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Tight sandstone has low porosity and permeability, a complex pore structure,

and strong heterogeneity due to strong diagenetic modifications. Limited

intervals of Lianggaoshan Formation in the Fuling area are cored due to high

costs, thus, a model for predicting diagenetic facies based on logging curves

was established based on few core, thin section, X-ray diffraction (XRD),

scanning electron microscopy (SEM), cathodoluminescence, routine core

analysis, and mercury injection capillary pressure tests. The results show that

tight sandstone in the Lianggaoshan Formation has primary and secondary

intergranular pores, secondary intragranular pores, and intergranular

micropores in the clay minerals. The compaction experienced by sandstone

is medium to strong, and the main diagenetic minerals are carbonates (calcite,

dolomite, and ferric dolomite) and clay minerals (chlorite, illite, and mixed illite/

montmorillonite). Four types of diagenetic facies are recognized: carbonate

cemented (CCF), tightly compacted (TCF), chlorite coating and clay mineral

filling (CCCMFF), and dissolution facies (DF). Primary pores develop in the

CCCMFF, and secondary pores develop in the DF; The porosities and

permeabilities of CCCMFF and DF are better than that of CCF and TCF. The

diagenetic facies were converted to logging data, and a diagenetic facies

prediction model using four machine learning methods was established. The

prediction results show that the random forestmodel has the highest prediction

accuracy of 97.5%, followed by back propagation neural networks (BPNN),

decision trees, and K-Nearest Neighbor (KNN). In addition, the random forest

model had the smallest accuracy difference between the different diagenetic

facies (2.86%). Compared with the other three machine learning models, the

random forest model can balance unbalanced sample data and improve the

prediction accuracy for the tight sandstone of the Lianggaoshan Formation in

the Fuling area, which has a wide application range. It is worth noting that the
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BPNN may be more advantageous in diagenetic facies prediction when there

are more sample data and diagenetic facies types.
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Formation

1 Introduction

In recent years, the exploration of tight sandstone in China

has accelerated to meet the increasing demand for hydrocarbon

resources, making the study of tight sandstone reservoirs a topic

of debate in petroleum geology (Dai et al., 2012; Sun et al., 2019).

The porosity and permeability of tight sandstone are less than

10% and 1 mD, respectively, and the heterogeneity of tight

sandstone is strong, which increases the difficulty of the

exploration and development of tight sandstone gas (Jia et al.,

2012; Lai et al., 2018; Wu et al., 2020). Previous studies have

shown that the strong heterogeneity of tight sandstone is the

result of the combined effects of sedimentation and diagenesis

(Morad et al., 2000; Nygard et al., 2004; Ketzer and Morad, 2006;

Zhu et al., 2009; Ozkan et al., 2011; Cao et al., 2017). With the

increase in compaction and cementation during burial,

sedimentary heterogeneity decreases gradually, which is

especially evident in tight sandstone (Ozkan et al., 2011).

In recent years, the effective role of diagenetic processes in

changing the pattern and geochemical features of sedimentary

rocks has been proven (Abedini and Calagari, 2017; Abedini

et al., 2018, 2020a, 2020b). Diagenesis refers to the physical and

chemical processes of clastic rocks that occur between

sedimentation and metamorphism (De Segonzac, 1968;

Zhang et al., 2015; Zhang et al., 2017; Khan et al., 2018;

Quasim et al., 2021), which usually includes compaction,

cementation, and dissolution (Bjørlykke and Jahren, 2012;

Kassab et al., 2014; Zhang et al., 2017; Khanam et al., 2021).

Diagenetic facies are used to describe diagenetic heterogeneity

in sandstone reservoirs (Grigsby and Langford, 1996), and to

predict high-quality reservoirs and their genesis in tight

sandstone (Zou et al., 2008; Fu et al., 2009; Ozkan et al.,

2011; Liu et al., 2015; Lai et al., 2016; Cui et al., 2017). The

definition and classification of diagenetic facies require the

composition of diagenetic minerals, the composition and

texture of rocks, and scanning electron microscopy (SEM)

and X-ray diffraction analysis (XRD), all of which have been

analyzed based on the core (Mou and Brenner, 1982; Zou et al.,

2008; Liu et al., 2015; Lai et al., 2016; Cui et al., 2017). However,

tight sandstone is scarce in cores, particularly during the

exploration stage. The information in wireline logging is a

comprehensive reflection of rocks, so it contains a large

amount of information about diagenetic facies. In addition,

wireline logs are vertical continuous, and the distribution

characteristics of diagenetic facies can be predicted by

establishing an interpretation model between the wireline log

and diagenetic facies in part without cores (Cui et al., 2017; Lai

et al., 2018; Lai et al., 2019; Lai et al., 2020; Wu et al., 2020;

Wang and Lu, 2021). Evidently, this study is challenging.

