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The seepage field of tailings dam is closely related to the safety state. Real-time

evaluation of seepage field safety based on monitoring data is of great

significance to ensure the safe operation of tailings pond. The premise of

accurately evaluating the safety status is to ensure reliability of the data, and

it is necessary to identify the anomalies of the monitoring data. Because of the

complex influence factors of seepage field of tailings dam, the traditional

anomaly identification method based on regression model fails due to its

low fitting accuracy. Therefore, a novel abnormal identification method of

monitoring data based on improved cloud model and radial basis function

neural network model, which can accurately identify anomaly data and

distinguish the environmental quantity response. Based on the coupling

relationship between the seepage field and the slope stability, the surrogate

model between the depth of saturation line and the safety factor of slope

stability is constructed, and the real-time safety evaluation method of seepage

field is put forward. The proposed methods are applied to an engineering

example. Themisjudgment rates of the abnormal data identificationmethod are

less than 5%, and it has better applicability than the traditional regressionmodel.

The constructed real-time safety evaluation model accurately reflected the

health status of the seepage field, and realized the quantitative assessment of

the safety of tailings dam. This provides reliable data support for the operation

management and the risk control of tailings pond.
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1 Introduction

A tailings pond is a place for storing tailings discharged after ore separation, which is

usually composed of dams to intercept valley mouths or enclosures, and the tailings dam is

a dam structure on the periphery of the tailings pond. The tailings dam is a dangerous

source of artificial debris flow with high potential energy, and the loss of life, property and
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ecological environment caused by dam failure is immeasurable

(Mcdermott, 2000; Koppe, 2020; Cui et al., 2021). The tailings

dam is generally designed as a permeable structure, and the

saturation line of dam is called lifeline. Safety evaluation based on

monitoring data of rainfall, saturation line, water level and

deformation of tailings dam is a common means to solve

safety early warning problems (Wang et al., 2018), and the

monitoring system of tailings dam is becoming more and

more perfect (Nie et al., 2022). The depth of saturation line is

the direct external response to the change of seepage field of

tailings dam. Therefore, it is of great significance to realize the

real-time safety evaluation of seepage field based on the

monitoring data of the depth of saturation line to ensure the

safe operation of the tailings pond project (Hui et al., 2017; Zhou

et al., 2021).

In the seepage monitoring of tailings dam, the abrupt change

of data may be caused by the monitoring error, the response of

seepage field caused by the change of operating environment, or

the abnormal characterization of structural deterioration of

tailings dam. Therefore, accurate identification of abnormal

values of monitoring data is the premise of scientifically

judging the operation performance and safety status of tailings

dams. At present, many mathematical theories and methods

(Salazar et al., 2015; Li et al., 2021a; Li et al., 2021b; Li et al., 2022;

He and Kusiak, 2017; Li et al., 2011) have been introduced in

abnormal identification of monitoring data. The regression

model can reflect the degree of influence of environmental

quantity on effect quantity and is relatively mature, so it is

widely used. For example (Erdogan 2012), used robust

regression based on M estimation to determine abnormal

measured values in the data series; Dai et al. (2019)

introduced the BC (a) confidence intervals based on statistical

model for crack identification of concrete dams. These methods

all have high requirements on monitoring data, and the

constructed models need to have high fitting accuracy.

