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Precision porosity and facies determinations are critical in reducing drilling

uncertainty and increasing hydrocarbon recoveries from heterogeneous

sources. The porosity and facies distribution of the Taiyuan-Shanxi

Formations (T9c-T9d), and Shihezi-1 Formation (T9d-T9e) within the

Hangjinqi area are uncertain and no studies have covered the spatial

distribution on a regional scale. The heterogeneous nature of coal,

mudstone, and sandstone makes it challenging to comprehend the

distribution of porosity and lithofacies. Also, the seismic resolution is not

able to resolve the reservoir heterogeneity. Therefore, we have employed

regional 3D seismic and well logs by utilizing the advanced acoustic

impedance inversion to accomplish our study. Results of petrophysical

analysis conducted on the well J32 showed that Shihezi-1 and Shanxi-1

Formations have potential gas-saturated zones. Crossplot analysis

distinguished the lowest impedance coal from the highest impedance tight

sandstone facies. The outcomes of the constrained sparse spike inversion (CSSI)

reliably distinguished the coal facies from the channel-tight sandstone facies.

The tight sandstone facies showed the highest impedance values as compared

to coal and mudstone facies on the absolute acoustic impedance section.

Impedance and porosity maps of T9d and T9e suggested the presence of a

maximum porosity (8%–12% for T9d, and 5%–10% for T9e), and maximum

distribution of tight sandstone facies, while T9c shows the lowest porosity (0%–

6%) and lowest impedance values due to the presence of coal facies. Thick

braided fluvial channels are evident on the T9d impedance and porosity maps,

making it the most favorable horizon to produce the maximum gas. Whereas,

T9c shows the least distribution of sandstone facies making it the least

favorable. We propose that the zones of maximum porosity on the T9c,

T9d, and T9e horizons can be exploited for future gas explorations.
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1 Introduction

One of the most important characteristics of a reservoir

system is its porosity, which is often distributed in a non-

uniform and non-linear way across the reservoir (Yasin et al.,

2021). It is difficult to predict the distribution of porosity in

sandstone reservoirs because of varying depositional conditions,

intercalations of heterogeneous lithofacies, and repetition of pore

size variations (Ashraf et al., 2019; Ehsan et al., 2019; Ali et al.,

2020; Ehsan andGu, 2020;Mangi et al., 2020; Yasin et al., 2020). It

is standard practice to utilize porosity to predict reserves and

production estimation (Ehsan et al., 2018; Yasin et al., 2019; Ali

et al., 2021). Inmany recent studies, authors have utilized porosity

to evaluate the efficiency and potential of CO2 storage capacity

(Thanh et al., 2019; Vo Thanh et al., 2020; Thanh and Sugai, 2021;

Alalimi et al., 2022; Safaei-Farouji et al., 2022). Typically, core

samples are used to measure porosity, although this method is

time-consuming and may not always be accurate. Thus, well-logs

are used as an indirect method to calibrate the porosity

proficiently (Kumar et al., 2016). In order to correctly identify

the high-quality porous regions, one must have a comprehensive

understanding of petrophysical and petroelastic parameters,

vertical and horizontal distribution of lithofacies, and thickness

of porous zones that can be accomplished through the integration

of seismic and well-log data (Qiang et al., 2020; Ashraf et al.,

2021). Also, geophysical logs may offer reliable information on

the porosity of individual wells, but a degree of uncertainty exists

when porosity is interpolated between wells solely based on well-

logging data (Yasin et al., 2020). Henceforth, we have utilized

integrated seismic and well-log data to get reliable results of

porosity estimation that would be helpful for the field

development of the study area (Feng et al., 2020; Jiang et al.,

2021).

The study area is Hangjinqi which lies in the northern region

of the Ordos Basin, northern China. The Hangjinqi have been

studied for exploring the natural gas resources for about 40 years,

but pure gas development began a decade ago. Also, the

Hangjinqi has several wells, however, the prospective porous

zones are uncertain (Aqsa et al., 2022b). The reservoir within the

Hangjinqi area and nearby fields lie within the tight sandstone

reservoirs of Shihezi and Shanxi Formations (Wang et al., 2020;

Anees et al., 2022a; Zhang et al., 2022). Also, it has been

discovered that the Upper Paleozoic sandstones of the

Hangjinqi region contain a significant amount of gas (Qin

et al., 2022). Since the early Paleozoic, Hangjinqi’s tectonic

high location has favored gas movement and accumulation

(Ma, 2005). Thus, the study area has the potential to become

a major gas exploration zone (Mingjian et al., 2011; Anees et al.,

2019).

