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Inversion of gravity data is one the important steps in the interpretation of

practical data. The detection of sharp boundaries between anomalous bodies

and host rocks is an interesting point in the geological frameworks. The gravity

inversionwith sparsity constraint is a useful method to recover block subsurface

density distribution, which is efficiently used for the quantitative interpretation

of gravity data. The reweighted regularized method is a useful method to solve

the inverse problem. However, in this type, we must face the updating gravity

forward matrix and large matrix operation. The application of Lanczos

bidiagonalization method can reduce the size of data and matrix in the

inversion to resolve the large scale inversion problem. However, a very

important problem is not resolved, which is update of reweighted forward

matrix and new Lanczos bidiagonalization matrix. Here, an adaptive Lanczos

bidiagonalization method is studied to select the Lanczos bidiagonalization

factor. And a new projected method with adaptive Lanczos bidiagonalization

method is study to avoid the updating sparsity reweighted function. We

calculate the reweighted forward matrix and Lanczos bidiagonalization

matrix only one time, which can essentially reduce the computational

complexity. The inversion results of synthetic data show that the new

improved method is faster and better than common reweight regularized

Lanczos bidiagonalization method to produce an acceptable solution for

focusing inverse problem. The improvement of adaptive Lanczos

bidiagonalization in sparsity gravity inversion is also tested on gravity data

collected over the Mobrun massive sulfide ore body in Noranda, Quebec,

Canada. The inversion results indicate a remarkable correlation with true

structure of the ore body that is achieved from drilling data.
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Introduction

Gravity prospecting is a most popular geophysical method

used in resource exploration and investigation in geoscience

(Oldenburg and Pratt, 2007; Camacho et al., 2009; Uieda and

Valéria, 2017). Gravity data inversion is a very important

quantitative interpretation step for the practical gravity

application. With the application of forward modeling and

inversion algorithm, the unknown sub-surface distribution of

density is recovered by a set of observed gravity data. Due to the

Gauss’s theorem, gravity data inversion must suffer from the

non-uniqueness and instabilities. The same observed gravity data

can be obtained by different sub-surface density distributions

(Blakely, 1996; Rezaie et al., 2017). Therefore, many effective

methods with addition constraint on density model are studied to

obtain a reasonable and accuracy solution (Boulanger and

Chouteau, 2001; Silva and Barbosa, 2006; Commer, 2011;

Vatankhah et al., 2017; Vatankhah et al., 2018; Vatankhah et

al., 2019).

Different inversion methods based on different principles are

study to satisfy different practical purpose geophysical and

geological application. A Tikhonov regularization method is

applied to recover the suitable density distribution. In this

inversion type, many model constraints are studied, such as

smooth inversionmethod (Li and Oldenburg, 1998), the compact

inversion method (Last and Kubik, 1983), the constraints

inversion method (Boulanger and Chouteau, 2001), the

focusing inversion method (Zhdanov, 2002; Zhdanov, 2009),

the total variation or L1 norm inversion (Bertete-Aguirre

et al., 2002; Loke et al., 2003; Farquharson, 2008; Vatankhah

et al., 2017; 2018), the stochastic inversion method based on co-

kriging (Shamsipour et al., 2011), the Cauchy norm inversion

(Pilkington, 2009), and the L0 norm inversion (Meng, 2015,

2016, 2018). In these inversion methods, an iteratively

reweighted algorithm is applied to get accurate solutions. In

this paper, we mainly resolve the inversion efficiency of sparsity

inversion, which updates the gravity forward matrix in each

iteration. Because the updating reweighted forward matrix will

consume much inversion time and computer storage space,

especially for large scale data.

In this study, the principle of sparsity gravity inversion is

L0 norm. A singular-value decomposition (SVD) with

regularization algorithm is applied, which provides an

accurate solution for gravity data in a computationally

convenient form (Chasseriau and Chouteau 2003; Chung

et al., 2008). However this algorithm is not computationally

feasible, due to the large amount of calculating time andmemory,

which it needs to solve large-scale problems. Therefore, a series of

compression methods are introduced to reduce the dimension of

large scale gravity, which resolves the application of SVD

algorithm in large scale data inversion. The efficient methods

have been studied, such as the frequency domain conversion (Li

and Oldenburg, 2003), the symmetry of gravity forward model

(Boulanger and Chouteau 2001), and the Lanczos

bidiagonalization compression (Chan et al., 2005; Chung

et al., 2008; Abedi et al., 2013; Toushmalani and Saibi, 2015;

Voronin et al., 2015; Meng et al., 2016). Here, Lanczos

bidiagonalization compression is an efficient algorithm, which

has been studied and applied in many researches. The application

of Lanczos bidiagonalization can project the full calculated space

into a subspace. The applied data can be reduced significantly.

However, in the sparsity inversion, the application of Lanczos

bidiagonalization also must face the updating gravity forward

matrix. Therefore, we must recalculate the subspace forward

matrix and gravity data in each iteration, which increase the

computational complexity and time. And the SVD of

corresponding updating forward matrix should be calculated.

These calculations will obviously increase computational

complexity and computational risk. To solve this problem and

improve the inversion efficiency, a projected space algorithm is

studied, which is the improvement of adaptive Lanczos

bidiagonalization in sparsity inversion. Comparing with

general Lanczos bidiagonalization method, the novel study can

improve the inversion efficiency and reduce the inversion risk.

