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The harsh and extreme environmental and near surface conditions of the

Tibetan Plateau have limited the conventional electrical-based seismic

instruments from obtaining high-quality seismic data through long-term and

continuous observations, setting challenges for environmental seismology

study and natural hazard monitoring in this area. Distributed acoustic

sensing (DAS) is an emerging technique based on optical fiber

communication and sensing. It provides a possible solution for subsurface

imaging in extreme conditions at high spatiotemporal resolution by converting

fiber-optic cables into dense seismic strainmeters. We deploy two survey lines

with armored optical fiber cables in the Yigong Lake area, Southeastern Tibetan

Plateau, to record ambient noise for a week. The DAS interrogator is specifically

designed in a portable size with very low power consumption (25 W/h). Hence,

we can use a 12V-DC battery for power supply to adjust the power limitation

during the field recording. Ambient noise interferometry and multichannel

analysis of surface waves are used to get 2D shear wave velocity profiles

along the fiber paths. The results highlight the great potential of DAS for

dynamic monitoring of the geological evolution of lakes and rivers in areas

of extreme environments as in the Tibetan Plateau.
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Introduction

Seismic data acquisition is the foundation of data processing

and interpretation in seismological research. High-quality

seismic data may significantly improve the accuracy of

geological understanding. Recently, seismologists have tried to

use denser and denser observational networks to obtain high-

spatiotemporal-resolution seismic data for a better knowledge of

the Earth’s dynamic processes and monitoring of natural hazards

(Karplus and Schmandt, 2018; Nishikawa et al., 2019; Kohler

et al., 2020). Although conventional electrical seismic

instruments can be deployed in most areas for seismological

research, it is very challenging to meet the aims of long-term

monitoring in harsh environments, such as the volcano, glaciers,

and plateaus due to the high cost of deployment andmaintaining.

Distributed acoustic sensing (DAS) is an emerging seismic

measurement technique that benefits from the development of

optical fiber communication and sensing. Typically, a DAS

system is composed of a standard optical fiber cable and an

interrogation unit (IU). The IU lights the fiber using short laser

pulses and measures Rayleigh back-scattering (RBS) along the

fiber through a form of coherent optical time domain

interferometry. A phase shift in the RBS is caused by the

compression or elongation along the fiber, which is

proportional to axial strain along the cable. Thus, DAS is

working as a dense network for dynamic strain measurements

(Parker et al., 2014; Hartog, 2017). DAS has initially been used for

downhole applications in oil and gas exploration (Mateeva et al.,

2014; Daley et al., 2016; Lellouch and Biondi, 2021). Currently, it

has been widely adapted to seismological investigations, such as

earthquake detection (Lindsey et al., 2017; Jousset et al., 2018;

Wang et al., 2018; Yu et al., 2019), near-surface characterization

(Dou et al., 2017; Fang et al., 2020; Spica et al., 2020; Shao et al.,

2022), observing oceanic and atmospheric phenomena (Lindsey

et al., 2019; Sladen et al., 2019; Williams et al., 2019; Zhu and

Stensrud, 2019; Shinohara et al., 2022), monitoring volcano and

glacier (Booth et al., 2020; Walter et al., 2020; Klaasen et al., 2021;

Nishimura et al., 2021), and so forth. For the most up-to-date

review of DAS application in seismology, we refer the readers to

Lindsey and Martin (2021).

In this study, we use DAS to record continuous ambient noise

in the Yigong Lake area in Tibetan Plateau. Yigong Lake is a

barrier lake in the Yigong village, Bome County, Nyingchi, Tibet,

characterized by a high altitude, a weak geological foundation,

and an active modern crustal movement. It is located in the

southeast of the Tibetan Plateau, about 2,600 m above sea level

and spanned about 20 square kilometers (Figure 1). The strong

uplift of the Earth’s crust makes it the heaviest and wettest region

on the Tibetan Plateau and prone to natural disasters such as

landslides, avalanches, and debris flows. Historic records show

that two giant landslides occurred in 1,900–2,000 resulting a

deposit of total volume about 5 × 108 m3 and 3 × 108 m3,

FIGURE 1
Geographic location and map overview.
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respectively (Shang et al., 2003; Zhou et al., 2016). A recent

study utilizing radiocarbon dating of detrital materials

provides pieces of evidence that there were at least eight

large landslide events in this area over the past 5,500 years

(Guo et al., 2020). As a result, these repeated landslides can

change the sedimentary structure and further influence the

development of river profiles. Revealing the sedimentary

thickness could help us to better understand the geological

evolution of the Yigong Lake. However, we should note that

most of the previous studies in this area were focused on using

satellite remote sensing technologies to study landslides, and

these methods were hard to detect the underground structures.

