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Shahejie marl in the Shulu Sag is a crucial resource for unconventional hydrocarbon

exploration inChina. Althoughbreakthroughshavebeenmade in tight oil exploration

in this area, the mechanisms underlying the formation of this marl reservoir and

factors controlling its ‘sweet spots’ have not been thoroughly studied. To understand

the pore structure characteristics and factors influencing the marl reservoir, we

analyzed core samples from Wells ST1 and ST3. A series of experiments was

conducted on the samples, such as X-ray diffraction, focused ion beam scanning

electron microscopy, micro-CT, and total organic carbon test. Additionally, the

physical properties of different marl rock fabrics were studied with auxiliary tests,

such as mercury intrusion capillary pressure analyses, nuclear magnetic resonance,

porosity and permeability tests, and thin-section observation. The results revealed

that the marl reservoir is characterized by low porosity (1.61%) and low permeability

(2.56mD). The porosity and permeability (1.61% and 3.26mD) of laminatedmarl were

better than those (0.92% and 1.68mD) of massive marl. Clay minerals and quartz

content in laminated (11.8 and 8.2%) was less than in massive marl (16.2 and 13.3%).

The marl pores include intercrystalline pores, dissolution pores, and microfractures.

Additionally, the laminated marl pores were primarily distributed along the dark

lamina, with good connectivity. A few isolated and uniform holes were observed in

the massive marl. Influenced by rock fabric and mineral composition, layered

fractures were mainly developed in the laminated marl, while structural fractures

were the main type of microfractures in the massive marl. The primary sedimentary

mechanism was the main geological action underlying the differences in marl rock

fabric; thismechanism affects the physical properties of themarl reservoir, which are

key factors to be considered when searching for the marl reservoir ‘sweet spots’.

Particular attention should be paid to these factors during tight oil exploration and

development in similar sedimentary basins.
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Introduction

Tight oil, an important unconventional hydrocarbon

energy resource, has attracted considerable attention from

major oil companies worldwide (Jia et al., 2012a; Jia et al.,

2012b; Zou et al., 2012). Since the discovery of tight

hydrocarbon energy in Bakken, Eagle Beach, and other

areas in the USA and North America, tight oil has emerged

as an important hot spot in the oil exploration industry (He

et al., 2018; James et al., 1983; Jiang and Mokhtari, 2019; Lin

et al., 2011; Miller et al., 2008). Tight oil reservoirs are often

characterized by low porosity and ultra-low permeability,

severely restricting the pace of tight oil as well as gas

exploration and development (Jia et al., 2012a; Shan et al.,

2017; Hou et al., 2018; Li et al., 2022). Therefore, finding a

reservoir ‘sweet spot’ suitable for oil and gas production is

quintessential.

China has made considerable progress in the exploration

of tight hydrocarbon reservoirs. A set of marlstones formed by

lacustrine carbonate lime-mud and terrigenous carbonate

clasts are present in the Shulu Sag, Bohai Bay Basin (Qiu

et al., 2010; Zhao et al., 2015; Cui et al., 2021). The marl has a

high organic matter content, large thickness, and wide

dispersion. This marl is the main source of hydrocarbons,

even though it is the main tight hydrocarbons reservoir (Zhao

et al., 2014a). The ST1 and ST3 wells drilled in the study

area yielded industrial oil flow, offering good tight oil

exploration prospects (Zhao et al., 2014b). With the

breakthrough of hydrocarbon exploration in the Shulu Sag

marl, several notable achievements have been made in

studying reservoir characteristics. For instance, a multi-

dimensional lithologic classification scheme for marl was

established based on rock fabric and mineral composition

(Cui et al., 2015). The marl can be divided into

structural, interbedded, and mixed rock and is characterized

by nine lithofacies (Jiang et al., 2007; Liang et al., 2007).

Furthermore, with respect to its genesis, marl can be

categorized as seasonal and turbidite (Kong et al., 2020,

2016). Due to technical limitations, the reservoir

spaces, reservoir properties, and factors underlying the

marl-based reservoir are still unclear (Han et al., 2015; Liu

et al., 2020; Liu et al., 2022a); thus, the exploration of tight

hydrocarbons in the Shulu Sag remains in the preliminary

stage.