Theory

Inversion methodology

Generally, gravity inversion is an under-determined linear

system (Blakely, 1996). The gravity inversion equation should be

obtained by discretization. The subsurface space is discretized

into many cells whose sizes are fixed and densities are constant.

In the gravity inversion, the forward gravity is the basic

(Boulanger and Chouteau, 2001). The relation between gravity

data and density distribution is defined by

d � Gm, G ∈ RN×M, N≪M (1)

where d∈RN×1 is the observed gravity data vector, which contains

the noise; m ∈ RM×1 are unknown model parameters, which

correspond to the density of each cell; G ∈ RN×M corresponds

to the sensitivity matrix, which results from the discretization of

the forward operator which maps from the model space to the

data space. Obtaining the sub-surface density distribution from

observed gravity data is the core of gravity inversion. The data

obtained by experiments are generally contaminated by noise.

Since the number of data points is lower than the number of

model parameters, the inverse problem is an under-determined

problem. Therefore, the inversion results are non-unique and

unstable. A reasonable solution can be obtained by using the

regularization method, which is based on the following

expression:

Pα(m) � ‖Wd(Gm − d)‖22 + λ
�����Wz(m −mapr)�����22. (2)
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The first part of Eq. 2 represents the data misfit function,

whereas the second part contains the stabilizing regularization

function;Wd � diag(1/σ i) is the data weighting function and the

parameter σ i is the standard deviation of the noise of the ith data

point; λ is a regularization parameter, which balances the data

misfit function and the stabilizing regularization function,mapr is

the initial density distribution which is determined either by the

prior geological or geophysical information or it is set equal to the

zero vector (Pilkington, 2008). Wz is the depth weighting

function, which is used to balance the natural decay upon the

increasing of the depth. Moreover, this parameter avoids the

concentration of the inversion density near the surface (Li and

Oldenburg, 1998; Boulanger and Chouteau, 2001). The

mathematical expression of Wz is

Wz � 1

(zj + z0 + ξ)β (3)

Here, zj is the mean depth of each cell of the sub-surface, z0
is the observation height, and ξ is a very small positive

parameter, which avoids the generation of singularities (Li

and Oldenburg, 1998; Boulanger and Chouteau, 2001). The

parameter of β sets a different weight value for each cell along

different depth levels. Other alternative choices to describe the

depth weighting function were provided by Zhdanov (2002),

and Cella and Fedi (2012). Moreover, Pilkington (2008) has

analyzed these depth weighting functions, as well. To enable a

direct comparison between these results using an identical

formulation except than for the system solution, the depth

weighting function 3) was used in this study. The sparsity

inversion results could not be obtained by using only these

constrains. To satisfy the “sparsity” requirement, the density

model constraints have to be identical to the minimization

model with L0 norm. With the introduction of the L0 norm

constraint (Wang et al., 2013; Meng, 2018), the inversion

target function 2) becomes:

����m −mapr

����l0 → min s.t.Pα(m)
� ‖Wd(Gm − d)‖22 + λ

�����Wz(m −mapr)�����22 → min (4)

where the parameter σ controls the approximate degree

between the function Equation (5) and the L0 norm ofm. The

effects of the choice of the parameter σ on the characteristics

of the reconstructed signal have been investigated by many

researchers (Mohimani et al., 2009; Meng, 2018). A small

value of σ leads to sub-surface density models with a high

contrast value, whereas large values of σ yield to density

models which are over-smoothed and which show a

reduced noise. According to these characteristics, the use of

the parameter δ (0 < δ < 1) can ensure that the value of σ

decrease during the inversion process. This method not only

reduces the influence of the noise on the inversion but also

generates sparsity inversion results. By performing such

modifications, the Equation (4) can be transformed into:

fσ(m) � e
m2
i

2σ2 − e−
m2
i

2σ2

e
m2
i

2σ2 + e−
m2
i

2σ2

, i � 1/M (5)

where the parameter σ controlling the approximate degree

between function Eq. 5 and L0 norm of m. The effects of the

choice of parameter σ on the characteristics of the reconstructed

signal have been investigated by many researchers (Mohimani

et al., 2009; Meng, 2018). Small value of σ lead to sub-surface

density models with high contrast value and large values yield

density models that are over-smoothed. High value σ can reduce

the influence of noise. According to these characteristics, a

parameter δ (0<δ<1) can ensure that the value of σ will be

decreasing during the inversion. This method not only reduces

noise influence in the inversion but also obtains a sparsity

inversion result. Then, the Eq. 4 will become

Fσ(m −mapr) → min s.t.Pα(m)
� ‖Wd(Gm − d)‖22 + λ

�����Wz(m −mapr)�����22 → min (6)

Where Gw = WdGWz
−1, dw = Wdd, and mw = Wzm. During the

inversion, the prior density model is defined as a 0 vector, which

leads to the Eq. 7:

Fσ(m −mapr) → min s.t.Pα(mw)
� ‖Gwmw − dw‖22 + λ‖mw‖22 → min (7)