However, the supervision investment of tailings dam is less

than that of reservoir dam, the safety monitoring items of

some tailings dams are imperfect, and the automation level is

low (Zhang et al., 2015). The seepage field of tailings dam is

related to the original topography, starter dam and seepage

drainage structure, etc. It is difficult to accurately establish the

relationship between seepage field and influencing factors due to

the influence of environmental factors such as dry beach length,

temperature and rainfall. These factors lead to the low accuracy

of the statistical regression model and the inability to identify

abnormal data. Moreover, the identified abnormal data needs to

distinguish the inducement. At present, the identification of

inducement in tailings dam mostly depends on manual

investigation and correction, which has low identification

degree and poor timeliness. Therefore, the cloud model based

on time series analysis is used to identify abnormal data, and the

RBF neural network model is established to distinguish the

environmental response based on the correlation between

seepage field measuring points. The proposed method has

good applicability and accuracy. In terms of safety evaluation

of tailings dam, the numerical simulation methods based on

monitoring data are mostly used. The seepage field of tailings

dam is constructed by using seepage monitoring data, and then

the safety factor of anti-sliding stability is calculated to determine

the safety state of tailings dam (Yuan et al., 2015; Sitharam et al.,

2017). (Ma 2012) established a numerical model of a tailings dam

by Ansys, analyzed the seepage stability and deduced the safety

factor of tailings dam by strength reduction method. Pak and

Nabipour (2017) calculated the seepage field under different

drainage systems and the corresponding stability safety

factors, and evaluated the drainage system by comparing the

safety factors. The numerical simulation method is accurate and

objective, but the model and boundary conditions are only

suitable for the specific time and the working conditions of

tailings dams, and it is seldom used in real-time diagnosis of

tailings dams at present. In addition, the subjective evaluation

method (Xin and Wan, 2019; Yue et al., 2013) represented by

expert scoring method has some applications because of its

convenient operation and intuitive process and results, but

this method has certain subjective randomness, and its

reliability and accuracy are insufficient. Therefore, based on

the coupling relationship between the seepage field and the

stability of dam slope, a surrogate model between the depth of

saturation line and the safety factor of slope stability is

constructed, and a safety evaluation method based on

monitoring data is proposed, which realizes the real-time

evaluation of its safety state and ensures the timeliness and

reliability of the evaluation results.

The main contributions of this work are as follows: 1) The

improved cloud model was used to identify the abnormal data in

the seepage monitoring data of tailings dam; 2) the RBF neural

network model was used to distinguish the environmental

response of the abnormal data; 3) the surrogate model

between the depth of saturation line and the safety factor of

slope stability was constructed, and The real-time safety

evaluation model for seepage field of tailings dam was

established; 4) a tailings dam project was considered as an

example to verify the applicability and accuracy of the

proposed methods.

2 Methodology

2.1 Identification method of abnormal
data

The common causal analysis models for identification of

abnormal monitoring data, such as the statistical regression

model, have high requirements for fitting accuracy. However,

due to the complexity of seepage field of some tailings dams and

imperfect monitoring facilities, the statistical regression model
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established has low accuracy, poor anomaly identification effect

and poor applicability. The cloud model is a time series analysis

for a single measurement point, and focuses on the statistical law

of the effect quantity itself, but does not involve other

environmental quantities. Compared with the statistical

model, it is more suitable for tailings dams which are difficult

to establish the relationship between environmental quantity and

effect quantity, and has better applicability. Therefore, this paper

proposes a new identification method of abnormal data.

2.1.1 Principle of the cloud model
The cloud model (Li et al., 1995) was proposed based on

probability theory and fuzzy mathematics theory, and has

been widely used in information prediction, comprehensive

evaluation, algorithm improvement and other research (Li

et al., 2020; Lu et al., 2020; Hu et al., 2021). The cloud model

reveals the uncertainty of any event by realizing two

transformation models: The forward cloud generator which

obtains quantitative values from qualitative concepts and the

reverse cloud generator which realizes description from

quantitative values to qualitative concepts. The cloud model

is defined as: Let U be a universe of discourse for expressing

the effect index of seepage monitoring of tailings dam with

accurate numerical value, C is a qualitative concept to judge

whether U has abnormal values, and a monitoring effect index

x in U is a random implementation of C. μc(x) ∈ [0, 1] is the
degree of certainty of x to C. If the degree of certainty is a

random number with stable tendency, the distribution of x in

the universe of discourse U is called cloud, and each x is called

a cloud droplet. Define the following Eq. 1:

μc: U → [0, 1],∀x ∈ U, x → μc(x) (1)

The normal cloudmodel is themost basic and widely used type,

which is usually reflected by three numerical features. The

expectation Ex represents the expected value of the overall

center of gravity of the monitoring data; The entropy En

represents the reflection of the reliability of monitoring data; The

super entropy He represents the degree to which the monitoring

level deviates from normal.