Reservoir research is one of the most important steps in the

exploration and development of unconventional hydrocarbon

resources. However, traditional experimental methods can no

longer meet the needs of tight oil and gas reservoirs in terms of

microscopic pore structure, physical properties, and diagenetic

mineral content. Moreover, the measurement accuracy,

efficiency, and visualization of measurement results can hardly

meet the needs of the industry. With the rapid development of

scanning electron microscopy (SEM), graphics processing

technologies, and machine learning, digital rock physics has

become an important and effective means to analyze of

reservoir pore microstructure and predict effective physical

properties of porous media in the petroleum industry (Zhao

et al., 2016; Liu and Grana, 2018; Wu et al., 2018, 2019a, 2020a,

2022a; Bordignon et al., 2019; Qian et al., 2022). The marl of the

Shahejie Formation is a key horizon for tight oil exploration

in the Shulu Sag; however, the processes underlying the reservoir

formation, microscopic pore structure, and factors controlling

the reservoir ‘sweet spots’ have not been rigorously studied. Here,

we obtained samples from wells ST1 and ST3. SEM was used to

analyze the 2D pore structure of the samples, whereas the 3D

pore structure was revealed by a field emission scanning electron

microscope (FE-SEM) and micro-CT measurements.

Concomitantly, combined with other testing methods, such as

mercury intrusion capillary pressure (MICP) analyses,

total organic carbon (TOC) content analyses, X-ray diffraction

(XRD), porosity and permeability tests, and thin-section

observations, the oil storage capacity of marl samples

differentiated along the lines of rock fabric were studied,

which is essential for understanding the accumulation of tight

oil in the Shulu Sag.

Geological setting

The Shulu Sag is located south of the Jizhong Depression

of the Bohai Bay Basin in eastern China (Figure 1A) (Zhou

et al., 2020). It is a long, narrow dustpan fault depression

formed in the Paleozoic crystalline basement. The Shulu Sag is

bounded by the Xinhe Fault in the east, Ningjin Uplift

in the west, and the Shenxian Sag in the north

through Hengshui Fault, covering an area of ~ 700 km2

(Figure 1B; Fu et al., 2019). The Shahejie and Dongying

formations of the Paleogene, the Guantao and

Minghuazhen formations of the Neogene, and the

Quaternary strata are developed from bottom to top in this

depression (Figure 1C, Figure 2).

The Ningjin Uplift west of the Shulu Sag is an

important provenance area. Under the influence of the

Ningjin Uplift, carbonate conglomerate and mixed marl

exist mainly in the Es3
x members (Zhang et al., 2021). The

marl is mostly formed in a semi--to-deep lake environment

(Han et al., 2015; Li et al., 2016; Huo et al., 2020). In recent

years, significant breakthroughs have been made in tight oil

exploration in the Shulu Sag. Specifically, 20 wells have

been drilled, 17 of which encountered oil and gas, and

five yielded industrial oil flow. Drilling revealed that

the marl is mainly distributed in the gentle slope zone

and trough area of the sag. Overall, the marl is a wedge-

shaped sedimentary body with thickness ranging from 100 to

1,500 m, with the greatest thickness being in the center of

the sag.
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Samples and experimental methods

Sampling

More than 100 core samples were collected fromwells ST1 and

ST3 in the Jizhong Depression Shulu Sag (Figure 1B). All samples

were chosen among the Es3
x members. A total of 13 core samples

were thoroughly studied using a variety of methodologies;

specifically, these samples consisted of six and seven core

samples from the laminated and massive marls, respectively.

The sample information is shown in Table 1.

Experimental methods

Petrological analysis
The core samples were cut into thin pieces and examined

under a polarized light microscope and a

cathodoluminescence microscope, allowing the fabric of the

rock to be identified.

A TTR-type XRD device was used to analyze the mineral

component of core samples. Powdered samples (300 mesh

size) were soaked with ethylene glycol for 8 h at 60 °C before

being heated for 3 h at 550°C (Cui et al., 2021). To collect

specimens, minerals were removed from the solution. Air-

dried specimens were X-rayed with a diffractometer outfitted

with a Cu-target Ceramic X-ray tube with emissive and

receiving slits of 0.6 and 8 mm, respectively. The

Rochquan+2012 program, developed by The Research

Institute of Petroleum Exploration and Development

(RIPED), was used to calculate the mass percentage of each

mineral.

The TOC test was carried out on the samples using the LCO

CS230 instrument, following the Chinese National Standard

method GB/T 19145–2003 (He et al., 2018).

To identify pore types and morphologies in the samples, a

Quanta 650 FE-SEM was employed. The resolution and

accelerating voltage of the SEM were 1.2 nm and 30 kV

(Zhang et al., 2020), respectively.