The second part of Eq. 7 can be resolved by applying the

iteratively reweighted SVDmethod, while the first part provides a

new constrain on the inversion results via the modified Newton

method. At this point, the SVD of Gw as Gw � USVT is

introduced: the columns ui of U and vi of V contain the left

and right singular vectors ofGw. Moreover, S = diag (ρ1, ρ2, . . .ρn)

is a diagonal matrix containing the singular value of Gw, with

ρ1≥ρ2≥ . . .≥ρn≥0. When the Tikhonov regularization parameter

is introduced into the SVD, the solution of the inversion is:

mw � ∑M
i�1
ϕi

uT
i r

w

ρi
vi rw � Wd(Gwmw − dw) . (8)

where ϕi �ρ21
ρ21+λ2

∈ (0, 1) corresponds to the Tikhonov filter

factors (Hansen, 2005; Chung et al., 2008). While the second

part of Eq. 7 can be solved via the iterative SVD method, the L0

norm constraint can be used on the first part of Eq. 7 to obtain a

sparsity solution. By analyzing the characteristics of the target

function, it appears that the modified Newton method is

appropriate (Nocedal and Wright, 2006) to solve this

problem. The Newton direction of the hyperbolic tangent

function, which was reported in Eq. 5, is calculated by using

the first and second derivatives of Fσ(m)

D � −∇2Fσ(m)−1∇Fσ(m) (9)
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in which

∇Fσ(m) � [zfσ(m1)
zm1

, ...,
zfσ(mM)
zmM

]T

� [
4m1
σ2

(e m2
1

2σ2 + e−
m2
1

2σ2)2, ...,
4mM
σ2

(e m2
M

2σ2 + e−
m2
M

2σ2)2]T (10)

∇2(Fσ(m)) �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z2fσ(m1)
zm2

1

0 / 0

0
z2fσ(m2)

zm2
2

/ 0

..

. ..
.

1 ..
.

0 0 /
z2fσ(mM)

zm2
M

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(11)

z2fσ(mk)
zm2

k

�
4
σ2 [(1 + 2m2

k
σ2 )e−m2

k
2σ2 + (1 − 2m2

k
σ2 )e m2

k
2σ2]

(e−m2
k

2σ2 + e
m2
k

2σ2)3 . (12)

To ensure the positive characteristic of Eq. 11, a modified

factor is introduced in this part. Moreover, the second derivative

of Fσ(m) has been modified as follows:

∇2(Fσ(m))new � ∇2(Fσ(m)) + εkI, (13)

where, εk is a modified coefficient, and I is the unit matrix.

ε(1)k �
4
σ2 (4m2

k
σ2 e

m2
k

2σ2)
(e−m2

k
2σ2 + e

m2
k

2σ2)3 (14)

At this point the modified direction becomes:

D � −(∇2(Fσ(m))new)−1∇(Fσ(m))

� [ − σ2m1

σ2 +m2
1

,/,− σ2mk

σ2 +m2
k

,/,− σ2mM

σ2 +m2
M

]T

(15)

This implies that the iterative inversion results, mk, are

constrained by:

mk � mk−1 +D (16)

In this expression, k is an iterative index. During each step of

the inversion iteration, any cell density contrast value which falls

outside the range defined by a lower and upper threshold, [mmax,

mmin], is projected back onto the nearest contrast value. This

constraint forces the inverse densities to be geophysical and

geological meaningful. The iteration process of the inversion

method proposed in this paper ends when either the solution

satisfies the noise level (Boulanger and Chouteau 2001; Meng,

2018) or the number of iterations reaches the maximum number

of iterations allowed. The inversion process is presented in

Table 1.

Inversion method using lanczos
bidiagonalization compress algorithm

As the gravity data volume grows, the forward modeling

matrix G becomes large. The large scale gravity data inversion

increases its time and computer storage consumption and a

strategy to handle such a massive amount of data is necessary

Therefore, the inversion efficiency and the calculation storage

should become a the focus of new investigations.

The minimization of the second part of Eq. 7 requires the

calculation of the SVD of the forward modeling matrix, Gw.

However, this process is not feasible for such large-scale matrices.

For this reason, the Lanczos bidiagonalization compression

algorithm, which project the gravity inversion problem onto a

sub-space of small dimension, was adopted in this study. This

algorithm allows one to solve large-scale and ill-posed gravity

inversion problems efficiently.

By using the forward matrix, Gw, and the observed gravity

data, dobs, the Lanczos bidiagonalization compression scheme

allows one to calculate the decomposition of B:

X(t+1)TGwYt � Bt (17)
where X(t+1)∈R(t+1)×N and Yt∈Rt×M are orthonormal matrices,

whereas Bt∈R(t+1)×t is a lower bidiagonalization matrix. By

using the Lanczos bidiagonalization process, a calculation

based on t steps can be applied to the matrix Gw (Calvetti

et al., 1999; 2000a; 2000b). Such computation process is

presented in Appendix A. The bidiagonalization matrices Bt,

Xt+1, and Yt with orthonormal columns are generated such that:

GwYt � Xt+1Bt, Xt+1et+1 � rw

‖rw‖2 (18)

where et+1∈R(t+1)×1 represents a vector with a one in the first entry

and 0 in the other entry. The columns of Yt span the Krylov sub-

space, κt, which can be expressed as:

κt(GwTGw,GwTrw) � span{GwTrw, (GwTGw)GwTrw, ..., (GwTGw)t−1GwTrw}
(19)

An approximate solution, ht
(k)

, which lies in such Krylov sub-space has

the form ht
(k)

= Ytzt
(k)

, zt
(k)

∈Rt×1 (Chung et al., 2008; Gazzola and Novati, 2013;

Renaut et al., 2017). The second part of the original Eq. 7 becomes:

Pα(zt) � ‖Btzt − ‖rw‖2et+1‖22 + α‖zt‖22 → min (20)

where α is a new regularization factor for the new sub-space

problem, which is determined via the W-GCV method. By

comparing with full space forward matrix, Gw, with the new

forwardmatrix, Bt, it appears that the latter one is smaller, t <<M.

