceptual model for the origin and evolution of

geothermal fluid along the KKF (Figure 10). The

geothermal water of the KKF is primarily recharged by

local precipitation and melting ice water, which infiltrate to

a depth of 4.8–7.0 km, and then are heated to 144.2–208.6°C

during water–rock interaction with the Gangdese granitoids

instead of underlying magmas. In the reservoir, the chemical

reactions between water and the surrounding rocks (widely

distributed granites and carbonate rockscontaining Na-rich

minerals and carbonate minerals) result in the formation of

geothermal water. The differences between type A water

(HCO3–Mg·Na or HCO3–Ca·Na), type B water (HCO3–Na)

and type C water (Cl–Na or Cl·SO4–Na) mainly depend on the

type of surrounding rock, the circulation depth of the thermal

fluid and the mixing ratio with cold water.

The circulation depth represents the lower limit of the fault

depth. Therefore, the circulation depth estimated from the

thermal reservoir temperature suggests a penetration depth of

at least 7 km for the KKF. As shown in Figure 7, the location of

medium-to high-temperature springs along the KKF is also an

area of frequent occurrence of shallow earthquakes with minor

magnitude. In addition, the epicentre depth was found to

coincide with the circulation depth of the corresponding

thermal water. This water participated in deep circulation and

has been overpressured during water–rock interaction in an

active fault system, which may drive the fluid flow and cause

the fault weakening and seismicity. The important role of

overpressured fluids palyedin the earthquake generation has

been acknowledged by many researchers (e.g., Chiodini et al.,

2011; Curzi et al., 2021). The frequent occurrence of earthquakes

in turn weakens the crustal rocks and produces abundant

fissures. These fissures are good for leaching out of the toxic
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elements (e.g., As) from the surrounding rocks, and for migration

of these elements to the surface by deep fluid ascent. The deeper

the circulation happened, the more arsenic was leached from the

crust during water–rock interaction, which can be evidenced by

the arsenic concentrations in samples DGQ-1, QP-2, XB-3,

BEHZ-6, NM-7 and LJ-8 are 1–3 orders of magnitude higher

than that in samples ZDGB-4, MS-5 and KK-9 (Table 2;

Figure 5). Overall, the geothermal water is significantly

correlated with the epicentre and focal depth of earthquakes

along the KKF, specifically in terms of the typical ‘geothermal

suite’ (Li, B, F and As) and circulation depth of the thermal water.

In addition, the seismic catalogue shows that earthquakes

along the KKF occur mostly at depths > 5 km, yet the traditional

groundwater observation is dominated by shallow sources (<
5 km), so the traditional shallow groundwater are not involved in

the inception process of deeper-source earthquakes but rather

only as a passive post-earthquake response. Compared to shallow

groundwater, geothermal fluids are less disturbed by the surface

environment and human activities, which makes its utility in

capturing realistic earthquake precursor information. Therefore,

in addition to traditional groundwater observation stations,

geothermal fluids is an effective supplement in forecasting

earthquake, especially for short-term seismic prediction.

6 Conclusion

(1) Three types of the spring waters along the KKF were classified:

type A water (HCO3–Mg or HCO3–Ca), type B water

(HCO3–Na) and type C water (Cl–Na or Cl·SO4–Na). Type

A and B waters are bicarbonate-type spring waters which were

formed by chemical reactions among infiltrated meteoric water

and dissolved carbon dioxide. Type A water was formed by the

dissolution of Ca2+ andMg2+ ions in rock fields of limestone and

Marl+CaSO4 origin, whereas type B water was formed by a

reservoir rock field of granitic origin which contains albite and

microcline as major minerals. Type C water was resulted from

the dissolution of chlorides and sulphates.

(2) The Sr isotopic composition of type B water, except for

sample DGQ-1, exhibits much more radiogenesis, which is

resulted from the influence of metamorphic rocks and a

granitoid source. Type C water and sample DGQ-1 are

characterized by less radiogenesis and low Sr/Na ratios,

indicating evaporate dissolution. The genesis of type A

water is derived from the combined process of the

dissolution of silicate/evaporite and infiltration of

widespread carbonate rocks by meteoric water.

(3) Almost all of the spring waters were recharged mainly by

infiltrated precipitation, with the recharge elevation range of

3.9–5.1 km. Type A and B waters were recharged not only by

meteoric water but also by snowmelt water. Moreover,

slightly anomalous 18O enrichment occurs in type C

water, indicating a water–rock interaction.

(4) Reservoir temperatures of 144.2–208.6°C and mixing ratios

of 19%–72% were estimated. A conceptual model for

geothermal fluid along the KKF was proposed, in which

type A water with a low temperature at the spring vent has a

comparatively shallow circulation depth, while type B and

type C waters have relatively deep circulation depths (up to

7 km). The heat source of the geothermal system is resulted

from the heating of crustal rocks rather than from the active

magmas. The penetration depth of KKF is larger than 7 km.

(5) The geothermal water is significantly correlated with the

epicentre and focal depth of earthquakes, especially for high-

temperature spring water with deeper circulation and extremely

high Li, B, Fe and As concentrations. Geothermal fluids can be

used as a supplementary indicator in forecasting earthquake.
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