Many studies have focused on establishing diagenetic facies

interpretation models using logging curves, but it is still difficult

to predict. The methods for establishing these models include the

discriminant analysis method, such as the cross plot method (Fan

et al., 2018); linear discriminant analysis (LDA) (Trevor et al.,

2014); hierarchical cluster analysis (HCA) (Wang and Lu, 2021);

K-Nearest Neighbor (KNN) (Cui et al., 2017); machine learning

methods, such as back propagation neural networks (BPNN) and

support vector machine (SVM) (Wang and Lu, 2021); and deep

learning methods, such as convolutional neural networks (CNN)

and recurrent neural networks (RNN) (Zhou et al., 2018; Xu

et al., 2019; Deng et al., 2021). These algorithms have been

successfully applied in other fields; however, the predicted results

are biased to types with large sample numbers under real

geological conditions, such as limited and unbalanced sample

data (Cuddy and Glover, 2002; Richa et al., 2006; Dubois et al.,

2007; Chauhan et al., 2015; Bhattacharya et al., 2019; Khalifah

et al., 2020; Vikara et al., 2020). This is also the main shortcoming

of many machine learning algorithms for diagenetic facies

prediction, which has been recently reported. Fortunately, the

random forest algorithm has a strong ability to overfit and

balance limited sample data, which makes the difference in

accuracy rate of different diagenetic facies predictions small,

and the predicted results of the model are good (He et al.,

2020). However, few studies have focused on the comparison

of the application results of the random forest algorithm with

other machine learning methods, such as KNN, BPNN, and the

decision tree, in the logging prediction of diagenetic facies of tight

sandstone when the sample number is small.

The tight sandstone of the Lianggaoshan Formation in the

Fuling area, southeastern Sichuan, was chosen as an example, and

the diagenetic facies types were classified by thin core section,

SEM, and XRD analysis. Logging data and diagenetic facies were

collected as a dataset. Four algorithms, namely random forest,

decision tree, KNN, and BPNN, were trained and used to predict

diagenetic facies using logging curves. Finally, the results of the

diagenetic facies prediction using the four algorithms were

compared, and a distribution model of the diagenetic facies

was established. The purpose of this study is to compare the

advantages and disadvantages of four types of algorithms in

diagenetic facies prediction, and to provide suggestions for

diagenetic facies prediction in tight sandstone with limited

sample data.
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2 Geological settings

The Sichuan Basin is a large petroliferous basin in Southwest

China (Figure 1A). The proven resources of tight sandstone gas

in this basin were approximately 5.87×1012 m3 by the end of 2016.

The Fuling area where this study was conducted is in the high and

steep structural belt in the east of the Sichuan Basin, and is

generally distributed in the southwest to northeast direction

under the influence of fault activities (Figure 1A). The

Lianggaoshan Formation belongs to the Lower Jurassic,

overlying shales of the Shaximiao Formation and the

underlying limestone of the Daanzhai member of the Ziliujing

Formation. The Lianggaoshan Formation is divided into four

members, L1, L2, L3, and L4, from bottom to top. The thicknesses

of the L3 and L4 members are generally between 150 and 250 m,

which is thicker than that of L1 and L2 (Figure 1C).

The Lianggaoshan Formation in the Fuling area developed a

delta-lacustrine depositional system that is mainly influenced by

the provenance of the northeast and southwest (Li et al., 2017).

During the deposition periods of L1 and L2 members in the

Fuling area, the surface of the lake was rising, the process was

mainly retrogradation, and shoreline and shallow lake deposit

systems were developed. L1 and L2 are mainly black and gray-

black shale interbedded with thin gray siltstone. During the

deposition periods of L3 and L4 members, the surface of the

lake was declining, the process was mainly progradation, delta

front deposit systems were developed, and underwater

distributary channels were the dominant sand bodies. L3 and

L4 are mainly gray fine sandstone and siltstone interbedded with

black shale (Zhang et al., 2019). The grain sizes of the L3 and

L4 members are coarser than those of the L1 and L2 members,

and they are the main reservoirs of the Lianggaoshan Formation

in the Fuling area.

3 Data and methods

3.1 Data

The wireline log data and core diagenetic facies types were

the main data used for the diagenetic facies prediction in this

study. The well cores of the Lianggaoshan Formation in the

Fuling area are scare, but the core length of the Lianggaoshan

Formation in the FL1 well is large. Thus, the cores of the

Lianggaoshan Formation in the FL1 well were intensively and

continuously collected and used to determine the diagenetic

facies types and logging values. A total of 120 thin sections

were made from 2395.00 to 2441.00 m in the FL1 well, with an

FIGURE 1
Study area (A), stratigraphy (B) and petrological characteristics of Lianggaoshan Formation (C).
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average of 1 thin section per 0.38 m. The sample density of the

logging curves was 0.125 m/sample, and thin sections (0.03 mm)

were prepared by impregnation with blue epoxy under vacuum.