The projected space problem can be much more efficiency solved

by using the SVD algorithm than the full space problem. The new

inversion technique yields to a new update vectorm(k) =m(k-1) +

Wz
−1Ytz(k)

t . By comparing the forward matrix, Gw, of the full

space and the matrix, Bt, of the projected space, one notices that
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the largest and lowest singular values of both matrixes are only an

approximation (Golub et al., 1981). The flow of the new inversion

method based on the Lanczos bidiagonalization compression

algorithm is presented in Table 2. The choice of compression

matrices t is determined by the characteristic of gravity forward

matrix Gw.

In the gravity inversion, the forward matrix, Gw, and its inverse

consume al a large amount of computational memory and time

when compared to othermatrices. By analyzing thee compression of

theGwmatrix it appears that thememory storage is required only for

the Ο(M) during the inversion calculation. By considering the

difference in the computational power needed for the original Gw

matrix and the compress matrix Bt, it appears that the SVDmethod

plays themost important role. The computation of the full algorithm

requires the SVD for a matrix of size N × M, the generation of the

update hk, via the SVD, and then the estimate of the regularization

parameter, via theW-GCV algorithm. By applying the SVDmethod

in the inversion, the memory consumption used during the

regularization parameter calculation is negligible in the large scale

inversion problem when compared to the other calculations. In a

large scale inversion problem (N << M) the largest amount of

computational power is required by the calculation of the Ο(M2N)

terms to define the SVD (Van Loan andGolub, 1996; Line 5 of table,

p. 254). However, after the Lanczos bidiagonalization of the original

forward matrix, Gw, is achieved, the SVD step for Bt is mostly

dominated by the calculation of the Ο(t3) terms. Moreover, the

update vector zk
t is a matrix vector, which multiplies the Ο(Nt)

matrix and generates the Ο(MNt) term (Paige and Saunders, 1982).

Due to the condition t <<M, the calculation of theΟ(MNt) element

is actually Ο(MN) with a scale number t, and this method has been

proven to be more efficient when compared to the calculation of

Ο(M2N). Based on these results, we the forward matrix compression

improves the inversion calculated efficiency and reduces the

computational power and memory storage.

Choice of the regularization parameter

The regulation parameter affects the accuracy of the solution.

Moreover, it is a very important for the studies in the inversion

research field (Engl et al., 1996). The GCV algorithm is a classical

algorithm, which is used to define a regularization parameter.

However, many studies show that the regularization parameters

determined via this method are occasionally to small and the

solutions are under-smooth in several practical applications

(Friedman and Silverman, 1989; Cummins et al., 2001; Vogel,

2002; Kim and Gu, 2004; Vio et al., 2004). To overcome this

disadvantage, a weighted parameter was introduced to modify

the GCV algorithm (W-GCV), which it has been shown to

predict the missing values of the data fairly well. Moreover, it

is a predictive statistics-based method that does not require a

TABLE 1 Sparsity gravity inversion.

Algorithm 1 sparsity inversion
using the iterative
SVD and modified
Newton methods

Input: dobs, mapr, G, Wd, 0<δ<1, mmax, mmin, Kmax, β, ξ

1. Calculation Wz (3), G
w = WdGWz, and dw

obs
= W

d
d
obs

, Calculate SVD, Gw = USVT

2. Initialization m0 = mapr, k = 0

3. Calculation rw = Wd (dobs-Gm0)

4. While k<Kmax do

5. k=k+1

6. Find the regularization λk and update hk � ∑N
i�1ρ2i /ρ2i + (λk)2uTi rwk /ρivi

7. Set mk = mk-1 + Wz
−1hk

8. Calculation If k = 1, σ1=max (m1) else σk = δ × σk-1 end

9. Impose the L0 norm constraint D �
[−σ2m1/σ2 +m2

1 ,/,−σ2mk/σ2 +m2
k,/,−σ2mM/σ2 +m2

M]T mk � mk +D

10. Impose density constraint on inversion density mk into [mmin, mmax]

11. Test convergence‖dobs − Gmk‖/‖dobs‖≤ noise level . Exit loop if convergence

12. Calculate new residual rk+1 = dw
obs

- Gm
k

13. End while

Output: Final result mfinal = mk

TABLE 2 Sparsity gravity inversion based on the Lanczos
bidiagonalization compression algorithm.