Due to the high content of water in the soil, it is infeasible to

use the traditional electronic seismic instruments for data

acquisition (Zhang et al., 2021). In addition, acquiring

drilling data is very expensive. As a result, there is no

previous study in this area for shallow structure

characterization using seismic data. The emergence of DAS

enables us to obtain field seismic data for the first time.

In the following parts, we first introduce the field

deployment of seismic data acquisition using DAS.

Thereafter, seismic interferometry is applied to the pre-

processed data to obtain the noise correlation functions

(NCFs) following the workflow of Bensen et al. (2007).

After extracting surface waves from NCFs, multichannel

analysis of surface waves (MASW) (Park et al., 1999) is

utilized to retrieve dispersion curves and invert the shear

wave velocity. According to the variations of the shear wave

velocity, the sedimentary thickness in the study area can be

inferred. These results confirm the reliability of DAS in

capturing data and performing near-surface

characterization in extreme environments.

DAS data acquisition and pre-
processing

The ambient noise data acquisition is located between a

highway and the Yigong Lake, as shown in Figure 2. In this area,

it is not readily available to get access to the industrial power

supply, and there is no facility room for equipment installation.

To perform seismic data acquisition under such an extreme

condition, the DAS IU is specially manufactured to have a

portable size of 150 mm × 300 mm × 110 mm (Figure 3A),

much smaller than the already commercialized IUs, such as

from Silixa (444 mm × 518 mm × 178 mm) or Schlumberger

(559 mm × 955 mm × 244 mm). The full-load power

consumption is 25 W, lower than an ordinary

laptop. Because of these adjustments, we are able to use a

12V-DC battery for the power supply, as shown in

Figure 3B. More details about the IU are referred to Xu T

et al. (2021) and Zhang et al. (2021).

DAS data were acquired during the local daytime from

10 a.m. to 7 p.m. on 28 October 2021 to 3 November 2021.

The maximum continuous recording length is 8 h because of

running out of battery power. We installed two trenched DAS

arrays. The surface trenches, which are 10cm–20 cm deep, are

dug with hand tools. The optical fiber cables were backfilled with

excavated soil to ensure coupling between DAS and the ground,

as shown in Figure 4A. Line I is 1.355 km long with 755 channels.

A 0.497 km-long session of the line was settled on the ground while

the rest of the line was deployed underwater across the Yigong Lake.

This line was originally installed in April 2021, when the Yigong

Lake is in the dry season so that we could easily get access to the lake

bottom to deploy optical fiber cables. During the data acquisition

time, the Yigong Lake is in thewet season and optical fiber cables are

FIGURE 2
Schematic layout of the trenched optical fiber cables.
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buried underwater. At the transition zone from the land to the

water, parts of optical fiber cables are suspended in the air, as shown

in Figure 4B. Consequently, the DAS data are discontinuously

recorded during the test stage. After realizing this, we buried the

suspended parts using the sand nearby, as shown in Figure 4C. Line

II is 0.66 km long with 410 channels. Most parts are located on land,

and only a small portion was across a water pool.

We select a 5-h DAS dataset in Line I and an 8-h DAS dataset

in Line II for analysis, respectively. The sampling rate is 1000 Hz,

and the gauge length is 10 m. The channel spacing is 1.6 m. We

drop the data in the first 10 channels of Line I and the first

50 channels of Line II because of the contamination by the

wandering man-walks.

Following Bensen et al. (2007), we process the DAS data

with the workflow as summarized in Figure 5. The long-time

raw data are split into short-time windows of 30-min long.

The two ends of the segmented time series became

discontinuous. We performed 10% tapering to reduce the

numerical oscillation known as the Gibbs effect when

filtering and performing Fourier transforms and to

minimize the impact of discontinuities at both ends of the

signal (Figure 6) (Xu Y et al., 2021). The influence of the DC

component and linear trend is removed by de-meaning and

de-trending. According to the spectrum of the original data in

Figure 6, the energy is mainly concentrated below 25 Hz. We

down-sample the data to 50 Hz to reduce the computational

time and the memory requirements. The corresponding

resampled waveform and its spectrum are shown in

Figure 7. When seismic data are collected in the field, it is

inevitable to be affected by environmental and human factors,

resulting in a high amplitude in the time-domain signal, as

shown in the red box in Figure 7.

