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The forecasting performance of the Dynamical–Statistical–Analog

Ensemble Forecast (DSAEF) model for Landfalling Typhoon [or tropical

cyclone (TC)] Precipitation (DSAEF_LTP), with new values of two

parameters (i.e., similarity region and ensemble method) for landfalling

TC precipitation over Fujian Province, is tested in four experiments.

Forty-two TCs with precipitation over 100 mm in Fujian Province during

2004–2020 are chosen as experimental samples. Thirty of them are training

samples and twelve are independent samples. First, simulation experiments

for the training samples are used to determine the best scheme of the

DSAEF_LTPmodel. Then, the forecasting performance of this best scheme is

evaluated through forecast experiments. In the forecast experiments, the

TSsum (the sum of threat scores for predicting TC accumulated rainfall

of ≥250 mm and ≥100 mm) of experiments DSAEF_A, B, C, D is 0.0974,

0.2615, 0.2496, and 0.4153, respectively. The results show that the

DSAEF_LTP model performs best when both adding new values of the

similarity region and ensemble method (DSAEF_D). At the same time, the

TSsum of the best performer of numerical weather prediction (NWP) models

is only 0.2403. The improved DSAEF_LTP model shows advantages

compared to the NWP models. It is an important method to improve the

predictability of the DSAEF_LTP model by adopting different schemes in

different regions.
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1 Introduction

Tropical cyclones (TCs, or typhoons) are among the top

10 global natural disasters (Lei et al., 2019). The Northwest

Pacific (including the South China Sea) is the most active

region for TCs worldwide, with about 27 TCs per year and

accounting for about one-third of the total number of TCs

globally (Matsuura et al., 2013). Studies have shown that most

TCs move westward and northwestward immediately after their

generation, making China one of the most severely affected

countries (Chen and Meng, 2001; Zhang et al., 2019),

especially with the regard to landfalling TCs (LTCs).

Forecasting LTC precipitation is one of the major challenges

of TC science. China has made remarkable progress in improving

the prediction error of tropical cyclone track, but the progress in

forecasting TC precipitation is still relatively slow. Besides,

current understanding of TC rainfall distribution change is

more qualitative than quantitative (AMS, 2000). Therefore, it

is of great scientific significance and practical value to continue

researching LTC precipitation and improving the quality and

skill of its forecasting.

With regard to research approaches for forecasting LTC

precipitation, three methods are widely applied: dynamical

models, statistical methods, and dynamical–statistical

methods. Among them, the dynamical–statistical method is an

important approach to improving the forecasting skill for LTC

precipitation, and can be generally divided into three categories

(Ren and Xiang, 2017). The first category involves using the TC

tracks forecasted by dynamical models along with historical

rainfall observations, and the TC precipitation forecast is

obtained from the perspective of the climatic average (Marks

et al., 2002; Lee et al., 2006; Lonfat et al., 2007). The second type

adopts TC track forecasts and the integration of rainfall from the

initial rainfall rates to forecast the LTC precipitation (Kidder

et al., 2005; Liu, 2009; Ebert et al., 2011). And the third type works

by constructing a dynamical–statistical scheme that consists of

various internal TC variables and its environmental fields (Li and

Zhao, 2009; Zhong et al., 2009). There have been some important

recent studies on hybrid analog-ensemble-based forecasts. For

instance, Elsberry and Tsai (2014) developed a situation-

dependent intensity prediction technique for western North

Pacific TCs, based on the mean intensity changes from the

10 best historical track analogs, and successfully applied the

technique to other TC cases (Tsai and Elsberry, 2015, Tsai and

Elsberry, 2016, Tsai and Elsberry, 2017).

Recently, Ren et al. (2020) proposed the theory of the

Dynamical–Statistical–Analog Ensemble Forecast (DSAEF)

and applied it to LTC accumulated precipitation forecasting,

developing the DSAEF model for landfalling TC precipitation

(the DSAEF_LTP model). The initial model contained two

physical factors: TC track and TC landfalling season.

Subsequently, Ding et al. (2020) introduced TC intensity into

the model and conducted rainfall forecast experiments for

21 LTCs over South China. Furthermore, Jia et al. (2020)

added five new parameter values of similarity regions (2020)

into the model and conducted simulation experiments on a single

TC in 2019 (Lekima). In a follow-up study (Jia et al., 2022), the

authors added five new values of ensemble forecast schemes and

carried out further experiments on 10 TCs in 2018, which further

improved the DSAEF_LTP model.