Porosity and permeability measurements
Porosity and permeability tests were outsourced at

PetroChina Huabei Oilfield Company. Core plugs with a

diameter of 2.5 cm and length of 5 cm were drilled from the

FIGURE 1
Location and structural map of the Shulu Sag: (A), tectonic setting of the Shulu Sag, located in the southwestern corner of the Jizhong
Depression (I); (B), structural outline map of the Shulu Sag; (C), transverse section across the middle segment of the Shulu Sag, the position of the
section is represented as a blue line in (B).
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massive and laminated marl. Using Boyle’s law, the porosity of

core samples was measured using Ultra-pore 200A and

the He permeability of core samples was measured

using Ultra-perm TM200. The core plug was cleaned

in benzene and alcohol for 1 month to remove residual

oil, dried, and finally analyzed for petrophysical

properties. The test methods were conducted per the

Chinese National Standard method SY/T5336-2006 (Zhang

et al., 2018).

Pore-throat structure analysis
Thirteen core plugs (25 × 25 mm) were subjected to MICP

analysis with the Auto Pore IV equipment at the State Key

Laboratory of China University of Petroleum (Beijing) to

assess the pore architecture and pore throat distribution. A

throat radius of 6 nm corresponds to a mercury intrusion

pressure maximum of 200 MPa. The test premise for the

experiment was SY/T5346-2005/4, and conditions were

18°C (room temperature) and 55% humidity (Zhang et al.,

2020). The injection curves and other data were acquired to

assess the properties of pore-throat structures.

Under 100% water saturation, the nuclear magnetic

resonance (NMR) T2 spectrum of each core sample was

produced using the NUMAG’s C12-010 V low-field NMR

spectrometer. The three-dimensional pictures of nano- and

micron-scale pores were characterized using CT scanning

technology (Wu et al., 2020b, 2020c; Liu et al., 2022b; Guo

et al., 2022; Liu et al., 2022), which facilitated the analysis of

the marl micropores and their three-dimensional connectivity.

An Ultra XRM-L200 microscope was used to perform a three-

dimensional CT scan of the full-diameter core samples (XRM).

The equipment included a 150 kV/15 W high-power focus X-ray

tube with a maximum resolution of 1.0 μm. Cylindrical core

samples were mounted vertically onto the sample holder to

ensure a central field of view for the scanner. Each sample

was scanned using a conical ion beam emitted from the X-ray

FIGURE 2
Stratigraphic systems of the Shulu Sag.

Frontiers in Earth Science frontiersin.org04

Li et al. 10.3389/feart.2022.1016122

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1016122


source. The X-ray intensity was attenuated as it passed through

the sample, and these signals were recorded by the detector.

Samples were rotated and scanned at different angles, yielding a

360° perspective. The NMR experiment and CT scans were

conducted in RIPED.

Results

Petrographical characteristics and oil-
bearing properties

In this study, the rock fabric of the marl was divided into

laminated and massive marl to facilitate a structured discussion

of the entire tight marl reservoir (Fu et al., 2019). The rhythmic

layer consisting of alternating laminae was observed

microscopically (Figure 3). The bright lamina was mainly of

chemical precipitation origin, and the mineral composition

mainly consisted of micritic and microcrystalline calcite and

dolomite, with an orange-red cathode luminescence (Figures

3B,D,F). The dark lamina was mainly of mechanical

deposition origin, and the mineral composition primarily

consisted of, micritic calcite and dolomite, argillaceous,

carbonate sand, quartz, organic matter, and pyrite. The

cathode luminescence color was dark and scattered (Figures

3B,D,F). Laminated marl was deposited by interbedded

mixing. The laminae of laminated marl were mainly in three

forms: 1) Thin dark gray mudstone and light micritic limestone

interbedded in unequal thickness, with parallel or non-parallel

laminae boundaries (Figures 3A,B). These were formed in a still-

water environment with few terrigenous materials, mainly

carbonate water deposits. 2) Continental clay-bearing calcitic

mudstone interbedded with micritic limestone with or without

mud, and thin silt-fine sandstone interbeds that commonly occur

(interbedded intercalation) with parallel lamination boundaries

(Figures 3C,D). This mudstone was formed in the offshore deep-

water areas or terrigenous deep-water environments with

sufficient intermittent supply. 3) A grain boundary clear wavy

grain layer (Figures 3E,F) formed on steep slopes, resulting in

deposit layers that were not consolidated, due to slope sliding

deformation dynamics. The massive marl was mainly formed

through mixed structural deposition and was divided into

terrigenous and endogenous components. The former

component, containing argillaceous and carbonate rock of

terrigenous clastic rich in organic matter (mainly consisting of

calcite), was prioritized. This component also contained a bit of

quartz, feldspar, and other terrigenous clastic material,

occasionally interspersed with unevenly distributed granular

pyrite unevenly distributed within (Figure 3G); the cathode

luminescence was distorted and dark (Figure 3H). The latter

component primarily contained in situ sedimentary micritic

calcite, with only a little terrigenous carbonate arene, quartz,

TABLE 1 Mineral composition, total organic carbon, and porosity of the samples from well ST1.