Acoustic impedance (AI) inversion is described as a key tool for

the identification of the reservoir’s porosity and lithofacies

distribution (Avadhani et al., 2006; Mahgoub et al., 2017;

Abdolahi et al., 2022). The post-stack seismic inversion is a

cheap, rapid, and effective method for investigating exploration

wells that are distant from each other (Abdolahi et al., 2022). Seismic

inversion aims to turn seismic reflection data into a layer rock

characteristic that accurately characterizes reservoir quality with

high-resolution (Xu et al., 2009), thus enabling the geoscientists to

improve reservoir estimates of porosity and facies distinction

(Ashraf et al., 2020b). Several algorithms are available to

accomplish the seismic inversion which incorporates model

based inversion, artificial neural network (ANN) based inversion,

and constrained sparse spike inversion (CSSI) (Latimer et al., 2000).

CSSI uses constrained high-amplitude reflection coefficients and

relies on sparse inverse deconvolution. Each seismic trace is a

collection of reflection coefficients that must be convolved with

an approximated wavelet (Wang and Guo, 2008). In addition, CSSI

applies inversion restrictions based on available information to

decrease non-uniqueness and provide an accurate, simple

impedance model (Campbell et al., 2015; Ashraf et al., 2020b). It

is possible to apply CSSI assessment with extra constraints to analyze

full bandwidth reflectivity, which gives CSSI an edge over traditional

approaches (Simm et al., 2014). Therefore, we have employed CSSI

in our study to delineate porosity and lithofacies which are the two

most important parameters of rock.

Recently, several studies are conducted on the Hangjinqi area

related to sedimentary and structural geology and covered the

geological aspects related to gas migration, channel identification,

and tectonics (Yang et al., 2015a; Wu et al., 2017; Zhang et al., 2017;

Anees et al., 2019,2022a; Liu et al., 2020; Wang et al., 2020).

However, very few studies conducted on the geophysical aspects

are conducted that were focused on the demarcation of favorable

zones within the members of the Shihezi Formation (Anees et al.,

2022a; Anees et al., 2022b). But no studies are available to date that

address the porosity estimation and lithofacies distinction that

covers a wide range of Lower Permian Shihezi (T9d-T9e), and

Carboniferous Shanxi-to-Taiyuan Formations (T9c-T9d).

This work attempts to explore the facies distribution and

porosity estimation spatially in the Lower Permian and Upper

Carboniferous strata that incorporate the Lower Shihezi

Formation (member-1), Shanxi Formation (member-1 and

member-2), and Taiyuan Formation in the Hangjinqi region,

northern Ordos Basin, China. We used post-stacked 3D seismic

and well-logs to better understand facies and porosity distribution

through petrophysical analysis, acoustics impedance inversion, and

geostatiscal analyses. We also aimed to present new facts about the

low-impedance and high-porous zones that will be helpful for the

future gas exploration of the Hangjinqi area.
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2 Geological characteristics of the
study area

The Ordos Basin was formed in the Paleozoic Era in the

Archean-Proterozoic basement and it resulted in a Plateau

during the uplifting of the Late Cretaceous Era (Zhang et al.,

2017). Large-scale strike-slip episodes throughout the Cenozoic

Era split Ordos Basin from the north China block and built

graben structures across the basin (Zhang et al., 1998). The study

area of Hangjinqi lies between the Yishan ramp and the Yimeng

uplift (Figure 1A). The paleohigh in the northern Ordos Basin

makes Hangjinqi a suitable hydrocarbon migration location (Xue

FIGURE 1
(A) Location of Hangjinqi area on the Ordos Basin. (B) A stratigraphic chart of Hangjinqi. The highlighted region shows the targeted reservoir
formations and ZOI. The red color text shows seal formations, while coal and mudstone within targeted formations are source rocks.
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et al., 2009). The Porjianghaizi fault (P-fault) is the biggest fault

that split the Hangjinqi into northern and southern parts.

The petroleum play of the zone of interest (ZOI) lies within

the Late Paleozoic rocks. Thick lacustrine mudstone layers and

sandstone intercalations in the Upper Shihezi and Shiqianfeng

Formations are the principal seal rocks (Wu et al., 2017). Source

rocks include coal and mudstones from the Taiyuan and Shanxi

Formations (Wu et al., 2017). Whereas, the tight sandstone

within the three members of the Lower Shihezi Formation

(LSF) and two members of the Shanxi Formation makes up

the whole reservoir rock system (Zhang et al., 2009; Anees et al.,

2022a; Zhang et al., 2022) (Figure 1B). In terms of a proven

reservoir, the fluvial sandy conglomerate and coarse-to-fine-

grained tight sandstones found in the LSF act as the main

reservoir (Zhang et al., 2009; Anees et al., 2019).

The paleogeomorphology of the Hangjinqi area largely

controls sedimentary facies distribution. A recent study

conducted by Anees et al. (2022b) showed that the structural,

thickness, and sand-ratio mapping indicated that the

sedimentary facies of the LSF were deposited in fluvial delta

deposits. Channels and floodplains were major sedimentary

microfacies. Sand bodies were deposited in fluvial channels

and braided distributary channels. Mudstone facies, on the

other hand, was deposited in the floodplains. Member-1 of

the LSF showed thick braided channels and bars, whereas

member-2 and member-3 showed thin braided channels

(Anees et al., 2022a; 2022b).