The above review reveals that so far only a small number of

samples have thus far been adopted to conduct forecast

experiments with the new similarity regions and ensemble

forecast schemes added into the DSAEF_LTP model. In other

words, evidence based on large-sample experiments are still

missing. And how about? The forecast skill of the model for a

small area, such as a province? This is the motivation behind the

present study in which large-sample experiments are carried out

with the improved model (with new parameter values added) in

Fujian Province, which is located on the southeast coast of China

and experiences frequent typhoon impacts as well as severe

disaster-related losses, to evaluate the model’s forecast

performance in this region.

The paper is structured as follows: The next section describes

data and methods. Section 3 explains the experiments (samples

and design). Results are presented in Section 4. A summary and

discussion are given in Section 5.

2 Data and methods

2.1 Data

(1) The observed historical precipitation data during

1960–2020 with 24-h intervals at 1200 UTC used in this

paper are from the National Meteorological Information

Center (NMIC) of the China Meteorological

Administration (CMA), covering 2027 meteorological

stations, including 66 in Fujian.

(2) The historical best-track data at 6-h intervals during

1960–2020, including the position and strength of TCs,

are from the Shanghai Typhoon Institute (Ying et al.,

2014; Lu et al., 2021). The tracks of target TCs [both the

best tracks and operational numerical weather prediction

(NWP) model forecast tracks] are from the NMIC of

the CMA.

(3) Forecasted precipitation data from NWP models are used to

compare their forecast performance with that of the

DSAEF_LTP model. The following four models are used:

the European Centre for Medium-Range Weather Forecasts

(ECMWF) model (0.125°×0.125°); the Global Forecast

System (GFS) of the National Centers for Environmental

Prediction (0.25°×0.25°); the Global/Regional Assimilation

and Prediction System (GRAPES) model run by the CMA

(0.25°×0.25°); and the Shanghai Meteorological Service WRF

ADAS Real-Time Modeling System (SMS-WARMS)

Frontiers in Earth Science frontiersin.org02

Su et al. 10.3389/feart.2022.1018851

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1018851


(0.09°×0.09°). For simplicity, the four NWP models,

i.e., ECMWF, GFS, GRAPES and SMS-WARMS, are

referred to as ECM, NCP, GRP, and mSH, respectively in

the following.

2.2 Methods

2.2.1 The DSAEF_LTP model
The DSAEF_LTP model is used to predict the accumulated

precipitation of the target TCs in this study. Figure 1 shows the

flowchart of the forecasting procedure of the DSAEF_LTPmodel,

and the procedure consists of four main steps: 1) obtaining the

complete track of the target TC; 2) constructing the generalized

initial values (GIVs); 3) discriminating the similarity of the GIV;

and 4) ensemble-forecasting the LTC precipitation.

In the first step, the complete track of the target TC is

obtained by combining the observed track before the initial

time and the forecast track after the initial time. The forecast

track is based on the TC track forecast of the NWP model, and

the initial time depends on the first parameter presented in

Table 1.

In the second step, GIVs are constructed via physical factors

that affect TC precipitation. Certain variables of TC

characteristics (e.g., TC track, TC landfall season, TC

intensity, TC translation speed, TC structure) and

environmental fields (e.g., monsoons, subtropical high, low-

level jet) that are important factors influencing TC

precipitation should be considered. In this study, only three

TC characteristic factors—TC track, TC landfall season and

TC intensity—have been introduced into the model. The

environmental factors will be considered to be introduced into

the model in the future.

The third step is to distinguish the similarity of the GIVs.

Specifically, it is used to discriminate the similarity of the GIVs

constructed in the second step between the target TC and the

historical TCs, and thenm historical TCs that are most similar to

the target TC can be selected. This step is determined by

parameters (P) 2–6 in Table 1. The TC track similarity is

determined by the TC track Similarity Area Index (TSAI)

(Ren et al., 2018), which is calculated by using P2–P4.

Meanwhile, P5 and P6 are used to determine the similarity of

TC landfall season and intensity, respectively. Based on the above

steps, m historical TCs are finally screened, and m is determined

by P7.

The fourth step is the LTC precipitation ensemble forecast

and the ensemble members are the similar historical TCs. In this

context, the accumulated precipitation of m similar historical

TCs screened during the third step are assembled to obtain the

precipitation forecast of the target TC. The ensemble method is

determined by P8. Here, the Objective Synoptic Analysis

Technique is used to partition the precipitation generated by

TCs from the historical accumulated precipitation (Ren et al.,

2001, Ren et al., 2007).