2.1.2 Improved cloud model
The highmonitoring frequency of the depth of saturation line of

tailings dam and the small change range of adjacent measured

values, and it is easy to identify the sudden change of data by using

the change rate. Therefore, the cloud model is constructed by the

daily change rate of themonitoring data, that is, the daily change rate

Δxn+1 is used to replace the depth of saturation line for calculation.

From this, the cloud digital features are calculated, and the

calculation formula is as follows:

EΔx � 1
n
∑n
i�1
Δxi (2)

En �
��
π

2

√
1
n
∑n
i�1
|Δxi − EΔx| (3)

He �
������
S2 − E2

n

√
, S2 � 1

n
∑n
i�1
(Δxi − EΔx)2 (4)

In the normal cloud model, the cloud droplets fluctuate

randomly around the expected curve, and the fluctuation

range is determined by the super entropy. According to the

3En criteria of the cloud model, 99.7% of the clouds droplets in

the area between the outer contour and the inner contour. In the

abnormal data identification, the interval of outer contour line

[Ex − 3(En + 3He), Ex + 3(En + 3He)] is usually taken as the

control standard (Liu et al., 2005), as shown in Figure 1. Because

the interval is calculated by simple superposition of two normal

distributions, the upper and lower limits of the interval are wide.

Moreover, the real monitoring data are discrete, which leads to

poor identification effect of abnormal data in monitoring the

depth of the saturation line of tailings dam. Therefore, this paper

improves the threshold interval of identification of

abnormal data.

According to the generation principle of cloud droplet and

the calculation method of statistics, the expectation and variance

of normal cloud can be obtained, as shown in Eqs 5, 6.

E(X) � Ex (5)

D(x) � ∫+∞
−∞

(x − Ex)2fX(x)dx � E2
n +He2 (6)

The threshold setting refers to the Pauta criterion (Li et al.,

2019), and the expectation Ex and standard deviation E2
n +He2

in the cloud model are used to replace the mean μ and standard

deviation σ in the Pauta criterion to construct the control

interval, as shown in Eq. 7:

FIGURE 1
Schematic diagram of the cloud model and its threshold.
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EΔx − 3
��������
E2
n +He2

√
≤Δxi+1 ≤EΔx + 3

��������
E2
n +He2

√
(7)

If the daily change rate of seepage monitoring data does not

meet Eq. 7, it is judged as abnormal data, and then the

environmental response is identified.

2.2 Distinction method of environmental
quantity response

The reasons for abnormal monitoring data include

environmental quantity response, measurement error, and

characterization of structural deterioration (Xu et al., 2021).

Environmental quantity response is the real response of the

seepage field of tailings dam caused by environmental changes

such as rainfall, reservoir water level, earthquake and tailings

discharge. Measurement errors are instrument failures, human

errors and environmental errors, etc. Characterization of

structural deterioration is an anomaly of seepage field caused

by structural deterioration of tailings dam, including local

collapse, internal seepage channel anomaly and so on.

Therefore, the outliers in the monitoring data identified by

the improved cloud model based on the daily change rate

need to identify the inducement. As a permeable structure,

the response of seepage field of tailings dam to the change of

environmental quantity is synchronous, that is, the measured

values of each seepage monitoring point will respond

synchronously and the change trend has strong correlation.

Based on this characteristic, the artificial neural network

model (Santillan et al., 2014) is used to distinguish the

environmental quantity response. The artificial neural network

of the outlier measurement point and the surrounding

measurement points is trained. By comparing the relative

error between the predicted value and the abnormal value, it

can be judged whether the abnormal value is caused by the

environmental quantity. Since the radial basis function (RBF)

neural network can adopt a linear optimization algorithm that

guarantees global convergence, and has the advantage of the only

best approximation point (Bagheri et al., 2018), the RBF neural

network is used to construct the identification model of

environmental quantity response.