FIGURE 3
Photos for the interrogator in a front view (A) and the battery connection during field data acquisition (B).

FIGURE 4
Field deployment of the optical fiber cables on land (A) and underwater across the Yigong Lake (B,C).
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The introduction of temporal normalization can eliminate

the effect of strong signals and improve the quality of the

correlation results (Bensen et al., 2007). By selecting a time

window of a certain length, the average of the absolute

amplitude value is obtained in the time window, which is

used as the weight of the center of the time window. The

weight of all data is calculated by sliding the window, and

then the original data is divided by the corresponding weight.

Finally, the normalized sequence in the time domain is obtained.

This procedure can be formulated as follows:

w(i) � 1
2N + 1

∑j�i+N
j�i−Nd(i), (1)

FIGURE 5
Data processing procedure to compute NCFs in this study.

FIGURE 6
(A) Waveform, and (B) corresponding spectrum of the 30-
min record of Channel 200 in Line II after tapering.

FIGURE 7
(A) Waveform, and (B) corresponding spectrum of the
resampled 30-min record of Channel 200 in Line II. The red box
denotes the high amplitude signal caused by environmental and
human factors.
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�d(i) � d(i)
w(i), (2)

in which d(i) is the seismograph that has been band-pass filtered

between 0.3 and 23Hz, �d(i) is the temporal normalized

seismograph, and 2N + 1 is the number of points in the

normalization window. Figure 8A shows that the strong

energy effect has been effectively reduced after the running-

absolute-mean normalization.

After the temporal normalization, the signal still has

unbalanced high and low-frequency energy, and the signal

spectrum is not flat, as shown in the red box in Figure 8B.

Therefore, it needs to be “flattened”, also called spectrum

whitening. The Hanning window W(f) with a 0.3–23 Hz

pass-band is applied to the smoothed complex spectrum

D(f) of the signal time series d(t):
Y(f) � W(f) × D(f)/∣∣∣∣ �D(f)∣∣∣∣, (3)

in which | �D(f)| is the smoothed amplitude spectrum. The

Fourier transform Y(f) is inversely transformed to the time

domain for subsequent data processing. Figure 9 shows the final

processed waveform and its spectrum. The resulting signal is

more like white noise with a “flat” spectrum in the frequency

domain.

Methods

Ambient noise interferometry for surface
wave reconstruction

Surface waves are reconstructed by using ambient noise

interferometry, which has been of great interests in variant

research areas (Claerbout, 1968; Weaver and Lobkis, 2001;

Shapiro et al., 2005). By cross-correlating the continuous

recorded ambient noise at two receiver locations, empirical

Green’s functions between these two receivers can be

obtained. After temporal stacking of the correlations in a long

range, coherent waveforms will emerge (Campillo and Paul,

2003; Shapiro and Campillo, 2004). In the frequency domain,

the cross-correlation can be formulated as:

CAB(ω) � 〈u*
A(ω)uB(ω)〉, (4)

where uA(ω) and uB(ω) denote the pre-processed wavefields in

the frequency domain recorded at receiver A and receiver B,

respectively, following the workflow in Figure 5. The symbol ω is

the angular frequency, * denotes complex conjugate, and 〈 · 〉
denotes temporal average.

Multichannel analysis of surface waves for
shear wave velocity inversion

After the surface wave reconstruction using ambient noise

interferometry, we apply MASW (Park et al., 1999) to extract

dispersion curves. First, the data in the time-offset domain are

slant-stack-transformed into the frequency-velocity domain as

follows:

E(ω, c) � ∫ e−i
ω
c x

U(x,ω)
|U(x,ω)| dx, (5)

FIGURE 8
(A) Waveform, and (B) corresponding spectrum of the 30-
min record of Channel 200 in Line II after temporal normalization.
The red box denotes that the signal still has unbalanced high and
low-frequency energy after the temporal normalization.

FIGURE 9
(A) Waveform, and (B) corresponding spectrum of the 30-
min record of Channel 200 in Line II after spectral whitening.
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in which E(ω, c) is the dispersion image, c is the phase velocity at the

angular frequencyω,U(x,ω) is the amplitude spectrum of the time-

domain data u(x, t) through Fourier transform. Next, the dispersion

curves are identified by picking themaximum value in the dispersion

image E(ω, c) at each frequency-velocity pair.