Algorithm 2 sparsity gravity
inversion using the
iterative SVD and
the modified Newton
methods based on
the Lanczos bidiagonalization
compression algorithm

Input: dobs, mapr, G, Wd, 0 < δ < 1, mmax, mmin, Kmax, β, ξ

1. Calculation Wz (3), G
w = WdGWz, and dw

obs
= W

d
d
obs

2. Initialization m0 = mapr, k = 0

3. Calculation rw = Wd (dobs-Gm0)

4. Factorization Calculation: GwYt=Xt+1Bt with Xt+1et+1= rw/||rw||2, calculate the
SVD of Bt, Bt= POQT

5. While k < Kmax do

6. K = k + 1

7. Find the regularization αk and update zk � ∑N
i�1ρ2i /ρ

2
i + (αk)2uTi (‖rwk ‖2et+1)/ρivi

8. Set mk = mk-1 + Wz
−1Ytzk

9. Calculation: If k = 1, σ1=max (m1) else σk = δ × σk-1 end

10. The L0 norm constraint is imposed on the system D �
[−σ2m1/σ2 +m2

1 ,/,−σ2mk/σ2 +m2
k,/,−σ2mM/σ2 +m2

M]T mk � mk +D

11. The density constraint on the inversion density mk into [mmin, mmax] is used

12. Test convergence‖dobs − Gmk‖/‖dobs‖≤ noise level . Exit loop upon
convergence

13. Calculate the new residual rk+1 = dw
obs

- Gm
k

14. End while

Output: Final result mfinal = mk

Frontiers in Earth Science frontiersin.org05

Zhaohai et al. 10.3389/feart.2022.1020384

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1020384


priori estimates of the error norm. The advantages of theW-GCV

method have been investigated in many domains (Golub and

Wahba, 1979; Golub and Von Matt, 1997; Hansen, 2005; Chung

et al., 2008; Gholami and Siahkoohi, 2010; Meng et al., 2016).

Here, each data point value, rw, is—in turn–removed from the

calculation to find the a value, which minimizes the prediction

errors. The expression of such W-GCV function is the following:

WGCVGw,rw(λ) �
N
����(I − GwGw*

λ)dw
����22(trace(I − ωGwGw*
λ))2 (21)

where Gw*
λ � (GwTGw + λ2I)−1GwT. In this way, an optimal

regularization factor, λ, is obtained. Upon the application of

the SVD, Eq. 9 is transformed into:

WGCVGw,rw(λ) �
N(∑N

i�1
(λ2uTi r

w

ρ2i +λ2
)2

+ ∑M
i�N+1(uT

i r
w)2)

((M −N) + ∑N
i�1

(1−ω)ρ2i +λ2
ρ2i +λ2

) (22)

This is a computationally convenient technique to evaluate the

W-CGV function, which can be easily applied to standard

minimization algorithms. It must be noticed that the function

depends now on a new parameter, ω, which appears in the

denominator trace term. The choice of ω is necessary for the

regularization parameter. The smoothest solution is obtained

when ω < 1, whereas a less smooth solution can be obtained

when ω > 1. Therefore, the choice of ω is pivotal for the

inversion. In several applications, the value of ω is determined by

experience (Kim andGu, 2010). To increase its practical application,

an adaptive approach for the determination of ω was investigated

and it is discussed in Appendix A.

Here, the W-GCV of the Tikhonov regularization on the full

system of gravity inversion is discussed. The projected subspace,

Bt, can be obtained by using the Lanczos bidiagonalization

compression algorithm. In this case, the expression of the

projected subspace W-GCV can be expressed as:

WGCVBt,‖rw‖2et+1(ω, λ) �
t
����(I − BtB

*
t)‖rw‖2et+1����22(trace(I − ωBtB

*
t))2

�
t(‖rw‖2)2⎛⎝∑t

i�1
( α2

δ2i + α2
[PT

t e
t+1]i)

2

+ ([PT
t e

t+1]t+1)2⎞⎠
⎛⎝1 +∑t

i�1

(1 − ω)δ2i + α2

δ2i + α2
⎞⎠2

(23)

where, Pt is an orthogonal matrix calculated via the SVD of

sparse Bt and δ represents a singular value of Bt.

Bk � Pk[Δk

0T
]QT

k (24)

An optimal regularization parameter α can be used in a fixed

projected problem of size t such that the resulting solution

appropriately regularizes the full problem. This means that

αopt ≈ λopt, where αopt and λopt are the optimal regularization

parameters for the projected and full problems, respectively.

Adaptive lanczos bidiagonalization
compression algorithm

To calculate the memory requirements for large scale data,

the Lanczos bidiagonalization compression algorithm can be

applied. In this case, the compression rate, t, is very important

for the calculated efficiency and the accuracy of the inversion. A

large value of t does not improve the calculated efficiency of the

gravity inversion, contrarily to a small value of t. In several

studies, the value of t is determined by experience. However, this

method cannot be applied in the practical gravity data

applications. Defining a method to calculate t according to the

inversion parameters is then very important. Therefore, an

adaptive Lanczos bidiagonalization compression algorithm is

used in this study. The W-GCV algorithm is also applied to

determine the compression factor t. By using Eq. 23, t is regard as

a solver parameter and Eq. 23 becomes:

WBt(t) �
t
����(I − BtB

*
t)‖rw‖2et+1����22(trace(I − ωBtB

*
t))2

�
t(‖rw‖2)2⎛⎝∑t

i�1
( α2

δ2i + α2
[PT

t e
t+1]i)

2

+ ([PT
t e

t+1]t+1)2⎞⎠
⎛⎝1 +∑t

i�1

(1 − ω)δ2i + α2

δ2i + α2
⎞⎠2

(25)

In this case WBt(t) is used to determine the compression

factor t in the implementation. Moreover, its value converges.

