AUTHOR=Li Ziyan , Elsworth Derek , Wang Chaoyi , EGS-Collab , Ajo-Franklin J. , Baumgartner T. , Beckers K. , Blankenship D. , Bonneville A. , Boyd L. , Brown S. , Burghardt J.A. , Chai C. , Chakravarty A. , Chen T. , Chen Y. , Chi B. , Condon K. , Cook P.J. , Crandall D. , Dobson P.F. , Doe T. , Doughty C.A. , Elsworth D. , Feldman J. , Feng Z. , Foris A. , Frash L.P. , Frone Z. , Fu P. , Gao K. , Ghassemi A. , Guglielmi Y. , Haimson B. , Hawkins A. , Heise J. , Hopp C. , Horn M. , Horne R.N. , Horner J. , Hu M. , Huang H. , Huang L. , Im K.J. , Ingraham M. , Jafarov E. , Jayne R.S. , Johnson T.C. , Johnson S.E. , Johnston B. , Karra S. , Kim K. , King D.K. , Kneafsey T. , Knox H. , Knox J. , Kumar D. , Kutun K. , Lee M. , Li D. , Li J. , Li K. , Li Z. , Maceira M. , Mackey P. , Makedonska N. , Marone C.J. , Mattson E. , McClure M.W. , McLennan J. , McLing T. , Medler C. , Mellors R.J. , Metcalfe E. , Miskimins J. , Moore J. , Morency C.E. , Morris J.P. , Myers T. , Nakagawa S. , Neupane G. , Newman G. , Nieto A. , Paronish T. , Pawar R. , Petrov P. , Pietzyk B. , Podgorney R. , Polsky Y. , Pope J. , Porse S. , Primo J.C. , Reimers C. , Roberts B.Q. , Robertson M. , Rodriguez-Tribaldos V. , Roggenthen W. , Rutqvist J. , Rynders D. , Schoenball M. , Schwering P. , Sesetty V. , Sherman C.S. , Singh A. , Smith M.M. , Sone H. , Sonnenthal E.L. , Soom F.A. , Sprinkle D.P. , Sprinkle S. , Strickland C.E. , Su J. , Templeton D. , Thomle J.N. , Ulrich C. , Uzunlar N. , Vachaparampil A. , Valladao C.A. , Vandermeer W. , Vandine G. , Vardiman D. , Vermeul V.R. , Wagoner J.L. , Wang H.F. , Weers J. , Welch N. , White J. , White M.D. , Winterfeld P. , Wood T. , Workman S. , Wu H. , Wu Y.S. , Yildirim E.C. , Zhang Y. , Zhang Y.Q. , Zhou Q. , Zoback M.D. TITLE=Induced microearthquakes predict permeability creation in the brittle crust JOURNAL=Frontiers in Earth Science VOLUME=10 YEAR=2022 URL=https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2022.1020294 DOI=10.3389/feart.2022.1020294 ISSN=2296-6463 ABSTRACT=
Predicting the evolution of permeability accurately during stimulation at the reservoir scale and at the resolution of individual fractures is essential to characterize the fluid transport and the reactive/heat-transfer characteristics of reservoirs where stress exerts significant control. Here, we develop a hybrid machine learning (ML) model to visualize