The extracted dispersion curves are further used to invert the

shear wave velocity. The misfit function is defined as minimizing

the difference between the picked dispersion curves and the

theoretical dispersion curves calculated using the fast delta-

matrix algorithm (Buchen and Ben-Hador, 1996). Considering

the non-linearity and non-convexity of the inverse problem, a

Mente Carlo-based global search method is used to potentially

escape from being stuck at the local minimum. Detailed

description of the software used in this study can be found in

Olafsdottir et al. (2018) and Olafsdottir et al. (2020).

Results

In Line I, data from Channel 11 to Channel 360 are used for

calculating NCFs. From Channel 11 to Channel 185, we select every

channel as a virtual source, and the other 175 channels on the right of

the virtual source are cross-correlated with the virtual source. From

Channel 186 to Channel 360, we select every channel as a virtual

source, and the other 175 channels on the left of the virtual source are

cross-correlated with the virtual source. In Line II, data fromChannel

51 toChannel 350 are used for calculatingNCFs. FromChannel 51 to

Channel 200, we select every channel as a virtual source, and the

other 150 channels on the right of the virtual source are cross-

correlated with the virtual source. FromChannel 201 to Channel 350,

we select every channel as a virtual source, and the other 150 channels

on the left of the virtual source are cross-correlated with the virtual

source. Next, we perform linear stacking of all the time segments for

each cross-correlation pair to average the effect of temporal noise and

spatial irregularity. Finally, we get 350 virtual gathers for Line I and

300 virtual gathers for Line II.

Figure 10 shows the NCFs in Line I at Channel 11

(Figure 10A) and Channel 175 (Figure 10B), and in Line II at

Channel 51 (Figure 10C) and Channel 200 (Figure 10D) as

virtual sources, respectively. From the reconstructed virtual

gathers, it can be seen that NCFs are bilateral time functions

divided into positive and negative half lags, representing positive

and negative wave propagation directions, respectively. There is

an obvious asymmetry that the dispersive Rayleigh-wave on the

positive lag is much stronger than that on the negative lag,

suggesting that the azimuth of the ambient noise is not

uniformly distributed. According to the schematic layout in

Figure 2, we can infer that the higher energy results from the

traffic noise on the highway. Similar asymmetry is also observed

by Zeng et al. (2017) from field DAS data.

Before the dispersion curve extraction, the positive and negative

half branches of NCFs are stacked in reverse order, and the positive

half lags are reserved for subsequent processing to improve the signal-

to-noise ratio (Huang et al., 2021). Such a procedure can help to

FIGURE 10
NCFs of the virtual source at Channel 11 (A), and Channel 175 (B) in Line I, and at Channel 51 (C), and Channel 200 (D) in Line II, respectively. The
red dashed lines show the apparent velocity.
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mitigate the influence of uneven energy distribution of noise sources

on surface wave velocity measurements.

The initial phase velocity picks are automatically chosen as

the maximum value of the dispersion image in each frequency

bin. Then, they are manually assigned with mode numbers and

spurious picks are removed.

For the inversion of each 1D dispersion curve, we set the

depth of the bottom of the interface to 90 m, and the whole

model is divided into six layers. The thickness of the first layer

is 8 m, the thickness of the second layer is 10 m, and the

thickness of all other layers is 18 m. Since both P-wave

velocity and density can affect the dispersion curve, the

empirical formula of Brocher (2005) is used to convert the

shear wave velocity into P-wave velocity and density. Finally,

we obtain the 2D shear wave velocity profiles using cubic

spline interpolation.

Figure 11 shows the dispersion images of NCFs at Channel 11

(Figure 11A) and Channel 175 (Figure 11B) in Line I, and at

Channel 51 (Figure 11C) and Channel 200 (Figure 11D) in Line

II, respectively. Although fundamental- and higher-mode surface

waves are visible, only the fundamental mode dispersion curves,

the black lines in Figure 11, are used for inversion.

Figure 12 shows the 1D dispersion curve inversion results

of the fundamental mode in Figure 11. The red lines denote

the best inverted velocities which have the lowest misfit values.

The other lines denote the top 2% best fitting models. To

evaluate the accuracy of the inverted velocity models, we

calculate the theoretical dispersion curves using the best

inverted velocities in Figure 12. The corresponding results

are shown in Figure 13 as the red lines, and they match well

with the picked dispersion curves marked by the blue circles in

Figure 13. Such a comparison suggests that the inverted

velocity models could interpret the observed data in a good

performance.