The composition, structure, and petrologic textural of the

120 samples were determined using a polarizing microscope

(A1, Zeiss) and were checked at 400 points/sample. The

porosity, permeability, and density of the samples were

measured according to GB/T29172-2012 (core analysis

method) using a helium porosity measurement instrument

(3020-062-00048418), a permeability measurement instrument

(DX-07G-00040825), and a dry distillation apparatus (GLY-II-

00048478). To determine the types of diagenetic minerals and

facies, 41 cathodoluminescence thin sections were prepared and

analyzed using a cathodoluminescence microscope (Q00040897)

according to SY/T5916-2013 (mineral cathodoluminescence

identification method). The pore throat characteristics of

37 samples were analyzed according to GB/T 29171-2012

(capillary pressure curve of rock measured standard). The

diagenetic minerals, morphology, composition, and type of the

41 samples were analyzed according to SY/T5162-1997 (SEM

method for rock samples), which were measured using a field

emission scanning electron microscope (FEI-Quantan 250 FEG)

and X-ray energy spectrometer (Oxford-INCa X-MAX 20). The

skeleton grains and clay composition of 31 samples were

analyzed using XRD. In addition, all the above analyses were

combined to determine the relative timing of diagenetic events. It

is important to note that the logging values of the 120 samples,

such as resistivity logging (RLLD and RLLS), natural potential

logging (SP), gamma ray logging (GR), acoustic transit time

logging (AC), compensated neutron log(CNL), volume density

logging (DEN), and diagenetic facies determined by the above

analyses, were used as labels. The logging values and diagenetic

facies were important data in the dataset for training the machine

learning algorithm.

3.2 Method

3.2.1 K-nearest neighbor
KNN means that each sample can be represented by its

K-nearest neighbor values (Lai et al., 2021). Euclidean distance is

used tomeasure the degree of similarity between samples, and the

larger the distance, the less similar it is. The Euclidean distance

between any two points in space can be written as:

Dist �
������������∑n

i�1(xi − yi)2
√

(1)

where Dist is the Euclidean distance, xi is the sample eigenvector

matrix of the labeled dataset, and yi is the sample eigenvector

matrix of the point to be predicted.

When the diagenetic facies type of any point named A in the

space was judged, all the Euclidean distances between point A

and a point in the dataset were calculated using Eq. 1, and then K

points were selected in ascending order of Euclidean distance.

Point A has the highest number of K points; for example, in

Figure 2A, when K is selected as 5, the sample point of the green

square is identified as Type A. For K = 7, the sample point is

determined to be Type B; therefore, the KNN algorithm has high

requirements for the equilibrium of the sample points and the

value of K, and it needs to carefully judge the number of different

types of samples and the value of K during classification and

prediction.

3.2.2 Back propagation neural networks
A BPNN is a type of multilayer back propagation network

that transforms all nonlinear and linear problems into linear

problems for calculation, and usually includes an input layer,

hidden layer, and output layer (Li et al., 2022). When Xi is a

multidimensional vector, the calculation expression for the first

hidden layer can be written as:

Yi � ∑n

i�1wipxi + bi (2)

where Yi is the calculation result for each neuron in the hidden

layer, wi is the weight, and bi is the bias.

The principle of a BPNN is shown in Figure 2B. The

gradient descent method was used to establish the model in

this study, and the learning, training, and adjustment were

carried out through a fully connected neural network to finally

achieve the purpose of predicting diagenetic facies. When there

was an error between the result obtained by forward

propagation and the actual result, the error was fed back to

each neuron system in the hidden layer using the gradient

search technique through back propagation. This was done to

adjust their respective weights to make the error variance

between the actual output and the expected output the

smallest. The BPNN construction process can be divided

into four steps: 1) Normalize the sample data and then set

the training and prediction data. 2) Configure the network

parameter (training time, number of hidden layers, etc.). 3)

Establish and train the BPNN model to improve its prediction

accuracy. 4) Use the trained BPNN model to predict diagenetic

facies without core samples. The disadvantage of the BPNN is

that with an increase in the number of neurons, the amount of

computation increases rapidly, and the internal weight and bias

given to the hidden layer usually have no physical meaning,

which causes poor interpretability of the BPNN.

3.2.3 Decision tree
The flow chart of the decision tree is similar to that of a tree,

including a root node, multiple internal nodes, and leaf nodes

(Zhou et al., 2019; Liu and Liu, 2021). The root node represents

the total sample dataset, and the different leaf nodes represent

different categories of sample diagenetic facies. The internal

node is located between the root and leaf nodes. The decision

tree completes sample classification from the root node to the

Frontiers in Earth Science frontiersin.org04

Zhang et al. 10.3389/feart.2022.1018442

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1018442


leaf node so that the decision tree model can deduce

classification rules from a group of random and unordered

classified samples (Figure 2C). The decision tree algorithm uses

information entropy to select optimal classification features,

and the samples gradually become clear and separable. The

smaller the information entropy, the higher the sample

classification purity.

3.2.4 Random forest model
The random forest model is composed of multiple

classifiers, which are mainly decision trees. The

prediction results of stochastic forest classification were

generated by voting multiple classifiers (Rahimi and

Riahi, 2002; Zhou et al., 2019) (Figure 2D). The process

of constructing the random forest learning model is as

follows: 1) n subsets of data were extracted by the self-

sampling method based on the diagenetic facies dataset, and

n decision tree models were constructed for classification. 2)

The random forest model was combined with n decision

trees, which were independent of each other without

considering weights. 3) The random forest model was

used to classify the diagenetic facies, and the classification

results of all classifiers were counted. The type with the

highest frequency was selected as the classification result.