Sample ID Rock type Depth/m Rock mineral composition (wt%) TOC (%) Porosity (%)

Clay Quartz Calcite Dolomite Feldspar Pyrite

LM1 Laminated marl 3678.1 16.95 11.10 57.95 11.84 0.00 2.15 1.2 1.8

LM2 3789.5 9.86 5.92 70.01 12.16 1.24 0.80 1.1 0.9

LM3 3850.4 10.92 3.81 74.24 9.62 0.00 1.41 0.6 0.9

LM4 3975.3 13.99 18.82 46.32 12.59 1.23 7.05 0.2 1.1

LM5 4001.2 7.96 3.81 81.01 5.50 0.00 1.72 1.8 1.5

LM6 4048.6 7.96 8.04 66.42 16.50 0.00 1.09 1.9 1.4

LM7 4152.3 13.78 8.35 65.78 10.36 0.00 1.72 2.1 0.8

LM8 4220.5 13.04 5.92 37.86 37.02 0.00 6.17 1.5 1.1

MM1 Massive marl 3721.5 15.00 22.98 45.12 15.84 0.00 1.05 1.4 1.4

MM2 3768.3 14.81 7.18 64.81 11.21 0.00 1.99 1.5 0.7

MM3 3818.4 18.96 8.65 52.45 16.84 0.00 3.10 0.8 0.8

MM4 3875.3 34.81 13.21 37.78 8.10 2.14 3.98 1.4 0.9

MM5 3985.6 17.13 24.45 37.50 19.00 0.74 1.19 0.7 1.0

MM6 4015.7 12.88 16.82 61.24 6.98 0.95 1.14 1.2 1.7

MM7 4064.1 8.92 10.93 35.09 45.07 0.00 0.00 2.3 1.0

MM8 4089.4 5.05 9.81 34.00 49.92 0.00 1.22 2.6 1.1

MM9 4122.1 8.14 6.54 69.12 15.04 0.00 1.15 1.9 1.3

MM10 4174.6 11.81 7.16 64.98 14.06 0.00 1.99 1.4 0.6

MM11 4236.2 30.89 18.10 31.90 17.18 0.74 1.19 1.8 1.1
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feldspar, and clay minerals (Figure 3I); this component exhibited

orange cathodoluminescence that was relatively homogenous

(Figure 3J).

The thin fluorescent thin section shows that the lamina of

mechanical deposition was oil-bearing in the laminated marl.

Crude oil molecules were distributed along the lamina in a

banded and non-uniform manner (Figure 3K, Figure 3L). The

occurrence of crude oil molecules was characterized by oil in

various matrix micropores, oil in lamina cracks, and adsorption

of organic matter bands. The micritic limestone lamina of

chemical sedimentary origin contained less oil, and crude oil

molecules were evenly distributed (Figure 3M, Figure 3N). The

massive marl crude oil was mainly enriched in matrix pores or

structural fractures (Figure 3O, Figure 3P). In terms of oil

enrichment and oil content, the oil-bearing properties of

laminated marl were better than those of massive marl.

As shown in Table 1, the minerals in the marl in the Shulu

Sag included calcite, dolomite, clay minerals, quartz, pyrite, and

feldspar. In terms of mineral composition, laminated and

massive marl mainly consisted of calcite and dolomite. The

average content of calcite and dolomite in laminated marl was

62.4 and 14.4%, respectively (Figure 4A); the average content of

these two minerals in massive marl was 48.5 and 19.9%,

respectively (Figure 4B). The contents of clay minerals and

quartz were 11.8 and 8.2%, in laminated marl and 16.2 and

13.3%, in massive marl, respectively. The average pyrite content

in laminated and massive marl was 2.8 and 1.6%, respectively,

while the marl of these two fabrics contained little to no feldspar.