FIGURE 1
Flowchart of the DSAEF_LTP model.
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TABLE 1 Parameters of the DSAEF_LTP model.

Parameter Description Experimented values

P1 Initial time The complete track of the target TC consists of the observed
track before the initial time and the forecast track after the
initial time

1: 1200 UTC on Day 1

2: 0000 UTC on Day 1

3: 1200 UTC on Day0

4: 0000 UTC on Day 0

5: 1200 UTC on Day −1

6: 0000 UTC on Day −1 (Day 0: the day of TC precipitation
occurring on land; Day 1: the day after Day 0; Day −1: the day
before Day 0)

P2 Similarity region A designated region within which the TSAI is calculated. It is a
rectangle with diagonal points A and B

Decided by the predicted TC track, initial time and diameter of
the TC. There are 20 experimental values (1–20)

P3 Threshold of the segmentation ratio
of a latitudinal extreme point

A parameter of TSAI that represents the bending degree of TC
tracks

1: 0.1

2: 0.2

3: 0.3

P4 Overlapping percentage threshold of
two TC tracks

A parameter of TSAI that represents the degree of longitudinal
(latitudinal) overlap of TC tracks

1: 0.9

2: 0.8

3: 0.7

4: 0.6

5: 0.5

6: 0.4

P5 Seasonal similarity A parameter that indicates the TC landfall time 1: the whole year

2: May–Nov

3: Jul–Sept

4: the same landfall month as the target TC

5: within 15 days of the target TC landfall time

P6 Intensity similarity A parameter that indicates the differences between the TC
intensity of the target TC and historical TCs. There are four
categories of TC intensity that can be chosen. The similarity of
TC intensity is divided into five levels

Four categories

1: average intensity on the first rainy day

2: maximum intensity on the first rainy day

3: average intensity on all rainy days

4: maximum intensity on all rainy days

Five levels

1: all grades

2: the target TC intensity is the same grade or above the
historical TC

3: the same grade or below 4: only the same grade

5: the same grade or one grade difference

P7 Number of analog TCs screened for
the ensemble forecast

m historical TCs with the first m most similar GIVs to that of
the target TC

1–10 for 1, 2 . . . and 10, respectively

P8 Ensemble Ensemble forecast scheme 1: Mean

2: Maximum

3: 90th percentile

4: Probability matching mean (PM)

5: Equal difference-weighted mean (ED-WM)

6: TSAI-weighted mean (TSAI-WM)

Total number of schemes: 6 × 20 × 3 × 6 × 5 × 4 × 5 × 10 × 6 = 12,960,000
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2.2.2 The new parameter values of the
DSAEF_LTP model

The improvement of the DSAEF_LTP model with two

newly added parameter values is tested in Fujian Province.

The parameters and their values in the model are listed in

Table 1. The first parameter is the similarity region (P2 in

Table 1). Fifteen values of this parameter are obtained in the

first version of the DSAEF_LTP model. That is, fifteen

rectangular areas with diagonal points A and B can be

chosen, and the TSAI is calculated in these rectangular areas.

The TSAI is the area enclosed by the track of the historical TCs

and the target TC in a specified similarity region. A is the TC

position at 0, 12 or 24 h prior to the maximum prediction time,

and C is the TC position at 0, 12, 24, 36 or 48 h prior to the start

time of the forecast (i.e., the initial time). Jia et al. (2020) found

that these rectangular areas are rather too small or too eastward

or southward considering that the maximum diameter of a TC

is about 2000 km in the Northwest Pacific, so five new values

that represent five 2000 km−2 regions of this parameter are

added.

The second parameter is the ensemble forecast scheme (P8 in

Table 1). There are only two ensemble methods in the first

version of the DSAEF_LTP model: mean and maximum. To

address the high rates of misses and false alarms of these two

methods respectively, Jia et al. (2022) added five new ensemble

methods (i.e., the 90th percentile, fusion, probability matching

mean, equal difference-weighted mean, and TSAI-weighted

mean) and demonstrated that the overall performance of the

90th percentile is superior. Four new ensemble methods,

excluding the fusion method presented by Jia et al. (2022),

have been added in this paper. We did not consider this

ensemble method as its prediction result for precipitation

above 100 mm is the same as that of the maximum method.

In this paper, the forecast performances of the four new ensemble

schemes and the two original schemes are tested for TC

precipitation over the Fujian Province.