Therefore, the iteration process terminates when the value

change are very small:∣∣∣∣∣∣∣∣WBt(t + 1) −WBt(t + 1)
WBt(1)

∣∣∣∣∣∣∣∣< tol (26)

where, tol is a chosen value for the tolerance. The compression

factor t can be then selected effectively and automatically.

Synthetic examples

A complex synthetic example is used to analyze the

advantages of the inversion method proposed in this paper.

The goals of this test are three: 1) estimate the accuracy of

sparsity gravity inversion results, which are solved by combining

the regularization SVD algorithm and the modified Newton

algorithm. Due to the comparison between the sparsity

inversion and smooth inversion results, an approximate

inversion method can be obtained; 2) compare the influences

of different values of ω by using different regularization

parameters; and 3) estimate the accuracy of the inversion
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FIGURE 1
(A) 3D viewof the anomalous body density distributions; (B) observed gravity data contaminated by noisewithin the 3% of themaximumvalue of
the gravity data.

TABLE 3 Parameters of the sub-surface anomalous bodies.

Anomaly Easting (m) Northing (m) Depth (m) Density (g/cm3)

A 1800:2,200 1,500:2,700 300:1,000 1.0

B 3,000:3,400 2,800:3,200 500:900 1.0

C 600:800 1,600:2,400 400:700 1.0

D 1,400:2,400 400:700 300:900 1.0

FIGURE 2
(A) the plan section of the recovered density model obtained by the inversion of the gravity anomaly at z = -400 m, -500 m, -600 m, and
-700 m (B) X-direction section of the recovered density model at x = 700 m, 1,600 m, 2000m and 3,200 m. (C) Y-direction section of the recovered
density model at y = 500 m, 1800 m, 2,300 m, and 3,000 m.
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method via the Lanczos bidiagonalization method and compare

it to the full sparsity gravity inversion technique. By using this

synthetic example, the accuracy and the efficiency of the

inversion can be easily estimated. The whole calculation was

performed on a desktop computer with Intel Core i7-7700 HQ

and 8.00 GB RAM.

FIGURE 3
(A) the plan section of the recovered density model obtained via the inversion of the gravity anomaly at z = -400 m, -500 m, -600 m, and
-700 m (B) X-direction section of the recovered density model at x = 700 m, 1,600 m, 2000 m, and 3,200 m. (C) Y-direction section of the
recovered density model at y = 500 m, 1800 m, 2,300 m, and 3,000 m.

FIGURE 4
Comparison between the sparsity inversion and the smooth inversion. (A) Progression of the data misfit: sparsity inversion in red -* and smooth
inversion in blue -*; (B) Model misfit; (C) Regularization choice of each iteration.
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Figure 1B) shows the gravity data calculated for different

anomalous bodies (in Figure 1A)). Detailed information about

the anomalous bodies can be found in Table 3. The research

region was distributed over a 4,000 × 4,000 m2 area with sample

spacing of 100 m. A total of 40 × 40 = 1,600 observed gravity data

points were used during the inversion and 3% of noise has been

added in the gravity data. The depth was 2000 m. According to

this information, 40 × 40 × 20 = 32,000 discrete prisms of 100 m

size can be defined. A resulting kernel matrix, G, of size 1,600 ×

32000 was applied to the full space data inversion. Via the

Lanczos bidiagonalization compression algorithm the sub-

space inversion was obtained. In the whole inversion, the

depth weighting factor β = 1 was use. The descending factor

δ = 0.9 was instead selected to ensure that the sparsity parameter

would decrease during the inversion iterations and to ensure that

the global optimum solution would be obtained. The

corresponding upper and lower density contrast density

threshold are mmax = 1.0 g/cm3 and mmin = 0.0 g/cm3. The

inversion iterations terminates when the error of the data is

smaller than the noise level or the maximum number of iterations

is reached. The observed gravity data error is a key point for the

evaluation of inversion results.

In the simulation test, the density value and the distribution

of the anomalous bodies were known. Therefore, the model

error was used to evaluate the accuracy of the inversion results.

The relative error of the reconstructed model is expressed by:

Errmodel �
����m0 −mfinal

����2
‖m0‖2 (27)

where m0 is the true value of the simulation model density and

mfinal is the final inversion result.

Here, a comparison between the inversion results obtained

via the classical smooth inversion method and the sparsity

inversion method (Figure 2 and Figure 3, respectively) shows

the advantages of the latter one proposed in this paper. The trend

of the data misfit (‖dobs−Gmk‖
‖dobs‖ ), the model misfit (Err), and the

regularization parameters of the results of the two inversion

methods are shown in Figure 4.

The pink dotted lines shown in Figures 2, 3 show the

positions of the true distribution of the anomalous bodies.

The different depth slices and the horizontal slices of

inversion results are shown for the sake of clarity. Initially,

the inversion density contrasts are both equal to zero. By the

analysis of the depth of the slices, the horizontal distribution of

the anomalous bodies can be easily estimated. The results of the

classical smooth inversion are shown in Figure 2A): the inversion

density distribution is larger than the true model. Moreover, the

density boundary is blurred and the density value is smaller than

the true value. The vertical slices of the smooth inversion results

are reported in Figure 2B,C. The inversion results show some

leakage of the anomalous bodies. The smooth inversion method

provides a relatively accurate inversion result despite the

densities of the inversion small bodies are much lower than

true density. The sparsity inversion results are shown in Figure 3.