FIGURE 3
Petrographic characteristics of marl reservoir under single polarization (A,C,E,G,I,K,M,O), cathode luminescence (B,D,F,H,J), and fluorescence
microscopy (L,N,P): (A,B), laminated marl with different lamina thickness, ST3, 3,664.9 m; (C,D), laminated marl of equal lamina thickness, ST3,
3,681.49 m; (E,F), wavy laminated marl, ST3, 3,677.61 m; (G,H), terrigenous massive marl, ST3, 3,817.65 m; (I,J), endogenous massive marl, ST3,
4097.06 m; (K,L), laminated marl of mechanical origin, ST3, 3,978.76 m; (M,N), laminated marl of chemical origin, ST3, 3,675.09 m; (O,P),
massive marl, ST3, 3,983.83 m.
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Petrophysical properties

Helium porosity measured in the laboratory represents the

connected porosity of rock samples. Laboratory helium

porosity tests show that the porosity of laminated marl was

slightly higher than that of massive marl (Figure 5A). The

porosity of marl ranged from 0.34 to 13.19%, with an average

of 1.61% (Figure 5A), mostly varying in the range of 0–2.5%

(Figure 5B). The porosity of laminated marl ranged from

0.34 to 13.19%, with an average of 1.61%. The porosity of

massive marl ranged from 0.14 to 4.31%, with an average of

0.92% (Figure 5A). Laboratory permeability tests showed that

the average permeability of marl was 2.56mD, and the

permeability of laminated and massive marl was relatively

small. The average permeability of the former was 3.26 mD,

and that of the latter was 1.68 mD. A non-functional

relationship between porosity and permeability was noted

(Figure 5A).

FIGURE 4
Bar chart of mineral components in marl reservoir: (A) mineral composition of the laminated marl reservoir; (B) mineral composition of the
massive marl reservoir.

FIGURE 5
Marl reservoir porosity distribution and the porosity-permeability relationship of Shahejie Formation in the Shulu Sag: (A), the relationship
between porosity and permeability; (B), reservoir porosity distributions showing the porosity variation mainly in the range of 0–2.5%.
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Pore type and pore structure

Based on castings of thin sections and FE-SEM, three types of

pores were identified in the marl reservoir. The pores include

intercrystalline pores, dissolution pores, and microfractures

(Figure 6).

Intercrystalline pores mainly exist between carbonate

minerals (Figure 6F), clay minerals (Figures 6D,G), and pyrite

(Figures 6C,H). The intercrystalline pore diameter of clay

minerals was the largest, and that of carbonate minerals was

the smallest. The intercrystalline pore morphology was mainly

elongated, curved, and irregular. Intercrystalline pores among

pyrite are formed in strawberry pyrite aggregates deposited in a

reducing environment. The intercrystalline pore diameters of

pyrite in laminated marl were 45–1,185 nm, with a variation

range slightly larger than that of massive marl (60–985 nm). The

intercrystalline pores among clay minerals were formed during

the dehydration transformation process. The intercrystalline

pores in marl clay were both nanometer and micron pores.

The intercrystalline pores among clay minerals in laminated

marl were 90–1815 nm, slightly smaller than those in massive

marl (107–2,860 nm). The intercrystalline pore diameters of

carbonate minerals in laminated marl were 20–540 nm,

slightly larger than those of massive marl (13–125 nm) (Figure 7).

Dissolution pores were widely present in marl reservoirs and

were usually densely distributed (Figures 6B,E,G,I). The shape of

the dissolution pores was mostly circular, elliptical elongated, or

irregular, with the long axis laying along the bedding direction.

The Es3 was an important source rock in the Shulu Sag (Huo

et al., 2020); thus, the formation of dissolution pores was mainly

FIGURE 6
Typical pore types found in marl reservoir in the Shulu Sag: (A), intercrystalline pores of pyrite in laminated marl with SEM observation, ST3,
3,670 m; (B), laminar fractures and dissolution pores associated with organic bands in laminated marl, ST3, 3,670.89 m; (C), intercrystalline pores of
pyrite in laminatedmarl, ST3, 3,677.05m; (D), intercrystalline pores of clayminerals in laminatedmarl, ST3, 3,978.76m; (E), nanoscale beddingmicro-
cracks and dissolution pores in laminated marl, ST3, 3,981.93 m; (F), intercrystalline pores in the massive marl, ST3, 3,999.38 m; (G), dissolution
pores and intercrystalline pores of clay minerals in the massive marl, ST3, 3,817.65 m; (H), intercrystalline pores of pyrite in the massive marl, ST3,
3,817.65 m; (I), local dissolution pores occur in calcite, filling in fractures and pore spaces, and they primarily occur concurrently with structural
fractures, ST3, 3,983.83 m.
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related to organic acid dissolution in the early stage of

hydrocarbon generation (Zhou et al., 2020). The dissolution

pores appeared to be circular, elliptical elongated, or irregular.