The RBF neural network includes the input layer, the

hidden layer and the output layer. As shown in Figure 2,

there are n input layer nodes, k hidden layer nodes and m

outputs layer nodes in the model, where the output layer vector

is the predicted value sequence of the saturation line of the

target measuring point, and the input layer vector is measured

values sequence of the saturation line of the associated

measuring points. The mapping relationship of the RBF

neural network can be divided into two parts. The first part

is the process from the input layer to the hidden layer, which is a

nonlinear transformation. The Gaussian function is used as

radial basis function because of its simple form, radial

symmetry and good practicability. The second part is the

process from the hidden layer to the output layer, which is a

linear transformation. In order to increase the

commensurability of the monitoring data, the seepage

monitoring data are standardized before training.

The predicted value of the target measuring point is

obtained by the environmental quantity response distinction

FIGURE 2
Schematic diagram of the RBF neural network.
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model based on the RBF neural network. If the relative error

between the predicted value and the abnormal measured value

is within a certain range, it can be considered that the abnormal

data is the response caused by the change of environmental

quantity, and belongs to the normal measured value. Otherwise,

the abnormal data still belongs to the abnormal measurement

value.

The abnormal measurement value can be further

identified in real-time monitoring by means of re-testing,

instrument inspection, etc. If the re-measured value is a

normal value, it is judged that the abnormal data is a

mutation caused by the measurement error, and the

original abnormal data is eliminated and modified, and the

modified vaule adopts the predicted data of the model.

Otherwise, it is considered that the abnormal data is caused

by the structural deterioration of tailings dam, and an alarm is

issued to remind the staff to check the structure of the tailings

dam in the area and deal with the dangerous situation in time.

2.3 Real-time safety evaluation method

As a granular structure, the safety state of tailings dam is

closely related to seepage field, and the most intuitive response to

the change of seepage field is the monitoring data of the depth of

saturation line (Hu et al., 2004; Lu & Chang, 2019). The decrease

of the depth of saturation line will lead to a significant decrease in

the static stability safety factor of tailings dam (Zhang et al.,

2020). The safety evaluation is based on the coupling relationship

between the depth of saturation line and the safety factor of dam

slope stability.

The seepage fields under different dry beach length

conditions are determined by seepage analysis, and then

the safety factor series reflecting the stability of dam slope

is calculated by the limit equilibrium method. As tailings

dams is built step by step during operation, the safety factor

corresponding to the same dry beach length may gradually

decrease as the dam height increases (Wang et al., 2017).

Therefore, the seepage field and the sequence of safety factors

of slope stability under different heights of tailings dam are

calculated respectively, so as to establish the functional

relationship between the safety factor, the dam height and

the depth of saturation line, as shown in Eq. 8:

Ks � f(hd, hsi) (8)
Where Ks is the Stability safety factor of tailings dam slope, hd is

the accumulation height of tailings dam, hsi is the monitoring

value of the depth of the infiltration line of the ith monitoring

point, and f(·) is a function.

Based on the surrogate model, the safety evaluation model

of seepage monitoring points of tailings dam is

constructed, which can reflect the health state of tailings

dam in real time. And set the early warning threshold to

send out the danger early warning in time.

Finally, the flow chart of this paper can be shown in Figure 3.

3 Case study

3.1 Project specifications

The LS phosphogypsum tailings pond is stored by the wet

method. The project was put into use in January 2006, and the

final designed dam height is about 130 m. By September 2010,

the tailings dam had accumulated to the 10 sub-dam, with a

crest elevation of 2020 m and a accumulation height of 80 m.

The elevation of the starter dam is 1970 m, the width of the

crest is 5.0 m, and the height of the dam is about 30 m. The

filling soil of the starter dam is mainly made of weathered

materials by layered rolling, which has good compactness. The

upstream slope is provided with rockfill drainage body, the dam

bottom is provided with horizontal rockfill drainage body, and

the downstream is provided with drainage prism at 1953.0 m

elevation. The upstream dam construction method is adopted

for tailings dam, and the accumulation dam is mainly

composed of compacted phosphogypsum. The crest of the

sub-dam is 5–8 m wide and 5 m high. The slope ratio of the

outer slope is 1: 2.0, the slope ratio of the inner slope is 1: 1.5,

and the total slope ratio of the accumulation dam is about 1: 4.0.