Thus, the number and depth of decision trees can have a

great impact on the prediction accuracy of random forest

models and are the main parameters for building a random

forest learning model.

4 Classification and prediction of
diagenetic facies

4.1 The characteristics of petrological and
diagenesis

The highest, lowest, and average contents of quartz, feldspar,

and rock fragments of tight sandstone in the Lianggaoshan

Formation are 60%, 34%, and 47.36%; 32%, 12%, and 20.89%;

and 47%, 22%, and 31.75%, respectively. Thus, the tight

sandstone of the Lianggaoshan Formation is dominated by

lithic arkose with a small amount of arkose and litharenite

(Figure 1B) and its burial depth is medium. Under the

influence of compaction and cementation, the porosity of the

reservoir decreased or disappeared and was generally small,

mainly in the range of 0%–8% (Figure 3). The tight sandstone

in the Lianggaoshan Formation experienced different degrees of

compaction, cementation, dissolution, andmetasomatism, which

resulted in significant differences in the physical properties of

tight sandstone reservoirs.

4.1.1 Cementation
There are various types of cement in the tight sandstone of

the Lianggaoshan Formation, including siliceous (Figure 3O),

carbonate (Figures 3G,H,J,N,P,Q), and clay (Figure 3D). Siliceous

cementation is not well-developed and is not the main factor in

the porosity reduction of tight sandstone in the Liangshan

Formation. Carbonate cementation was strong in some

FIGURE 2
Workflow of different algorithms [(A) is the workflow of KNN; (B) is the workflow of BPNN; (C) the workflow of decision tree; (D) is the workflow
of random forests].
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samples, which showed basement cementation, and its main

color was red after staining with potassium ferricyanide and

alizarin red (Figures 3G,H,J). Carbonate cements show a high

white interference color under orthogonal light and orange-red

under cathode luminescence (Figures 3N,P,Q). In addition, the

dissolution of carbonate cements was observed under a scanning

electron microscope, and the results of the energy spectrum

showed that Ca, O, and C were dominant (Figure 4B). Based on

the aforementioned characteristics, calcite cement is the main

carbonate cement. Although ferric calcite and ferrite cements are

also found in some samples, the content is generally low and is

not the main factor causing porosity reduction in the tight

sandstone of the Lianggaoshan Formation. It is difficult to

reflect this information in logging curves when the contents of

FIGURE 3
Microscopic characteristics of diagenesis [(A–C) is the ductile grain deformation (2408.70, 2495.55, and 2546.50 m); (D) is the chlorite coating
and primary porosity (2425.57 m); (E,F) are the dissolution of debris grains (2412.25 and 2465.04 m); (G,H,J,K) are carbonate cementation and
microcrystalline quartz cementation (2496.00, 2455.92, 2429.01, and 2399.25 m); (M–Q) are the microscopic characteristics of carbonate
cementation and microcrystalline quartz cements in cathode luminescence (2396.65, 2428.07, 2428.07, 2428.07 and 2422.03 m)].
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ferric calcite and ferrite cements are low; therefore, this study did

not discuss them during the burial process.

Clay cementation is widely observed in the tight sandstone of

the Lianggaoshan Formation, and the types of clay cements

include chlorite coating (Figure 3D), illite (I), and illite and

montmorillonite mixed layers (I/S), which originate from

feldspar and other lithic fragments alterations (Figure 5B).

Chlorite coating is usually distributed on the surface of quartz

grains, which inhibits the enlargement of quartz and has a strong

protective effect on the primary pores (Figures 3D, 5C,D). The

results of the SEM and energy spectrum analysis show that I and

I/S are often distributed on the edge of feldspar and debris

particles, which are the alteration products of skeleton

particles during the process of dissolution (Figures 4A, 5B). In

addition, clay cements generally develop more intergranular

micropores, but they also block the throats, which reduces

permeability. Thus, the influence of clay cementation on the

physical properties of the reservoir was two-fold. They can

protect the primary pores and maintain high porosity, but at

the same time, they can block the throat and reduce the

permeability of tight sandstone.

4.1.2 Compaction
The compaction of tight sandstone in the Lianggaoshan

Formation is strong, and the contact relationship between

grains is dominated by point-line and line-concave contacts

(Figures 3A–C,E,K,M,N). In addition, the sedimentary facies

of the Lianggaoshan Formation are delta front and front delta,

and the ductile grain content, such as mica content, in some

samples is high, which shows strong plastic deformation and

causes porosity loss (Figures 3A–C,M). Thus, compaction is

another important factor leading to porosity loss, and the

physical properties are poor, particularly in samples with

highly ductile grains.

4.1.3 Dissolution
Dissolution is one of the main factors causing a pore increase

in the tight sandstone of the Lianggaoshan Formation, which is

reflected in the dissolution of feldspar grains and lithic fragments

by organic acids, forming ingrain or intergrain dissolution pores

(Figure 3F). In addition, the dissolution of calcite cement also

occurred because of the presence of organic acids (Figure 4B).

Some feldspar dissolution pores were filled with calcite cements

(Figure 3J) and some were filled with bitumen (Figures 3F, 4A).