2.2.3 Evaluation methods
In order to evaluate the forecast performance of the

DSAEF_LTP model, the threat score (TS), false alarm rate

(FAR), and missing alarm rate (MAR) are used (Wang et al.,

2021). The TS is calculated as

TS � hits

hits +misses + false alarms
, (1)

whereby its value ranges from 0 to 1. The closer TS is to 1, the

better the forecast performance. To evaluate the forecast

performance at two thresholds above 100 mm and 250 mm,

TSsum = TS100 + TS250 is selected as an evaluation index

(where TS100 and TS250 are the TSs at two thresholds, above

100 mm and 250 mm respectively). Therefore, a larger TSsum

indicates a better forecast performance of the DSAEF_LTP

model at these two thresholds. For the other metrics,

FAR � false alarms

hits +misses + false alarms
,

MAR � misses

hits +misses
,

(2)

where in the smaller the value of FAR and MAR, the better the

forecast. Similarly, FAR100, MAR100, FAR250, andMAR250 are

the MARs and FARs at the two thresholds above 100 mm and

250 mm, respectively.

3 Experiments

3.1 Samples

From 2004 to 2020, the historical TCs that caused a

maximum daily precipitation exceeding 100 mm in Fujian

Province are selected as experimental samples. After excluding

some TCs with missing data, a total of 42 TCs are picked out, of

which 30 TCs from 2004 to 2015 are chosen as training samples

(Figure 2A), while 12 TCs from 2016 to 2020 are chosen as

independent samples (Figure 2B).

3.2 Design

The forecasting procedures of the DSAEF_LTPmodel and its

parameters were introduced in Section 2.2.1. Table 1 provides the

values and physical meanings of these parameters. As each

parameter has several different values, there is a large number

of combinations of these values, and each combination is a

forecast scheme. The simulation experiment for training

samples is conducted to determine the best scheme according

to highest TSsum, i.e., the highest prediction accuracy. Then, the

forecast performance of this best scheme is tested in Fujian

Province.

To examine the forecast performance after introducing the

two new parameter values into the DSAEF_LTP model, four

experiments are designed. The first experiment is conducted by

the original DSAEF_LTP model that contains three physical

factors, (i.e., TC track, landfall season, and intensity) in the

GIVs of the model, without adding the new parameter values

of similarity region and ensemble method, and the experiment is

named DSAEF_A. The second experiment is the model with five

new similarity region parameter values, here stated as DSAEF_B.

The third experiment is the model with four new ensemble

methods, named DSAEF_C. And the fourth experiment,

DSAEF_D, is conducted with new values of these two

parameters simultaneously.

The procedures for selecting the best scheme are as follows:

First, calculate the TSsum for each forecast scheme when

simulating the accumulated precipitation of a single TC. Due

to the short impact period of some TCs, some parameter values of
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the initial time and the similarity region cannot be used. Thus,

when simulating the accumulated precipitation of a single TC,

the total number of schemes may less than or equal to the

number given in Table 1. The second step is to select the

common scheme that can be used by all 30 TCs. In the third

step, considering 100 mm and 250 mm are two important

thresholds for operational forecasting of accumulated

precipitation, the average values of TS250 and TS100 are

calculated for each common scheme. The common scheme

with the largest TSsum (the sum of TS250 and TS100) is

considered as the best scheme, which will be applied to the

TC precipitation forecast.

After the best schemes of the four experiments for the

30 training samples from 2004 to 2015 are determined, the four

schemes are used to forecast the precipitation of 12 independent

samples. Then, these forecast results are compared with the NWP

models to further understand the forecasting skill of the best

scheme for each configuration of experiments.

FIGURE 2
Tracks of (A) the 30 TCs used as training samples from 2004 to 2015 and (B) the 12 TCs used as independent samples from 2016 to 2020.

FIGURE 3
Threat scores of (A) DSAEF_A, (B) DSAEF_B, (C) DSAEF_C and (D) DSAEF_D in the accumulated precipitation simulation experiment for
30 training samples, in which each black dot represents a scheme and the red dot indicates the best scheme with the maximum TSsum (TSsum =
TS250 + TS100).
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4 Results

4.1 Simulation experiments

The black scatter points in Figure 3 show the TSs of the best

scheme of the four simulation experiments for 30 training

samples. Each black dot in the figure represents a scheme

whose horizontal and vertical coordinates are the TS250 and

TS100 of this scheme, respectively. The figure shows that there is

a significant increase in the number of DSAEF_B schemes

compared with the number of DSAEF_A schemes, and the

distribution of TSsum is more widespread. The maximum

TSsum of DSAEF_B is 0.5571, while the maximum TSsum of

DSAEF_A is 0.5035, indicating that the forecasting capability of

DSAEF_LTP improved after adding the new parameter values of

the similarity region. In experiment DSAEF_C, the maximum

TSsum increases to 0.5353 after adding new values of the

ensemble method, indicating that a suitable ensemble method

plays an important role in improving the forecasting capability of

DSAEF_LTP. In experiment DSAEF_D, when the new similarity

region and ensemble method are added simultaneously, the

model’s forecasting capability is significantly improved.