The LS tailing pond is located in an east-west gully. In the

stratigraphic structure of the dam site, except that the valley

bottom and the gentle slope of the right abutment are covered

with Quaternary alluvial-proluvial soil and slope residual

cohesive soil, the whole dam foundation is composed of

deep gray, gray-black thin-layered carbonaceous shale of

Qiongzhusi Formation of Lower Cambrian and gray-white,

dark gray medium-thick layered silty dolomite of Yuhucun

Formation. The stratigraphic sequence is normal and there is

no sign of fault. The seepage monitoring of the tailings dam

adopts piezometric pipe. During the first safety appraisal in

March 2008, nine piezometer tubes were buried at the sub-

dams of Grade 2, Grade 4 and Grade 5, which were K1-9

observation points respectively. The topographic map of the LS

tailings pond and the layout of monitoring points are shown in

Figure 4.

3.2 Discrimination of abnormal data

3.2.1 Identification of abnormal data
Based on the data of seepage monitoring of the LS tailings

dam from June 2009 to October 2010, the statistical model, the

cloud model and the improved cloud model are constructed to

identify abnormal data. Figure 5 shows the identification

result of K2 monitoring point. The monitoring facilities of
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the LS tailings dam are not yet perfect, and the environmental

quantities such as the rainfall and the reservoir water level are

missing in some periods, which leads to the low fitting

accuracy of the statistical model. As shown in Figure 5, the

pauta criterion based on the statistical model did not identify

outliers. The cloud model based on the daily variation rate

accurately depicts the abrupt change of seepage monitoring

data, but it misses the judgment due to the wide control

interval. The improved cloud model proposed in this paper

can effectively identify five abnormal data of K2 monitoring

point.

Anomaly identification was carried out on the monitoring

data of 2,436 times in total at 9 monitoring points, and the

identification results are compared with the manual recognition.

A total of 64 abnormal data points were identified through the

manual recognition. The traditional cloud model missed

26 abnormal data points, with a missed judgment rate of

40.63%, while the improved cloud model missed only

1 abnormal data point, with a missed judgment rate of 1.56%.

The results show that the proposed anomaly data identification

method based on the improved cloud model solves the problem

that the fitting accuracy of the statistical model is so low that it

FIGURE 3
The flow chart of the paper.

FIGURE 4
The topographic map of the LS tailings pond.
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cannot be applied, and effectively reduces the missed judgment

rate compared with the traditional cloud model. The method has

good applicability and accuracy, and has strong application value

for the abnormal data identification of the depth of saturation

line of tailings dam.

3.2.2 Distinction of environmental quantity
response

In order to verify the correlation among the monitoring

points in the seepage field, the correlation analysis method

(Dong et al., 2018) was used to analyze the data of 9 monitoring

points of the depth of saturation line of the tailings dam. The

result is that the correlation degree among each monitoring

point is greater than 0.85, indicating that there is a strong

correlation among the 9 monitoring points. The monitoring

data is standardized. Then, the RBF neural network between the

target monitoring point and the other monitoring points is

established by taking the monitoring value sequence of the

target monitoring point as the output vector and the

monitoring value sequence of the other monitoring points as

the input vector. 50 groups of data in the preceding section of

monitoring data were selected for analysis, and 30 groups of

data were taken as training samples, and the remaining

20 groups of data were taken as inspection samples. After

the training samples are input into the network, the network

adjusts the weights and the neuron centers according to the

learning rules, so that the error index reaches the specified

minimum value (Schwenker et al., 2001).

Then, the trained neural network is used to test the test

samples. Except for the individual points with great fluctuation,

the other test points are in good agreement, which shows that the

constructed neural network model has good accuracy. The

prediction results show that for the abnormal data of

environmental response, the relative error between the

measured value and the predicted value is within 5%, while

for the abnormal data of non-environmental response, the

relative error between the measured value and the predicted

value are both above 8%. Therefore, the relative error threshold δ
is set at 5%, which can effectively identify the environmental

response. The constructed neural network model is used to

identify the environmental response to the abnormal data in

the historical monitoring data. If the relative error is less than δ,
the abnormal data is considered to be caused by the

environmental response, and the data is retained as normal

FIGURE 5
Identification results of the abnormal data of K2 measuring point.
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data; if the relative error is greater than δ, the sudden change is

excluded from the environmental response.