Thus, the dissolution of skeleton grains and carbonate cements is

an important condition for improving the physical properties of

tight sandstone in the Lianggaoshan Formation.

4.1.4 Others
There are many other diagenetic processes in the tight

sandstone of the Lianggaoshan Formation, such as authigenic

pyrite cementation, carbonate metasomatism feldspar particles,

FIGURE 4
Types of cement and results of energy spectrum analysis [(A) primary pores were filled with clay minerals, 2465.10 m; (B) carbonate cements
were dissolved, 2487.80 m; (C) chlorite coating were developed on the surface of quartz grain, 2458.90 m. CC is chlorite coating; SP is secondary
pores, IP is primary pores; Q is quartz; Ca is calcite cement].
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and mutual transformation of clay minerals. However, these did

not play a crucial role in the evolution of the physical properties

of this sandstone and cannot be used as an important basis for

naming diagenetic facies.

4.2 Diagenetic facies and their physical
properties

The relationships between clay cement content, chlorite

coating content, secondary porosity, porosity, and

permeability content are shown in Figure 6. The cement

content in the tight sandstone of the Lianggaoshan

Formation has a significant influence on the physical

properties of the reservoir. When the cement content was

more than 10%, the porosity of this sandstone was almost less

than 2% (Figure 6A). The higher the relative content of

chlorite, the higher the porosity and the lower the

permeability of the sandstone (Figures 6B,D). Chlorite

protects the primary pores of the reservoir, but also blocks

the throat and has a dual effect on reservoir properties, which

is also shown in the SEM images (Figures 5C,D). In addition,

the relationship between secondary porosity and measured

porosity is bilinear, indicating that there are two types of high-

quality reservoirs in the Lianggaoshan Formation (Figure 6C).

In addition, SEM observation results show that there are two

different pore types in tight sandstone: secondary pores,

which are formed by the dissolution of feldspar and lithic

fragments (Figures 5A,B), and primary pores, which are

preserved during burial due to chlorite coating

(Figures 5C,D).

Based on diagenetic minerals, pore types, and

relationships between cement content and porosity, four

types of diagenetic facies of the Lianggaoshan Formation

are recognized: carbonate cemented (CCF), tightly

compacted (TCF), chlorite coating and clay mineral filling

(CCCMFF), and dissolution facies (DF).

For the CCCMFF, the primary pores developed, porosity

was between 4.91% and 7.91%, the average porosity and

permeability were 6.3% and 0.0029 mD, respectively. The

porosity of this facies was the highest, the permeability was

medium, and the physical properties of the reservoir were good

(Figure 7).

For the DF, secondary pores developed, porosity was between

2.83% and 5.63%, and the average porosity and permeability were

4.8% and 0.089 mD, respectively. The reservoir properties were

relatively good (Figure 7).

For the TCF, the clay and ductile grain contents were high,

the porosity varied poorly in the range of 1.13% and 2.42%, the

average porosity and permeability were 2.2% and 0.011 mD,

FIGURE 5
Pore types in tight sandstone of the Lianggaoshan Formation [(A) is the dissolution of debris grains, 2395.87 m; (B) is the dissolution of feldspar,
2424.04 m; (C,D) are the chlorite coating on the quartz grains, clayminerals fill the initial pores, and intergranularmicropores of claymineral develop,
2414.85 and 2439.38 m. SP is secondary pores, IP is initial pores, Q is quartz grains, CC is chlorite coating, I/S is illite and montmorillonite layer].
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respectively, and the reservoir properties were relatively poor

(Figure 7).

Most of the CCF are basement cementation, and small

samples are pore cementation. The porosity ranged between

0.18% and 2.08%, the average porosity and permeability were

1.6% and 0.007 mD, respectively, and the reservoir properties

were poor (Figure 7).

The Hg injection curves of the four types of diagenetic facies

are shown in Figure 8. The absolute values of the entry pressure

of the four types have little difference, mainly ranging from 1.0 to

4.0 MPa, but there are still some differences. The entry pressure

of the DF is the lowest, followed by CCCMFF, TCF, and CCF.

Therefore, the presence of clay cements significantly blocks the

throat and the pressure usually needs to overcome the

FIGURE 6
The influence of cements on porosity [(A) is the relationship between porosity and content of cements; (B) is the relationship between porosity
and chlorite content/clay content; (C) is the relationship between porosity and secondary porosity; (D) is the relationship between porosity and
permeability and chlorite content/clay content].

FIGURE 7
Physical properties of four diagenesis facies.
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intergranular micropores in the clay cements to enter the larger

primary pores. Maximum mercury intake saturation and

mercury desaturation saturation had similar characteristics. In

general, maximum mercury intake saturation and mercury

desaturation saturation of DF are maximal, followed by

CCCMFF, while those of TCF and CCF are relatively low.

FIGURE 8
Pore throat characteristics of four diagenesis facies.