Compared with DSAEF_A, the TS250 of DSAEF_D increases

from 0.1998 to 0.3114, and the TS100 increases from 0.3037 to

0.3428, which is an increase of 55.8% and 12.8%, respectively.

TSsum increases from 0.5035 to 0.6542, an increase of 29.9%.

The parameter values of the best scheme for the four

experiments are given in Table 2. From Table 2, it can be

seen that the parameters of the best scheme for the four

experiments are very different, such as, the numbers of

ensemble members (determined by P7) of DSAEF_A, B, C, D

are 2, 5, 7, and 7, respectively. In the experiments with the

addition of the new values of the similarity region (DSAEF_B and

DSAEF_D), the new value of P2 is used in the best scheme. And

the new ensemble method is also used in DSAEF_C and

DSAEF_D. This indicates that the new values of similarity

region and the ensemble scheme have a positive effect on the

forecasting capability of the model.

TABLE 2 Parameter values of the best scheme in the four experiments.

Parameter DSAEF_A DSAEF_B DSAEF_C DSAEF_D

P1 Initial time 2: 0000 UTC on Day 1 2: 0000 UTC on Day 1 4: 0000 UTC on Day 2 1: 1200 UTC on Day 1

P2 Similarity region 6: the 6th parameter of
rectangular areas in Jia et al.
(2020)

20: the 20th parameter of
rectangular areas in Jia et al.
(2020)

1: the 1st parameter of
rectangular areas in Jia et al.
(2020)

20: the 20th parameter of
rectangular areas in Jia et al.
(2020)

P3 Threshold of the
segmentation ratio of a
latitudinal extreme point

3: 0.3 2: 0.2 1: 0.1 2: 0.2

P4 Overlapping percentage
threshold of two TC tracks

6: 0.4 4: 0.6 3: 0.7 6: 0.4

P5 Seasonal similarity 3: Jul–Sept 2: May–Nov 2: May–Nov 2: May–Nov

P6 Intensity similarity 4: maximum intensity on all
rainy days

4: maximum intensity on all
rainy days

4: maximum intensity on all
rainy days

1: average intensity on the first
rainy day

1: all grades 2: the target TC intensity is the
same grade or above the
historical TC

1: all grades 4: only the same grade

P7 Number of analog TCs
screened for the ensemble
forecast

2: historical TCs with the two
most similar GIVs to that of the
target TC

5: historical TCs with the five
most similar GIVs to that of the
target TC

7: historical TCs with the seven
most similar GIVs to that of the
target TC

7: historical TCs with the seven
most similar GIVs to that of the
target TC

P8 Ensemble 2: Maximum 2: Maximum 3: 90th percentile 3: 90th percentile

FIGURE 4
Comparison of the TS of the DSAEF_LTP model with four
numerical models (ECM, GRP, NCP, mSH) in independent forecast
experiments in Fujian Province.
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4.2 Forecast experiments