The long axis of the dissolution hole was parallel to the bedding

direction (Figure 6B). The dissolution pores of the marl reservoir

were mainly nanometer pores, with a certain amount of micron

pores. The range of dissolution pores of laminated marl was

260 nm–12.2 μm, significantly larger than that of massive marl at

60 nm–7.1 μm (Figure 7).

The microfractures in the marl reservoir can be divided into

laminar and structural fractures (Figures 6B,E). Laminar

fractures were mainly formed in the laminar marl. Noticeably,

due to the difference in mineral composition and sedimentary

mode, laminar fractures were easily formed in the diagenetic

process of the laminar marl. Laminar slit widths ranged from

45 to 1860 nm, mainly on the nanometer scale, with a small

amount of micron-scale. Under the action of regional tectonic

stress, marl with a high brittle mineral content easily produced

structural fractures (Figure 6I). The filling material of the

structural fractures was mainly calcite. Secondary dissolved

pores were also found in calcite veins (Figure 6I). The width

of structural fractures ranged from 1 to 11 μm, mainly on the

micron scale (Figure 7).

Pore-throat size distribution

The MICP test results of the nine marl samples are shown

in Figure 8. The mercury injection curve of laminated marl was

characterized by a lower displacement pressure, higher

mercury saturation, and higher mercury withdrawal rate.

The capillary pressure curve showed a double-step

characteristic (Figure 8A). The results show that the pore-

throat structure of laminated marl was complex, and

the micron and nanometer scale pores were well-

developed (Figure 8B). The laminated marl was

characterized by a double porosity medium of lamination

fracture-pore.

Compared with the laminated marl, the mercury injection

curve of the massive marl exhibited higher displacement

pressure, lower mercury intake saturation, and mercury

withdrawal rate for the massive marl. The ‘single step’

characteristic of the capillary pressure curve was noticeable

(Figure 8C). The results revealed that the massive marl

reservoir exhibited poor pore connectivity, mainly

nanoscale-pores (Figure 8D), which were not conducive to

fluid flow.

The marl comprehensive pore distribution can be

reflected by the NMR T2 spectrum (Wu et al., 2021; Zhao

et al., 2022). The T2 spectrum of laminated marl revealed

clear bimodal characteristics (Figure 9A), and the right peak

was more noticeable, indicating that laminated marl

developed not only nanometer micropores but also a

certain amount of micrometer macropores. The massive

marl showed a single-peak T2 spectrum (Figure 9B), with

the main peak on the left, indicating that nanometer

micropores dominated the massive marl, with a few

micrometer pores.

In the micro-CT scanning experiment, the greater

resolution allowed for a detailed understanding of the size

of material components (Wu et al., 2019b, 2020d; Wu et al.,

2020e; Wu et al., 2022b). The small pixels were identified as a

set of large pixels. Therefore, the connected pores could be

identified as macro pore aggregates. A micro-CT scan showed

that the laminated marl pores were mainly distributed along

the dark lamina with good connectivity (Figure 10A). The

massive marl had fewer pores, which were isolated and

uniform (Figure 10B).

Discussion

Influence of original sedimentary
environment on reservoir quality

The physical properties of the reservoir are mainly affected

by the original sedimentary and diagenetic processes (Liu et al.,

2016; Zhu et al., 2017; Lu and Liu, 2021), among which, the

sedimentary mechanism was the most important. Specifically,

the original sedimentary environment and mechanism

determine the material basis of the reservoir, while the

subsequent geological processes only modify it.

FIGURE 7
Pore diameters distribution range of different types of marl
reservoir in the Shulu Sag.
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The sedimentary environment of the lower E2s3 strata in

the Shulu Sag is characterized by shallow to deep lake

subfacies. From the sag slope to the trough area, the water

gradually deepened. This sedimentary environment

determined the marl of the stratum under E2s3,

characterized by abundant organic matter enrichment.

Drilling confirmed that the thickness of marl in the study

area exceeded 1,200 m (Zhao et al., 2014a), providing an ideal

environment for the marl to function as a reservoir in the

study area.