FIGURE 9
The characteristics of logging values of four diagenetic facies.(A)Data points of four diagenetic facies in the AC-GR crossplot. (B)Data points of
four diagenetic facies in the LLD-GR crossplot. (C)Data points of four diagenetic facies in the CNL-DEN crossplot. (D)Data points of four diagenetic
facies in the AC-LLS crossplot.
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4.3 Logging values and prediction of four
diagenetic facies

4.3.1 Logging values of four diagenetic facies
Conventional logs are sensitive to changes in diagenetic

minerals and diagenetic facies types, which include natural

gamma rays (GR) and three porosity logs, that is, acoustic

transit time (AC), bulk density (DEN), compensated neutron

(CNL), and resistivity logs (LLS and LLD) (Lai et al., 2016; Cui

et al., 2017). Based on the logging response characteristics of

the 120 core samples, six sensitive logs were selected for

diagenetic facies prediction: DEN, CNL, AC, GR, LLD, and

LLS (Figure 9).

For CCCMFF, GR is lower than 63 API, DEN is between

2.41 and 2.63 g/cm3, AC is between 53 and 76 μs/m, and CNL is

between 5.9% and 11.8%. Owing to the existence of primary and

secondary pores, the resistivity values were between 110 and

720 Ω•m (Figures 9, 10).

For DF, GR is higher than 75 API, DEN is between 2.51 and

2.60 g/cm3, AC is between 57 and 63 μs/m, and CNL is between

10.9% and 13.00%. Owing to the existence of secondary pores,

the resistivity values were between 138 and 192Ω•m
(Figures 9, 10).

For CCF, GR is between 56.6 and 116.2 API, DEN is between

2.54 and 2.64 g/cm3, AC is between 180.4 and 393.7 μs/m, and

CNL is between 6.5% and 18.6%. Owing to the existence of

secondary pores, the resistivity values were between 180 and

406 Ω•m (Figures 9, 10).

For TCF, GR is between 45.2 and 106.4 API, DEN is between

2.47 and 2.54 g/cm3, AC is between 60.9 and 76.4 μs/m, and CNL is

between 5.7% and 24.1%. Owing to the existence of secondary pores,

the resistivity values were between 95 and 235Ω•m (Figures 9, 10).

FIGURE 10
Logging values of four diagenetic facies [(A) is TCF, (B) is DF; (C) is CCF; (D) is CCCMFF].
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In general, the CCCMFF have high AC, LLD, LLS, and low

GR, DEN, and CNL; the DF have high GR, DEN, CNL, and low

AC, LLD, and LLS; the CCF have high GR, LLD, LLS, DEN, and

low CNL, AC; and the TCF have AC, GR, CNL, and low LLD,

LLS, and DEN (Figure 10).

4.3.2 Prediction of four diagenetic facies
A total of 120 logging data points and diagenetic facies

types were selected as the dataset. Among these samples

there were 26 CCCMFF, 20 DF, 48 TCF, and 26 CCF. Four

machine learning methods were used to construct the

diagenetic facies prediction model by using logging data

and diagenetic facies type as the independent and

dependent variable sets, respectively. In addition, all

logging data were standardized.

4.3.2.1 K-nearest neighbor

The K value has a significant influence on the KNN

prediction results; thus, the value range of K was set from

1 to 16, and the dataset was divided into training and test sets.

The relationship between the predicted accuracy of the KNN

and the change in the K value is plotted in Figure 11. The

results show that the prediction accuracy of diagenetic facies

based on the KNN decreases gradually with an increase in the

K value. In the logging prediction of tight sandstone

diagenetic facies, the smaller the K value, the lower the

number of nearest neighbors selected, and the higher the

accuracy of the diagenetic prediction. On the contrary, the

larger the number of nearest neighbors, the larger the value of

K, and the more prone it is to overfitting, that is, a lower

accuracy.

When the K value was five, the predicted accuracy rate

exhibited a partial upward trend. In addition, there are

four types of diagenetic facies in the tight sandstone of the

Lianggaoshan Formation, and the K value of 5 is greater

than the number of diagenetic facies. The predicted rater of

the diagenetic facies was highest and equal to 81.32% when

the value of K was 5. Thus, the KNN predicted

model was finally constructed with k = 5 to identify

diagenetic facies.

4.3.2.2 Back propagation neural networks

The sample data of the diagenetic facies were divided into a

training set and a test set at a ratio of 3:1. The number of cycles

was 20000, and the predicted accuracy of the BPNN was 95.83%,

the results of which are shown in Figure 12.

The predicted results of CCF and TCF were the same as the

actual results, and there was no prediction error when the BPNN

model was used. However, the predicted results of CCCMFF and

DF had two and three samples that were incorrectly predicted,

respectively. They were all predicted to be tightly compacted

facies, but the overall prediction accuracy was high.

4.3.2.3 Decision tree

The established process of the decision tree model is the

process of completing optimal classification. The purpose of a

decision tree prediction is to ensure that each leaf node contains

only one type of diagenetic facies, so the depth of the decision tree

is the main control parameter of the decision tree model.

Therefore, the depth of the decision tree was selected to vary

from 1 to 15, the dataset was used for training, and the predicted

accuracy of the decision tree was analyzed. The results show that

the predicted accuracy of the decision tree first increases and then

stabilizes with an increase in the depth of the decision tree

(Figure 13). When the depth of the decision tree is 3, the

predicted accuracy is 89.32%, which then fluctuates and stays

near the highest value. When the depth selection of the decision

tree is too large, the model will overfit, which reduces the

recognition accuracy and interpretability of the decision tree

model. Thus, the depth of the decision tree was selected as 3 to

build the predicted model, and the diagenetic facies of the tight

sandstone of the Lianggaoshan Formation was predicted.