After obtaining the best scheme of the four experiments, as

reported in the previous section, the four best schemes could be

applied to the forecast experiments for 12 independent samples

during 2016–2020, and their forecast performances were

compared with the four NWP models (Figure 4). For the

forecast of accumulated precipitation over 250 mm, the TS

of both ECM and GRP is 0. The TS250 of the best schemes

of the four models have advantages compared with the NWP

models, demonstrating that DSAEF_LTP is good at forecasting

precipitation over 250 mm, of which DSAEF_D performs the

best, with a TS250 of 0.1767. For forecasts of accumulated

precipitation ≥100 mm, DSAEF_D and DSAEF_B rank as the

top two, with a TS100 of 0.2386 and 0.2268, respectively, which

exceeds the best performer of the NWP models (mSH, with a

TS100 of 0.2225). Except for DSAEF_A (original DSAEF_LTP

model), whose TSsum (0.0974) is smaller than three of the

NWPmodels (i.e., ECM, mSH and NCP), the TSsum of the best

scheme of the other three improved DSAEF_LTP results

exceeds those of the three NWP models. The TSsum of

DSAEF_B, C and D is 0.2615, 0.2496 and 0.4153,

respectively, and the TSsum of ECM, GRP, mSH, and NCP

is 0.1769, 0.0622, 0.2403, and 0.2143. Among all the models,

DSAEF_D ranks first, higher than DSAEF_A and higher than

the best performer of the NWP models (mSH). From the

forecast results above, regardless of whether adding the new

values of ensemble method or similarity region or both, the

forecast performance of the DSAEF_LTP model is improved

when forecasting TC accumulated precipitation above 100 mm

and 250 mm. The improved models (DSAEF_B to D) show

advantages in predicting rainfall over 250 mm, and are

comparable to the NWP models when predicting rainfall at

magnitudes of 100 mm.

To further analyze the forecast skill of the DSAEF_LTP

model, Figure 5 shows the FAR and MAR results of the four

experiments compared with the four NWPmodels. It can be seen

from the FAR250 and MAR250 results that, in terms of the

forecast of accumulated precipitation ≥250 mm, the

performances of the different NWP models are diametrically

opposed. ECM and mSH have a FAR close to 1, indicating that

their forecasted precipitation amounts are higher, which may

relate to the physical characteristics of these models. The NCP

model has a FAR of 0 for only one typhoon case (1617), and there

are neither hits nor false alarms, so the result of the average

FAR250 of the 12 TC samples is 0. GRP fails to forecast hits and

false-alarm stations. For MAR250, a gradual decrease from

DSAEF_A to D is shown, with the best being DSAEF_D with

a score of 0.4048. The score for mSH is 0.6670, while the other

three NWP models are closer to 1. That is, the forecast

performance of DSAEF_D is the best. In the forecasting of

accumulated precipitation ≥100 mm, the FAR of the NWP

models ranges from 0.48 to 0.61, while that of DSAEF_A to D

is 0.61–0.7. The NWP model scores all exceed that of

DSAEF_LTP, and DSAEF_LTP does not perform as well as

the NWP models in terms of FAR100. For MAR100,

DSAEF_B and D perform better among all the DSAEF

models, with values of 0.4704 and 0.4885, which is also better

than the best NWP model (mSH) with a MAR100 of 0.5224.

From the above analysis, as the magnitude of TC precipitation

increases, the DSAEF_D model begins to show lower FAR and

MAR. This reflects the advantages of DSAEF_D in extreme

precipitation forecasting. The new values of similarity region

and ensemble method can further improve the capability of this

model in forecasting precipitation.

Figures 6A,B compare the forecast performances of the four

configurations of the DSAEF_LTP model and the four NWP

models for each LTC. The dashed line is the maximum single-

station accumulated precipitation for each TC. In general, the

larger the single-station maximum accumulated precipitation of

a TC, the higher the TS value tends to be, both in terms of

TS250 and TS100. For accumulated precipitation above 250 mm,

only three TCs—TC1601, TC1614 and TC1617—caused more

than 250 mm of precipitation in Fujian. Both the NWP models

and the DSAEF_LTP models have no values on TS250 for the

forecast of TC1601. In both TC1614 and TC1617, only one NWP

model has forecasting ability on TS250 with a score less than 0.1,

and the DSAEF_LTP models performed more prominently than

the NWP models, with DSAEF_D scoring 0.33 for TC1614 and

0.55 for TC1617 on TS250, respectively. For accumulated

precipitation above 100 mm, the advantages of the

DSAEF_LTP models are not so obvious in the performance of

TS100 as in TS250. Both the NWP models and the DSAEF_LTP

models score 0 on TC 1822. Comparing the best performer of

DSAEF_LTPmodels and NWPmodels, The forecasting ability of

the NWP models are better than that of the DSAEF_LTP models

for seven individual TC cases, and the remaining TC1619,

FIGURE 5
Comparison of the FAR and MAR of the DSAEF_LTP model
with four numerical models (ECM,GRP, NCP,mSH) in independent
forecast experiments in Fujian Province.
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TC2005, and TC2006 are the ones where the DSAEF_LTP

models outperforms the NWP models, and it can be seen that

all the NWP models score 0 in the TS100 for TC2005 and TC

2006, which basically has no forecasting ability, while the

DSAEF_LTP model has forecasting ability for them, reflecting

the unique advantages of the DSAEF model. In order to analyze

the differences in the forecast performance of the DSAEF_LTP

model in forecasting different TC precipitation in Fujian, the top

four TCs with higher TSsum and the bottom four TCs with lower

TSsum in independent sample tests simulated by the DSAEF_D

model are analyzed, respectively. Figure 7 shows the tracks and

intensities of the top four and bottom four TCs. It can be clearly

FIGURE 6
Comparison of the TS (histogram) in the four DSAEF_LTP model experiments and four NWP models (ECM, GRP, NCP, mSH) for each TC in
independent forecast experiments and the maximum single-station accumulated precipitation (dashed line) for each TC accumulated precipitation
(A) above 250 mm and (B) above 100 mm.

