AUTHOR=Li Ziyan , Elsworth Derek , Wang Chaoyi , EGS-Collab , Ajo-Franklin J. , Baumgartner T. , Beckers K. , Blankenship D. , Bonneville A. , Boyd L. , Brown S. , Burghardt J.A. , Chai C. , Chakravarty A. , Chen T. , Chen Y. , Chi B. , Condon K. , Cook P.J. , Crandall D. , Dobson P.F. , Doe T. , Doughty C.A. , Elsworth D. , Feldman J. , Feng Z. , Foris A. , Frash L.P. , Frone Z. , Fu P. , Gao K. , Ghassemi A. , Guglielmi Y. , Haimson B. , Hawkins A. , Heise J. , Hopp C. , Horn M. , Horne R.N. , Horner J. , Hu M. , Huang H. , Huang L. , Im K.J. , Ingraham M. , Jafarov E. , Jayne R.S. , Johnson T.C. , Johnson S.E. , Johnston B. , Karra S. , Kim K. , King D.K. , Kneafsey T. , Knox H. , Knox J. , Kumar D. , Kutun K. , Lee M. , Li D. , Li J. , Li K. , Li Z. , Maceira M. , Mackey P. , Makedonska N. , Marone C.J. , Mattson E. , McClure M.W. , McLennan J. , McLing T. , Medler C. , Mellors R.J. , Metcalfe E. , Miskimins J. , Moore J. , Morency C.E. , Morris J.P. , Myers T. , Nakagawa S. , Neupane G. , Newman G. , Nieto A. , Paronish T. , Pawar R. , Petrov P. , Pietzyk B. , Podgorney R. , Polsky Y. , Pope J. , Porse S. , Primo J.C. , Reimers C. , Roberts B.Q. , Robertson M. , Rodriguez-Tribaldos V. , Roggenthen W. , Rutqvist J. , Rynders D. , Schoenball M. , Schwering P. , Sesetty V. , Sherman C.S. , Singh A. , Smith M.M. , Sone H. , Sonnenthal E.L. , Soom F.A. , Sprinkle D.P. , Sprinkle S. , Strickland C.E. , Su J. , Templeton D. , Thomle J.N. , Ulrich C. , Uzunlar N. , Vachaparampil A. , Valladao C.A. , Vandermeer W. , Vandine G. , Vardiman D. , Vermeul V.R. , Wagoner J.L. , Wang H.F. , Weers J. , Welch N. , White J. , White M.D. , Winterfeld P. , Wood T. , Workman S. , Wu H. , Wu Y.S. , Yildirim E.C. , Zhang Y. , Zhang Y.Q. , Zhou Q. , Zoback M.D. TITLE=Induced microearthquakes predict permeability creation in the brittle crust JOURNAL=Frontiers in Earth Science VOLUME=10 YEAR=2022 URL=https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2022.1020294 DOI=10.3389/feart.2022.1020294 ISSN=2296-6463 ABSTRACT=

Predicting the evolution of permeability accurately during stimulation at the reservoir scale and at the resolution of individual fractures is essential to characterize the fluid transport and the reactive/heat-transfer characteristics of reservoirs where stress exerts significant control. Here, we develop a hybrid machine learning (ML) model to visualize in situ permeability evolution for an intermediate-scale (∼10 m) hydraulic stimulation experiment. This model includes an ML model that was trained using the well history of flow rate and wellhead pressure and MEQ data from the first three stimulation episodes to predict average permeability from the statistical features of the MEQs alone for later episodes. Moreover, a physics-inspired model is integrated to estimate in situ fracture permeability spatially. This method relates fracture permeability to fracture dilation and scales dilation to the equivalent MEQ magnitude, according to laboratory observations. The seismic data are then applied to define incremental changes in permeability in both space and time. Our results confirm the excellent agreement between the ground truth and model-predicted permeability evolution. The resulting permeability map defines and quantifies flow paths in the reservoir with the averaged permeability comparing favorably with the ground truth of permeability.