Due to the principle of the sparsity inversion method, the block

inversion results can be obtained, and they are close to the true

anomalous bodies. The blocker results can be obtained via the

sparsity inversion technique and they are more precise, as shown

in Figure 4. Experimental methods need a comprehensive theory

for a deep and quantitative understanding of the results. The data

FIGURE 5
Curve of the data and model misfit with different values of ω. (A) The plot shows that the different values of ω have an impact on the inversion
data convergence and (B) on the accuracy of the inversion.
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misfit and the model misfit are used to show the accuracy of the

inversion results. The differences between the observed gravity

data and the calculated gravity data are shown in Figure 4A. In

the inversion, initially the data misfit function is large and then, it

decays quickly during the inversion iterations. As the inversion

results become close to the true solution, the value of the data

misfit function decreases. Figure 4A shows that the convergence

degree of the sparsity gravity inversion provides a higher

performance than the smooth inversion. The difference

between the inversion density value distribution and the true

density value distribution is shown in Figure 4B. The model

misfit is only applied in the case of the synthetic test: the accuracy

of the inversion results by using different inversion method has

been tested and in this simulation, the sparsity inversion results

are more similar to true values when compared to the smooth

inversion results. Figure 4C shows the change in the

regularization parameters during the inversion process.

In this section the influence on the inversion results upon

using the W-GCV method with different values of ω is

analyzed. The sparsity inversion technique is applied to

show the advantage of the W-GCV algorithm. Figure 5

shows the data convergence of the sparsity inversion method

by using the both W-GCV with different ω and the GCV

algorithm. The best inversion results are obtained with the

W-GCV algorithm. Moreover, the influence of regularization

parameters on the results could be easily captured by this

FIGURE 6
Similarly to Figures 2, 3 but in this case the inversion results were obtained by using the sparsity inversion method based on the Lanczos
bidiagonalization compression algorithm.

FIGURE 7
Choice of the compress factor for each iteration number using the adaptive Lanczos bidiagonalization method.

Frontiers in Earth Science frontiersin.org10

Zhaohai et al. 10.3389/feart.2022.1020384

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1020384


comparison: the choice of a suitable value of ω is fundamental,

as well as the adaptive W-GCV method.

To show the compression effect, the inversion results

obtained by using the algorithm one described in Table 1

and the algorithm 2 described in Table 2 are compared. The

corresponding inversion results are shown in Figure 6. The

compress factor, which has a value between 30 and 11, is

shown in Figure 7. The small dimension of the new replaced

matrix reduces the inversion time and the computational

power required to perform the calculation. The comparison

between Figures 4, 6 shows that the compress algorithm does

not affect the inversion accuracy. Both algorithms are able to

recover the accurate density distribution of the sub-surface, as

shown in Figure 8. Moreover, both the data misfit and the

model misfit are consistent. Therefore, the sparsity gravity

inversion based on the Lanczos bidiagonalization compress

algorithm not only provides an accurate inversion result, but

also increases the inversion efficiency. Moreover, the adaptive

compress algorithm achieves an optimal value for the

compression factor, t.

Real data application

To show the practical implications of the inversion

method proposed in this paper, a well-known Mobrun ore

body research, situated in the North-East of Noranda, Quebec

was used. The residual gravity data is shown in Figure 9. The

anomaly pattern can be associated to a massive body

consisting of a base metal sulphide (mainly pyrite)

embedded in volcanic rocks of the middle Precambrian age

(Grant and West, 1965). The original gravity pattern of the

sample is shown in Figure 10.1 in the paper of Grant and West

(1965). In the current application, the data was carefully

digitized and input into a regular grid of 30 × 30 =

900 data points, which are spaced 20 m × 20 m over the

East and North directions, respectively. Moreover, the

average density of the core samples of the ore bodies

measured 4.6 g/cm3 whereas the density of the host rocks

was 2.7 g/cm3. Thus, the density contrast of the sulfide ore

FIGURE 8
Comparison between the sparsity inversion and the sparsity inversion based on the Lanczos bidiagonalization compress algorithm; (A)trend of
the data misfit; (B) model misfit generated by the difference between the two methods.

FIGURE 9
Residual bouguer anomaly map of the Mobrun ore body,
northeast of Noranda, Quebec.
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body measured 1.9 g/cm3 (Grant and West, 1965). To apply

the inversion method presented in this manuscript into this

aforementioned region, the sub-surface space was discretized

into 30 × 30 × 15 = 13,500 cells along the East, North, and

depth directions, respectively. The side of each cell measures

20 m. The noise distribution used in this application was σi =

(0.03 (gobs)i + 0.004|| gobs ||2). The density contrast constraint

of the sulfide ore body has a value between 0 g/cm3 and

1.9 g/cm3.

The distribution of the ore body was obtained by applying

the method discussed in this paper. The different depth slices

(at z = -20 m, z = -100, and z = -180) of the ore body density

distribution are shown in Figure 10. From this figure, the

strike of the sulfide body can be clearly observed and it

elongates from NW to SE. Two vertical slices (A-A′ at

north direction = 260 m and B-B’ east direction = 240 m)

are present and illustrated in Figure 11, which shows the

vertical distributions of the recovered density body. The 3D

view of the ore body density distribution, which was obtained

by considering a density cut off 0.8 g/cm3, is shown in

Figure 12.