FIGURE 7
The TC tracks and intensity of (A) the top four TCs with higher TSsum and (B) the bottom four TCs with lower TSsum in independent forecast
experiments simulated by the DSAEF_D model.
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seen (Figure 7A) that, among the top four TC cases, two TCs

make landfall in Taiwan first and then along the central coast of

Fujian, one TC directly makes landfall along the southern coast of

Fujian after wiping off from southern Taiwan, and the track of

one TC is located in the northern South China Sea, where it

hovers and circles before finally moving westward away from

Fujian. As for the forecast performance of the bottom four TCs

(Figure 7B), it can be seen that all four do not land directly in

Fujian; three of them are active in the South China Sea to the

south of Fujian and land in Guangdong, and the remaining TC

moves northward in the Northwest Pacific to the east of Taiwan,

which is far away from Fujian.

To better understand the characteristics of the DSAEF_LTP

model and test whether DSAEF_LTPmodel has an advantage for

NWP in the two subgroups of Figures 7, 8 compares the average

TS of the DSAEF_LTP model with the NWP models for these

two subgroups, i.e., the top four TCs with higher TSsum and the

bottom four TCs with lower TSsum produced by the

DSAEF_LTP models.

In terms of the four TCs with the best performance (i.e., TCs

in Figure 7A) predicted by the DSAEF_LTPmodel, the improved

DSAEF_LTP model generally outperforms the NWP models on

the TS250 (Figure 8A), with the best DSAEF_D performance of

0.2944, while only mSH and NCP are greater than 0 among the

four NWP models, and mSH only has the largest TS of 0.0208.

The DSAEF_LTP model shows great advantages compared with

NWP models at this precipitation level. When predicting the

accumulated precipitation of ≥100 mm, the performance of

DSAEF_LTP model and NWP model is closer, but the best

performer of DSAEF_LTP model still has slight advantages

over the best performer of NWP models. For TSsum, the

DSAEF_D performs best among the DSAEF_LTP models with

TSsum of 0.7432, which far exceeds the best performer NCP with

TSsum of 0.4624.

FIGURE 8
Comparison of the average TS of the DSAEF_LTP model with
four numerical models (ECM, GRP, NCP, mSH) in independent
forecast experiments in Fujian Province. (A) The top four TCs with
higher TSsum,(B) the bottom four TCs with lower TSsum.

FIGURE 9
Accumulated precipitation distribution of TC1617 (Megi): (A)
observed precipitation; (B) DSAEF_LTP model forecast; (C) ECM
forecast; (D)GRP forecast; (E)mSH forecast; (F)NCP forecast. The
black solid line is the observed track.
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In terms of the four TCs with the worst performance

(i.e., TCs in Figure 7B), both the DSAEF_LTP model and

NWP models have generally low TS (Figure 8B), and on the

TS250, no member of DSAEF_LTP model or NWP gets a score;

on the TS100, the highest TS is mSH of 0.1364 and DSAEF_D

ranks second with 0.0657. Therefore, it can be seen that the

DSAEF_LTP model is comparable to NWP models, but there is

still a big gap with mSH.

From the above description, it is obvious that the

DSAEF_LTP model performs better for heavy rainfall

produced by TCs that travel westward and make landfall in

Fujian, and does not performwell for individual TC cases that are

active in the South China Sea and cause heavy precipitation in

Fujian. Therefore, it is necessary to strengthen the forecasting

ability of the model for TCs in the South China Sea.

4.3 Analysis of representative cases

To demonstrate the characteristics of the improved

DSEAF_LTP model, Figures 9, 10 show the precipitation

distribution fields of two TCs (TC1617, with higher TSsum,

and TC1622, with lower TSsum) produced by the improved

DSAEF_LTP model with the new parameter values of similarity

region and ensemble method added.