The final 2D shear wave velocity profiles are shown in

Figure 14. The shear wave velocity variation above 40 m

depth along the two survey lines is small. There is no

obvious velocity discontinuity interface, and the shear

wave velocity is between 100 and 320 m/s. When the depth

exceeds 40 m, the shear wave velocity gradually decreases

from west to east. The lateral velocity change in Line II is

greater than that in Line I. In Line I, the stratification is

obvious, and the shear wave gradually decreases in the

horizontal direction at the depth range of 50–70 m. In Line

FIGURE 11
Dispersion images from the virtual gathers at Channel 11 (A) and Channel 175 (B) in Line I, and at Channel 51 (C) and Channel 200 (D) in Line II,
respectively. The black curves with solid circles are the extracted fundamental model dispersion curves for inversion. The while open circles denote
the upper and lower boundaries by setting as 95% of the peak value.
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II, starting from the depth of 40 m, shear wave velocity

presents lateral variation, and the velocity is between

250 and 350 m/s. The lateral variation of shear wave

velocity increases with the gradual increase of depth, and

the shear wave velocity decreases in the horizontal direction

at a depth of 58–60 m.

The maximum velocity of the two profiles above the

depth of 80 m is only 700 m/s, which is smaller than the

velocity of the shear wave in the bedrock, so it can be inferred

that the thickness of the sedimentary layer in this area should

be greater than 80 m. In addition, the different features

between these two profiles suggest a strong lateral

variation of the sedimentary layer along the Yigong Lake.

Considering the location of the lake water (blue line in

Figure 2), the different shallow structures and increased

thickness of the sediments in the Yigong Lake can be

attributed to the accumulation of debris flow

alluvium from the surrounding mountains (Zhang et al.,

2021).

Discussion

We have demonstrated the feasibility of using DAS to

record ambient noise data in the Tibetan Plateau. By applying

the well-established seismic interferometry to the DAS data,

FIGURE 12
The inverted 1D shear wave velocities using the fundamental-mode dispersion curves in Figures 11A–D at Channel 11 (A) and Channel 175 (B) in
Line I, and at Channel 51 (C) and Channel 200 (D) in Line II, respectively. The red lines denote the best fitted models that have the lowest misfit, and
the other lines denote the top 2% best fitting models.
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we can reveal the shallow sedimentary structure of the Yigong

Lake, which is very helpful to understand the dynamic

evolution of this area. Considering the extreme conditions

of the Tibetan Plateau, it is difficult, if not possible, to deploy

traditional geophones or portable nodes for environmental

seismology study, our method can be a promising alternative

for the interested readers.

We should note that since the surface wave inversion is

highly non-unique, further studies are needed to verify the

reliability of the inversion results by incorporating other

geological information, such as the drilling data. Due to

the limited recording time, we could not get enough low

frequency information below 1 Hz. Only when these low

frequency data are available, we can get access to the

FIGURE 13
The fitting of the theoretical fundamental-mode dispersion curve using the inverted velocity in Figures 12A–D to the picked ones in Figures
11A–D at Channel 11 (A) and Channel 175 (B) in Line I, and at Channel 51 (C) and Channel 200 (D) in Line II, respectively.

Frontiers in Earth Science frontiersin.org10

Yang et al. 10.3389/feart.2022.1018116

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1018116


deeper parts to reveal the actual depth of the bedrock. In

addition, we only use the land data and a small portion of the

underwater data of Line I in this study. The noise

characteristics in the rest parts are more complex than

those used in this study, which need further processing

and evaluation. Future work with integration of the

complete DAS dataset might give chances for a better

interpretation of the geologic evolution history of the

Yigong Lake.

Conclusion

This study introduces a shallow sedimentary structure

imaging method in extreme conditions of the Yigong Lake in

the Tibetan Plateau using ambient noise data recorded by

DAS. By applying proper data pre-processing and seismic

interferometry to the ambient noise data, clear NCFs are

obtained and surface waves can be easily identified.

Dispersion curves are then extracted using MASW and are

inverted to get the shear wave velocity model of the study

area. The results show that the lateral variation is not evident

in the shallow subsurface layer, and the lateral inhomogeneity

of shear wave velocity increases with depth. Since the shear

wave velocity is smaller than conventional bedrock at depths

greater than 80 m, it can be assumed that the sedimentary

thickness is greater than 80 m in the Yigong Lake area. The

increased thickness is likely due to debris-flow deposits in the

surrounding mountains. The low-cost, high-density

acquisition and processing of DAS data demonstrate the

effectiveness and practicality of DAS in detecting shallow

sedimentary structures in extreme environments in the

Tibetan Plateau. We are expecting that DAS will be a

powerful tool for studies of remote and harsh

environments in the future.
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