4.3.2.4 Random forests

The classifiers used in random forests are decision trees, and

the number and depth of decision trees in random forests are

important factors affecting the prediction accuracy of the

random forest model. The number of decision trees ranges

from 1 to 100, and the depth of the decision tree ranges from

1 to 50. The relationship between the predicted accuracy and the

decision tree number and depth is shown in Figure 14.

The prediction accuracy of the random forest continues to

improve with an increase in the number and depth of decision

trees. When the number of decision trees was equal to 50 and

the depth of decision was equal to three, the predicted

accuracy was the highest. Subsequently, the predicted

accuracy gradually stabilized, which indicates that the

random forest has a strong ability to resist overfitting, and

parameters that are too large will not have a significant impact

on the random forest model. In addition, if the parameters of

FIGURE 11
The diagenetic facies predicted results by KNN.
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the random forest are too large, this will lead to an increase in

the calculation and time, thus affecting the operation

efficiency (Figure 14). Thus, the number of decision trees

was set to 50, and the depth of the decision tree was set to 3 to

construct the random forest model. The prediction accuracy

of the diagenetic facies model was 97.5%.

5 Discussion

5.1 Comparison applications of machine
learning models in well log-lithofacies
predictions

The predicted basis and calculation methods of the four types

of machine learning methods for diagenetic facies logging

prediction are different. The KNN adopts the prediction

principle of Euclidean distance, the BPNN adopts the core

idea of gradient descent, the decision tree uses information

entropy as the main predicted basis, and the random forest is

a voting method using multiple decision trees. The predicted

accuracies of the four methods are ranked from high to low as

follows: random forest, BPNN, decision tree, and KNN. The

predicted accuracy of the random forest was the highest at 97.5%,

whereas that of KNN was the lowest at 81.32%.

The predicted accuracies of the four types of diagenetic

facies using different machine learning methods are also

different. In general, the predicted accuracy of the TCF was

the highest, whereas that of the DF was the lowest. The main

reason for this is that the number of TCF samples is relatively

larger than that of dissolution facies samples, which leads to

some of these being easily misjudged as TCF. KNN had the

largest difference in the predicted accuracy of different

diagenetic facies (11.82%), and random forests had the

smallest difference in the predicted accuracy of different

diagenetic facies (5.00%).

Four machine learning methods, KNN, decision tree,

BPNN, and random forest, were used to predict the

diagenetic facies in the 2437–2462 m section of well FL1,

and the prediction results are shown in Figure 15. The

diagenetic facies types predicted by the random forest had

the best match with the diagenetic facies type calibrated by

core samples. In addition, the matching relationship between

the random forest prediction results and the physical properties

was also good, which is in accordance with the results of the

physical characteristics of different diagenetic facies based on

core analysis. The prediction results of the BPNN are good,

while those of the decision tree and KNN are relatively poor,

FIGURE 12
The diagenetic facies predicted results by BPNN.

FIGURE 13
The diagenetic facies predicted results by decision tree.
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and some prediction results do not meet the core analysis data.

Compared with the random forest model, the TCF predicted by

the KNN, decision tree, and BPNN are relatively rich, and that

of the dissolution facies is relatively poor. The reason for these

results may be that the number of TCF samples is almost twice

that of the dissolution facies. The sample data are unbalanced,

FIGURE 15
Diagenetic facies logging identification results in the T1 well (Note: CCCMFF is chlorite coating and clay mineral filling facies; DF is dissolution
facies; CF is carbonate-cemented facies; TCF is tightly compacted facies).

FIGURE 14
The diagenetic facies predicted results by random forests. (A) The relationship between predicted accuracy and the number of decisiontree. (B)
The relationship between predicted accuracy and the depth of decision tree.
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causing the KNN, decision tree, and BPNN methods to easily

misjudge the DF as TCF, which makes the predicted accuracy

of the KNN, decision tree, and BPNN methods lower than

that of the random forest. The difference in the predicted

accuracy between different diagenetic facies by the four

machine methods also indicates this feature (Table 1).

Based on the above data and comparison results, the

random forest algorithm is more suitable for the

prediction of diagenetic facies of tight sandstone in the

Lianggaoshan Formation, which has few geological sample

points with poor equilibrium.

In addition, the KNN method has a poor generalization ability

and is suitable for logging data of diagenetic facies with low

complexity and low crossover. The BPNN has a strong

generalization ability, but belongs to the “black box,” in that the

classification process is not visible, the geological meaning of the

model parameters is not clear, and it is suitable for the processing of

diagenetic facies data complex and high degree of clutter. A decision

tree can visualize the classification process of diagenetic facies, but it is

easily affected by the imbalance of data samples; therefore, it is

suitable for diagenetic facies data with clear classification criteria. The

random forest method represents an ensemble learning method that

can balance the sample error, improve the prediction accuracy, and

has a wide range of applications.