For TC1617 (Figure 9), DSAEF_D performs best in

predicting the accumulated precipitation of ≥250 mm, and its

precipitation patterns for northeastern Fujian agree well with

observations, while the four NWP models cannot forecast heavy

rainfall in northeastern Fujian Province at all. For the forecast of

precipitation ≥100 mm, although the TS of DSAEF_D is the

highest among the four experiments, however, it is still slightly

worse than the NCP model. This is mainly caused by the false-

alarming of heavy rainstorms in western and southern Fujian

Province. Although the DSAEF_LTP model has imperfect

forecasting effects in terms of fine-grained representation of

TC heavy precipitation characteristics, the model-predicted

heavy precipitation distribution can provide a good reference

for forecasters and decision-makers in most cases.

For TC1622 (Figure 10), heavy rainfall ≥100 mm occurred in

the south of Fujian. Only mSH andNCP successfully capture part

of this heavy rainfall, and the forecast results of the other models,

including DSAEF_D, ECM and GRP, have null TSs. For the

DSAEF_LTP model, the heavy rainfall predicted by DSAEF_D is

in the southeast of Fujian, which represents a relatively large

deviation from the observed location, producing widespread

false-alarm areas. Therefore, the DSAEF_LTP model needs to

be further improved to reduce the FAR of its predictions.

It can be seen from the above analysis that DSAEF_D

performs more stably and better than the other versions of the

DSAEF_LTP model regardless of whether judging the

performance according to the average value of TS, FAR or

MAR of the independent sample TCs. Besides, compared with

the other versions of the DSAEF_LTP model, DSAEF_D

performs well for both of the precipitation thresholds

focused upon in this work. Compared with the four NWP

models, the TSsum of DSAEF_D is higher. Thus, applying

DSAEF_D with the parameter values given in the fourth

column in Table 2 in Fujian Province can provide reliable

prediction results.

5 Summary and discussion

In this study, five new values of similarity region and four

new ensemble methods are added in the DSAEF_LTP model.

FIGURE 10
Accumulated precipitation distribution of TC1622 (Haima):
(A) observed precipitation; (B) DSAEF_LTP model forecast; (C)
ECM forecast; (D) GRP forecast; (E) mSH forecast; (F) NCP
forecast. The black solid line is the observed track.
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Then, four experiments are conducted to identify the best scheme

of the original and improved versions of the DSAEF_LTP model,

and the best schemes of the four experiments are applied to TC

precipitation prediction in Fujian Province. The forecasting

performances of the DSAEF_LTP model are then compared

with those of four NWP models. The main conclusions are as

follows:

(1) The forecasting performance of the DSAEF_LTP model is

significantly improved by adding the new values of similarity

region or ensemble method. Also, the performance in Fujian

Province is maximized when the values of these two

parameters are both added (DSAEF_D), with the TSsum

increasing from 0.0974 to 0.4153 relative to DSAEF_A.

Analysis of two representative cases (TC1617 and

TC1622) further demonstrates that the DSAEF_D model

can successfully capture the heavy rainfall center in Fujian

Province, while the model needs to be further improved to

reduce the FAR.

(2) Compared with the TSs of the four NWP models, the

DSAEF_LTP model versions (DSAEF_A to D) show

advantages in predicting heavy rainfall at magnitude

of ≥250 mm, and the improved models (DSAEF_B to D)

are comparable to or better than the NWP models in

predicting rainfall of ≥100 mm, of which the TS of

DSAEF_D ranks first. On the whole, the forecasting

performances of the improved models are better than

those of the NWP models, and the TSsum of the best-

performing DSAEF_LTP model (i.e., DSAEF_D) is higher

than the best-performing NWP model (i.e., mSH).

(3) Analysis of the DSAEF_LTP model in Fujian Province

shows that the model is better able to forecast TC extreme

precipitation when the TC has made landfall in Fujian

Province. Conversely, it is poor at forecasting the

precipitation of TCs in the South China Sea that do

not make landfall in Fujian or move northward in the

Northwest Pacific far away from Fujian, meaning further

improvement of the DSAEF_LTP model for Fujian

Province is necessary.

After building and improving the DSAEF_LTP model, its

application becomes a major issue. Previous studies have

rarely focused on a small area, such as a single province, to

choose the experimental TC samples, the best scheme, and

then test the forecasting performance of the DSAEF_LTP

model. This paper provides ideas for the operational

application of the DSAEF_LTP model in different

provinces. Adopting different schemes in different regions

is an important method to improve the predictability of the

DSAEF_LTP model.
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