According to density distribution of the inversion results,

the top and bottom depth of the ore body measure about

20 and 180 m, respectively. The inversion results effectively

show the position of the ore body in this region. The true

information of the sulfide body and the mineralized zone can

be obtained by using the information available for several

boreholes. According to the drilling data presented in

Figure 13, the density distribution and the value of the ore

body measures about 17 m and it extends to 187 m (Figure 13)

(Grant and West 1965). Therefore, the inversion results

obtained by using the inversion method proposed in this

paper agree with the results available from the drilling

experiments and the data obtained by Aghajani et al. (2009).

Conclusion

A new fast sparsity inversion method based on the

regularization of the SVD algorithm is examined in this

paper. The addition of the approximate L0 norm improves

the sparseness of the inversion model characteristics. A

W-GCV method is applied to choose a suitable

regularization parameter. In the W-GCV method, the

parameter ω, which is determined via an adaptive and

FIGURE 10
Depth slice measured at z = -20 m via the recovered density distribution obtained by using the inversion method proposed in this paper (A);
Depth slice at z = -100 m (B); Depth slice at z = -180 m (C).

FIGURE 11
Cross sections along the North direction = 260 m (A) and
along the East direction = 240 m (B) of the inversion density
distribution obtained by using the inversion method discussed in
this paper.
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automatic algorithm, is used. To solve the inversion efficiency

of the large-scale gravity data, a Lanczos bidiagonalization

compression algorithm is introduced to reduce the dimension

of the original gravity forward matrix. Moreover, to obtain an

optimal compression factor, an adaptive choice method was

investigated. By using the inversion method proposed in this

paper, not only a sparsity inversion with a block density

distribution can be obtained, but also the inversion

efficiency can be improved. Synthetic data contaminated by

noise was used to test such inversion method. The inversion

results obtained via the full space sparsity and the project sub-

space inversion methods using a compression algorithm

FIGURE 12
3D view of the inversion density of the Mobrun ore body for a cut off density of 0.8 g/cm3.

FIGURE 13
Drilling information and geological section of the Mobrun sulfide body with its geophysical interpretation (Grant and West 1965).
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produce very similar results. In this way, the sub-surface

density distribution of the anomalous bodies could be

obtained precisely. Finally, a real gravity data set from the

Mobrun sulfide body was used to test the ability of the method

in a real-world application. The inversion results are in good

agreement with the data provided by the drilling information

and the geological data. This new inversion method shows to

have a huge potential in the data inversion field.
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Appendix A: Lanczos
bidiagonalization compression
algorithm

The Lanczos bidiagonalization compression algorithm is

based on the full space forward matrix, Gw, and on its

corresponding observed data, dw. The calculated process is

presented in Table A1. The quantities σ and ρ are applied to

ensure that the corresponding vectors, μ and ], are normalized.

With the suitable compression factor, t, this algorithm

produces two matrices Ut = [μ1, μ2,. . ., μt]∈RM×t and Vt=[]1,
]2,. . ., ]t+1] ∈RN×(t+1) with orthonormal columns and a lower

bidiagonal matrix Bt∈R (t+1)×t which is define as follows:

Bt �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1
σ2 ρ2

1 1
σt−1 ρt−1

σt ρt
σt+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(28)

The aforementioned matrices are related to each other via the

expression:

GwUt � Vt+1Bt, Vt+1et+1 � dw

‖dw‖2 (29)

where et+1∈R(t+1)×1 is the unit vector with first column equal to 1.

Adaptive Choice of ω

In the early iteration of the gravity inversion, the solution is

not captured by the ill-conditioning. Therefore, a regularization

parameter, λ, must be introduced. This parameter must satisfy:

0≤ λ≤ σ min(A) (30)
where σmin is the smallest singular value of A, which corresponds

to G or Bt. If the value of the regularization parameter, λk, is

known in the iteration k, the value of ω is obtained via the

minimization of the GCV function with respect to w. The

function has the following mathematical expression:

z

zλ
(GCV(ω, λ))|λ�λk � 0 (31)

In the calculation, the optimal regularization parameter is not

known. Therefore, the value of ω is calculated via λk = σmin(A). In

later iterations, the ill-conditioning of A appears and one cannot

use the value of σmin(A) to replace λ. A better approach is to

adaptively consider

ωk � mean(ω1 ω2 . . . ωk−1 ) (32)

In the iteration, by using the average value of the previous

value of ω. In this way, the earlier well-conditioned values can

balance the effects of false condition number in the A matrix.

TABLE A1 Calculation algorithm of the Lanczos bidiagonalization.

σ1 = ||dw||, μ1 =
dw/σ1, ν19=G

wTμ1, ρ1=
||ν19||, ν1=ν19/ρ1

for j = 2,3,. . .,t

μj′=Gw]j-1—ρj-1μj-1, σj,=||μj′||, μj =μj′/σj
]j′=Gwμj-1—ρj-1]j-1, σj,=||]j′||, ]j =]j′/ρj
end

μt+1′=Gw]t - ρtμt, ρt+1= ||μt+1′||, μt+1=μt+1′/σt+1
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