FIGURE 8
Intrusion-extrusion curves and pore size distribution by mercury intrusion capillary pressure (MICP) experiments for tight marl samples in the
Shahejie Formation in the Shulu Sag: (A,B), laminated marl reservoir; (C,D), massive marl reservoir.
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The laminated marl in the Shulu Sag is mainly a rhythmic

lamination affected by seasonal factors (Fu et al., 2019). The

seasonal rhythmic laminae have an apparent binary structure,

which consists of chemically deposited carbonate minerals and

clastic grains stemming from physical deposition. Laminated

marl mainly occurs in shallow and semi-deep lakes near the

provenance. The laminated marl had a large pore space, good

horizontal connectivity, and its organic matter exhibited

continuous distribution in a large area, rendering it an

ideal reservoir for oil and gas enrichment (Figure 3L,

Figure 3N).

During the formation of the massive marl near the

provenance, terrigenous clasts were formed in the sediments.

These clasts are rich in organic matter and have the potential for

hydrocarbon generation. However, when the massive marl was

formed away from the provenance, the carbonate rocks primarily

experienced in situ chemical deposition.

Influence of rock composition on
reservoir quality

Quartz
The presence and content of quartz minerals in marl

reportedly affect the pore type and structure (Zhu et al.,

2022). The cross plot of quartz content and total porosity

reveals a positive correlation between quartz content and total

porosity (Figure 11A). The compaction of hard quartz

minerals is good for pore preservation, resulting in the

development of several intercrystalline pores (Figures 6A,F)

in marl reservoirs. Compared with laminated marl, the quartz

content in massive marl was expectedly higher, explaining why

the massive marl is more likely to produce structural fractures

than laminated marl. Influenced by the sedimentary

environment of the deep and semi-deep lake, the supply

of terry-derived material is limited, and the quartz

FIGURE 9
The saturated NMR T2 spectra of marl: (A), laminated marl, ST1, 4257 m; (B), massive marl, ST1, 4263 m.

FIGURE 10
Micro-CT showing the 3D pore and connectivity in the marl reservoir: (A), laminated marl, ST3, 3,670.89 m; (B), massive marl, ST3, 3,817.65 m.
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content in marl is relatively modest, generally ranging from

5 to 25%.

Clay
With the increase in clay mineral content, the total

porosity of marl first decreased first and then increased

(Figure 11B). When the content of clay minerals was low,

the clay minerals were more plastic and tended to seal

intercrystalline pores of carbonate minerals under

compaction, resulting in the underdevelopment and

poor continuity of nano-pores. Therefore, clay mineral

content inversely correlated with the total porosity. As

the content of clay minerals increased, they absorbed a

great amount of organic matter, which was conducive to

the development of dissolution pores in hydrocarbon

generation and acid discharge. In addition,

intercrystalline pores of clay minerals were formed in

large quantities and had good connectivity. Therefore,

when the clay mineral content exceeded a certain

amount, it positively correlated with the total porosity.

This threshold was approximately 15% in laminated marl

20% in massive marl. Nevertheless, it is essential to note

that marl porosity does not increase indefinitely as the mud

content continues to increase beyond this threshold due to

the influence of marl rock skeleton and organic acid

production.

Carbonate minerals
The marl is rich in carbonate minerals; its content

generally ranges of 50–90%. Carbonate minerals are an

important determinant of total porosity; and these two

elements show a positive correlation in the cross plot

(Figure 11C). The existence of carbonate minerals is

conducive to the subsequent formation of dissolution

pores (Figures 6B,E,G). In addition, the brittle

carbonate minerals tended to produce fractures under the

action of tectonic stress, increasing pore connectivity

(Figure 6I).

FIGURE 11
Relationships between the material composition and porosity of the marl samples from the ST1, Shulu Sag: (A), relationship between quartz
content and total porosity; (B), relationship between clay content and total porosity; (C), relationship between carbonate content and total porosity;
(D), relationship between TOC content and total porosity.
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TOC
The marl in the study area is an important source of rock

that is rich in organic matter and exhibits self-generation and

self-storage (Huo et al., 2020). Previous studies showed that

TOC content in marl increased significantly from shallow lake

subfacies to deep lake subfacies (Zhao et al., 2015). In this

study, TOC content was mainly distributed in the range

of 1–4%. In the process of hydrocarbon generation, the

organic acids associated with marl rich in organic

matter catalyze dissolution, directly leading to the

formation of dissolution pores. Therefore, TOC content in

marl was positively correlated with total porosity

(Figure 11D).