5.2 Diagenetic facies characteristics and
favorable tight reservoir prediction

The predicted results (Figure 16) of the four machine learning

methods show that chlorite coating and clay mineral filling facies

have high LLD, AC, and lowGR; dissolution facies have high GR and

CNL; tightly compacted facies have low LLD, LLS, and high GR; and

carbonate-cemented facies have high LLD and low AC. The average

TABLE 1 Statistical table of identification accuracy of different
diagenetic facies.

CCCMFF DF CCF TCF

KNN 76.92 74.33 83.67 86.15

BPNN 93.31 85.00 100.00 100.00

Decision Tree 87.62 85.77 91.51 93.62

Random forest 96.15 95.00 96.15 100.00

Note: CCCMFF, chlorite coating and clay mineral filling facies; DF, dissolution facies;

CCF, carbonate-cemented facies; TCF (tightly compacted facies).

FIGURE 16
Diagenetic facies distribution of distributary channel (Note: CCCMFF is chlorite coating and clay mineral filling facies; DF is dissolution facies;
TCF is tightly compacted facies).
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porosity and permeability of the chlorite coating and clay mineral

filling facies were 6.3% and 0.0029 mD, respectively. The average

porosity and permeability of the dissolution facies were 4.80% and

0.089 mD, respectively. The physical properties of the tight

compacted facies and carbonate-cemented facies were relatively

poor. Thus, there are two favorable diagenetic facies in the tight

sandstone of the Lianggaoshan Formation: CCCMFF with relatively

developed primary pores, and DF with secondary pores.

Although the machine learning method can be used to predict

the diagenetic facies of the whole well using logging data, the

accuracy of diagenetic prediction can be improved continuously,

even reaching 100%. However, the number of wells in the

exploration area is small, and the quality of seismic data poor.

These actual geological data cannot be compensated for by the

advantages of the machine learning algorithm. Through the analysis

of the logging diagenetic facies in sand bodies of typical sedimentary

facies, a systematic relationship between diagenetic facies and

sedimentary facies was established. Using sedimentary models

and diagenetic facies distribution laws to predict favorable

reservoirs may be an important future research field for machine

learning. For example, the sedimentary microfacies of well

FY1 between 2383.00 and 2395.50 m is underwater distributary

channel, with a thickness of about 12.50 m. In the sand body of the

underwater distributary channel, the grain size gradually becomes

finer from bottom to top. The diagenetic facies prediction results by

the random forest show that the CCCMFF andDF are in themiddle

and at the bottom, respectively, and TCF are on the top of the sand

bodies. In addition, the porosity and permeability exhibited a

gradual deterioration trend from bottom to top. The results show

that the diagenetic facies of the underwater distributary channel

sand bodies are different, and the CCCMFF, and DF, which

represent favorable reservoirs, are distributed in the middle and

lower parts of the distributary channel sand bodies. In other words,

sedimentary facies controlled the distribution of diagenetic facies.

For exploration areas with less well data, sedimentary facies can be

used to predict favorable reservoir distribution. For exploration areas

with more well data and core samples, the systematic diagenetic

facies prediction can be executed by machine learning methods

using logging data, and then a geostatistics method sedimentary

model can be used to predict the favorable diagenetic facies

distribution in the study area. Zhao et al. (2022) provided a case

study of this geological condition in the tight sandstone of the

Xujiahe Formation in the Sichuan Basin. For the Fuling area, the

relationship between the sedimentary facies model and diagenetic

facies may be the main method for predicting favorable areas in

future studies.

In summary, a suitable machine method should be selected

based on the actual geological conditions when using logging data

to predict the diagenetic facies so as to improve the prediction

accuracy and save time and labor costs. The random forest

composited with the decision tree classifier has high diagenetic

facies prediction accuracy in the tight sandstone, the predicted

process can be interpreted strongly, and the influence of sample

data balance can be avoided. In the study area, with more well data

and core samples, the BPNN may have a better predicted result.

6 Conclusion

(1) The tight sandstone of the Lianggaoshan Formation is dominated

by lithic arkose with a small amount of arkose and litharenite.

There are two different pore types in the tight sandstone:

secondary pores, which are formed by the dissolution of

feldspar grains and lithic fragments, and primary pores, which

are preserved during burial due to chlorite coating.

(2) Four types of diagenetic facies are recognized: carbonate

cemented (CCF), tightly compacted (TCF), chlorite coating

and clay mineral filling (CCCMFF), and dissolution facies

(DF). Primary pores develop in the CCCMFF, and secondary

pores develop in the DF. The average porosity and

permeability of the CCCMFF were 6.3% and 0.0029 mD,

respectively. The average porosity and permeability of the

DF were 4.80% and 0.089 mD, respectively. The physical

properties of the TCF and CCF were poor.

(3) A diagenetic facies prediction model with four machine

learning methods was established, where the random

forest had the highest prediction accuracy of 97.5%,

followed by the BPNN, decision tree, and KNN methods.

The sample data are unbalanced, causing the predicted

accuracy of the KNN, decision tree, and BPNN methods

to be lower than that of the random forest.
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