Figure 6 shows the identification results of the environmental

quantity response of the K2 monitoring point. The relative errors

of the abnormal data points 2, 3 and 5 are less than 3%, and the

relative errors of the abnormal data points 1 and 4 are 8.34 and

9.45%, respectively. Therefore, it is determined that the abnormal

data points 2, 3, and 5 are caused by the environmental response

and are entered into the database as normal data, while abnormal

data 1 and 4 are determined to be not caused by the

environmental response and are retained as abnormal data

points. This distinction method is used to distinguish the

environmental quantity response of all abnormal data points,

and the results show that 37 abnormal data of 64 abnormal data

points are caused by the environmental response. Compared with

the results of the artificial verification, two abnormal data are

missed, and the error rate is 3.13%, which shows that the method

is reasonable, effective and accurate, and meets the requirements

of the engineering application.

Since the data in this paper are historical data, it is impossible

to further distinguish the measurement error and

characterization of structural deterioration, and only the

abnormal data identification and environmental impact

identification are carried out on the historical data. The LS

tailings dam has no structural variation during the operation,

so the abnormal data after the distinction of environmental

quantity response are considered to be caused by the

measurement errors, which are eliminated and corrected.

3.3 Safety evaluation of the tailings dam

The LS tailings dam adopts the upstream classification dam

construction method, filling and accumulating tailings in the

upstream direction of the starter dam to build dams step by step,

and each sub-dam is 5 m high. See Table 1 for the construction

process. During the diagnosis period, the elevation of tailings

dam was filled from 2010 to 2020 m. Taking the height of 2010 m

as an example, the construction method of the real-time safety

evaluation model of tailings dam based on the coupling

relationship between the seepage field and the slope stability is

described.

The typical section of the tailings dam is selected to establish

a two-dimensional model. The section diagram and the

arrangement of monitoring points are shown in Figure 7.

According to the physical and mechanical test results and the

geological prospecting data (Nanjing Hydraulic Research

Institute, 2019), the values of calculation parameters are

determined, as shown in Table 2.

The model is surrounded by an impermeable boundary. The

calculated water level is 2010 m upstream and 1948 m

downstream. The dry beach lengths are 30, 50, 70, 90,

110 and 150 m respectively. The seepage fields under different

dry beach length conditions are obtained by the seepage analysis,

and some of the results are shown in Figure 8. With the increase

of the dry beach length, the depth of saturation line gradually

decreases. The safety factor of dam slope stability corresponding

to the seepage field is determined by the limit equilibrium

method, thereby establishing the coupling relationships

between the depth of the saturation line of each monitoring

point and the stability safety factor of dam slope. The surrogate

models of the coupling relationships are fitted by polynomial,

and the results are shown in Figure 9. The complex correlation

FIGURE 6
Distinction results of the environmental response of K2 monitoring point.

TABLE 1 Dam construction process of the LS tailings dam.

Sub-dam Dam crest elevation (m) Start time End time

7 2005 2008/10/3 2009/3/2

8 2010 2009/5/20 2009/10/27

9 2015 2009/12/18 2010/5/4

10 2020 2010/7/13 2010/12/27

11 2025 2011/4/3 2011/11/1
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coefficient of the model is 0.97, and the average error is less than

0.05%, indicating that the fitting accuracy is high.

With the increase of the tailings dam stacking height, the

safety factor corresponding to the same dry beach length also

decreases gradually. The surrogate models between the depth of

saturation line and the safety factor of dam slope stability under

different stacking heights are established respectively, and the

functional relationship between the safety factor and height of

dam and the depth of saturation line is constructed. According

to the construction method of surrogate model of 2010 m

FIGURE 7
Typical geological profile and monitoring arrangement.