Influence of diagenesis and tectonism on
reservoir quality

Diagenesis shapes the porosity and permeability of

sedimentary basins (Rahman and Worden, 2016; Wang

et al., 2021; Du et al., 2022). During the diagenetic process

of marl, compaction, cementation, and dissolution are the key

geological processes driving the formation and development of

marl reservoir space. Moreover, regional and local post-

diagenetic tectonism is critical for reservoir transformation.

Compaction
Under compaction, burial depth and the porosity of the

clastic reservoir are inversely correlated (Zhu et al., 2019a;

Zhang et al., 2020). However, the porosity of the marl reservoir

did not decrease with increasing depth (Figure 12),

mainly because marl is different from a clastic rock; in

the early diagenetic stage, many primary intercrystalline

pores are cemented and filled, and in the subsequent

deep burial stage, burial depth compaction has

little influence on reservoir porosity. Simultaneously, as a

large amount of organic matter in marl gradually reaches

maturity, it generates hydrocarbon and organic acids.

Finally, large dissolution pores are formed, translating to an

increased porosity in the marl.

Dissolution
Dissolution significantly improves the quality of the

marl reservoir (Yang et al., 2022). SEM revealed the

widespread dissolution pores with large diameters (Figures

6B,E,G,I). Dissolution mainly occurs in the margins

and interiors of calcite, dolomite, and clay minerals.

Dissolution pores are generally elliptic or elongated,

irregularly shaped with the long axis parallel to the

bedding direction. As mentioned above, dissolution

pores in laminated marl were mainly nanoscale pores

with a certain amount of micron-scale pores developed

along the bedding direction. In this case, the

mercury injection curve showed double-step features

(Figure 8A), and the T2 spectrum revealed a double peak

(Figure 9A). Dissolution pores are formed in marl under

the action of acids, leading to a spatial fracture network

characterized by smooth fluid flow and improved reservoir

quality.

Tectonism
Marl is rich in brittle carbonate minerals. The content of

brittle minerals was higher in massive marl, than in laminated

marl. Marl, especially massive marl, is prone to produce

structural fractures under regional tectonic stress. The

diameter of structural fractures was usually 1-2 orders of

magnitude larger than the pore diameter (Figure 7). Of

note, the structure fracture had higher porosity than the

pores (Figure 6I), significantly improving the physical

properties of the marl reservoir (Kong et al., 2019).

After the marl diagenesis, Shulu Sag underwent many

tectonic movements, and many faults were formed (Zhao

et al., 2015; Zhu et al., 2018; Zhu et al., 2019b; Zhu

et al., 2020; He et al., 2022). The vicinity of these

faults tended to be characterized by a concentration of

stress, which was conducive to the occurrence of

microfractures associated with faults, which played a

key role in improving the physical features of the

reservoir. The analysis of the physical properties of marl

showed that the permeability of massive marl exceeded

10mD due to structural fractures. However, the

permeability was mainly in the range of 0.1-1mD in the

absence of structural fractures (Figure 5A). In laminated

marl, most fractures were laminated fractures (Figures

FIGURE 12
Relationship between depth and total porosity of the marl
samples from the ST1, Shulu Sag.
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3A,C,E), which can also improve the permeability of laminated

marl (Figure 5A).

Conclusion

1) The mineral content of laminated and massive marl

differed. The calcite content of laminated marl was

higher than that of massive marl, while the content of

dolomite, clay minerals, and quartz was lower in laminated

marl than in massive marl. The two marl fabrics contained

little or no feldspar.

2) Three types of pores were developed in the marl reservoir of

Shulu Sag, namely, intercrystalline pores, dissolution pores,

and microfractures. The intercrystalline and dissolution pores

of laminated marl were slightly larger than those of massive

marl. Lamellar fractures were formed mainly in laminated

marl, whereas microfractures were primarily associated with

massive marl and were prone to calcite filling.

3) Laminated marl presented better physical property than

massive marl. The micron and nanometer pores of

laminated marl were well-developed with lamellar fissures

and pores, as well as good connectivity. However, the massive

marl reservoir had poor pore connectivity and was dominated

by nanoscale pores, not conducive to fluid flow. The massive

marl presented a few isolated and uniform holes.

4) The physical properties of the marl reservoir in Shulu Sag were

mainly driven by sedimentation and diagenesis. Seasonal factors

and the relationship with the provenance location were themain

drivers of physical differentiation between laminated and

massive marl reservoirs. In addition, the high quartz content

and TOC were conducive to the formation of ‘sweet spot’

reservoirs. Compaction depth was beneficial to hydrocarbon

generation and the acid discharge of organic matter to improve

reservoir quality. Dissolution and tectonism shaped the

construction of reservoirs.
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