TABLE 2 Physical and mechanical parameters of the materials.

Materials Vertical permeability
coefficient kz
(m/s)

kx/kz ρ (g/cm3) ρsat (g/cm
3) c (kPa) φ (°)

Starter dam material 1.50E-07 1.8 1.86 1.92 23.90 20.70

Rockfill drainage body 1.00E-03 1.0 2.00 2.20 0.00 42.00

Compacted phosphogypsum 1.20E-06 2.0 1.58 1.77 0.00 32.47

Deposited phosphogypsum 2.66E-06 2.9 1.58 1.77 0.00 32.47

Backfill soil 1.50E-07 1.8 1.80 1.85 33.90 29.95

Backfill gravel 1.00E-03 1.0 1.80 2.00 3.00 35.00

Silty clay 5.55E-07 2.0 1.94 1.97 46.20 14.80

Muddy siltstone 2.73E-07 1.5 2.25 2.27 51.90 28.20

Carbonaceous shale 3.02E-08 1.8 2.28 2.31 53.63 29.60

FIGURE 8
Simulation results of different dry beach lengths.
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elevation tailings dam, the surrogate models of 2015 and

2020 m elevation are constructed respectively. According to

the stacking process of tailings dam, the surrogate model is

selected dynamically, and the middle stacking height is

determined by the surrogate models through linear

interpolation, so a real-time health evaluation model is

established.

Through the evaluation model, the stability safety factor of

dam slope corresponding to the depth of saturation line at each

monitoring point can be determined in real time, so as to reflect

the safety state of tailings dam. The LS tailings dam belongs to

Class 3 dam, and the corresponding threshold is set according to

the specification (Ministry of Housing and Urban-Rural

Development of the People’s Republic of China, 2013). The

safety factor of 1.3 is orange warning and 1.235 is red warning

(Dong et al., 2022). Based on the monitoring data after abnormal

identification, the surrogate model of 2010 m elevation and the

real-time health evaluation model are used to diagnose the health

of the tailings dam. Figure 10 shows the diagnosis results of

K6 monitoring point. With the increase of dam height, the

diagnosis results of the surrogate model of 2010 m elevation

gradually tend to be dangerous, and the relative error with the

real-time safety evaluation model gradually increases, which

further shows that it is necessary to consider the dam height

when establishing the coupling relationship between the safety

factor and the depth of saturation line. As shown in Figure 10, the

safety factors of the monitoring points are all between 1.35 and

1.45, which is above the orange warning. The safety state of the

monitoring point is relatively healthy, which is consistent with the

actual situation. The reliability and accuracy of this method are

verified, and the method can effectively reflect the changing trend

of health state of tailings dam.

4 Conclusion

1) The tailings dam is a dangerous source with high potential

energy, and its damage consequences are serious. Seepage

FIGURE 9
Coupling relationships of K2, K6 and K9 monitoring points.

FIGURE 10
Evaluation results of K6 monitoring point.
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monitoring can intuitively reflect the safety status of the

tailings dam. It is of great significance to realize the

abnormal identification of monitoring data and the real-

time safety evaluation to ensure the safe operation of the

tailings pond project.

2) Based on the improved cloud model, a method for

identifying abnormal data of the seepage monitoring

was put forward. Combined with the RBF neural

network model, a discrimination method for

environmental quantity response of abnormal data was

proposed. The methods solve the problem that the fitting

accuracy of the constructed statistical model is too low to

be applied, and realize efficient and accurate identification

of abnormal data and discrimination of environmental

factors.

3) Based on the numerical analysis results, the coupling

relationship between the depth of saturation line and the

safety factor of slope stability with the accumulation height

was established, and a real-time evaluation model of health

suitable for the accumulation process of tailings dam was

proposed.

4) The application results of the LS tailings dam show that the

error rate of the proposed identification method of abnormal

data is less than 5%. The established real-time safety

evaluation model can effectively evaluate the health state of

tailings dam, which provides a novel method for safety

assessment of the seepage field of tailings dam.
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