3 Data and methods

In order to determine the porosity of the reservoir locatedwithin

the Hangjinqi area, our researchmakes use of a vast grid of 3D post-

stacked seismic data that covers an area of approximately 1,000 km2

and consists of 11 wells (J16, J20, J21, J32, J53, J54, J55, J69, J74, J75,

and J76). In order to accomplish the purpose of the study, a number

of geophysical logs were included in it. These geophysical logs

included acoustic slowness (AC) (us/m), density (DEN) (g/cm3),

deep resistivity (LLD) (ohm.m), shallow resistivity (LLS) (ohm.m),

compensated neutron log(CNL) (%), and gamma-ray (GR) (API).

The research was carried out successfully with the assistance of the

Jason software program. In the first stage of the interpretation

process, seismic sections and well logs were used in order to

perform the stratigraphic and structural interpretations. In the

beginning, we interpreted the lithofacies and gas-saturated zones

using petrophysical analysis. Following that, the seismic-to-well-tie

method was employed to prepare a synthetic seismogram (Ashraf

et al., 2016).

Within the whole ZOI, three horizons T9c, T9d, and T9e

were recognized. The Shanxi and Taiyuan Formations lie within

the T9c and T9d horizons. Whereas, member-1 of LSF (Shihezi-

1) lies from T9d to T9e horizons. The geological models were

interpolated along the T9c to T9e horizons in order to get the best

results. The three targeted horizons were used to assist in better

comprehending the distinction of the various lithofacies

distribution. In the second stage, the thickness of the ZOI was

determined by doing calculations based on the geophysical logs

of the selected well J32. The former study by Anees et al. (2022a)

showed the proposed depositional facies map where well J32 lies

within the favorable region of braided channel and braided bar.

Therefore, we have chosen J32 as a case study. In the next stage, a

wavelet was generated for each well in order to calculate the

average wavelet. It was merged with a band-limited model in

order to increase the resolution of the inverted broadband model

by extracting average wavelet, seismic, log, and horizon data. This

was done in order to make the model more accurate and reliable.

After the inversion, a number of quality control (QC) tests were

carried out to confirm that the findings were reliable. In order to

ascertain the distribution of lithofacies, a geostatistical analysis

was used for calculating the porosity maps.

3.1 Acoustic impedance inversion

The inversion that was suggested in this study followed the

procedure of minimizing the objective function that was

provided by Jason Geoscience Workbench (2002). The

objective function is expressed as:

F � ∑
j

∣∣∣∣rj
∣∣∣∣p + λq ∑

j
(dj − sj)q + α−1 ∑

j
(tj − zj)2, (1)

Where ∑j |rj |p is the reflectivity term, λq ∑j (dj − sj)q is the

seismic misfit term and the third term corresponds to the penalty on
the trendmismatch. The seismic misfit term is weighted by λ, and dj
and sj are the synthetic and seismic data. For a sparse solution, the
word “reflectivity” is used, which is defined as the linear sum of the
absolute values of the reflection coefficients (p = 1), and contrasted
with the “seismic misfit” term, which is defined as the sum of the
squared residuals (q = 2). It mostly regulates how well the inverted
synthetics match up with the seismic data. The mismatch in trends
aids in the dampening of low frequencies. It determines the amount
by which the trend in AI deviates from the maximum and lowest
values that may be attained (constraints), both of which are
established before the inversion is performed. With this weight α,
the inversion may diverge from the trend by a permitted standard
deviation.

In spite of the fact that the reflectivity term is just a sum

of the absolute values, the final result should be as tiny a total

as is practicable. This is a result of the fact that variations in

AI, and therefore reflectivities in the ground, are rather

minor. In addition, it is essential to point out that the first

two elements of the objective function cannot be reduced at

the same time. This is due to the fact that tiny residuals can

only arise with a comprehensive model, and sparse models

can only occur with a significant data mismatch. Therefore,

the two terms of the objective function need to be balanced

by controlling λ.
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3.2 Geostatistical analysis

The geostatistical methods are often employed to calculate

the association amid reservoir properties via petrophysical

parameters to the seismic (Haas and Dubrule, 1994; Qiang

et al., 2020). Generally, regression analysis is performed using

a linear (direct or inverse) correlation to establish a statistical

relationship. These relationships are utilized to identify the

distribution of the reservoir properties such as porosity

(Abdolahi et al., 2022).

FIGURE 2
Petrophysical analysis of J32. The highlighted zones show the targeted zone of interest (ZOI). Shihezi-1 formation is a proven reservoir and
mostly consists of sand and mud facies. Whereas, Shanxi-2 and Shanxi-shows coal layers, but also shows prominent porous zones. The Taiyuan
formation zone shows a thick coal layer and prominent mud facies. The area below the ZOI shows frequent carbonate facies highlighting themarine
depositional environment.
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4 Results

4.1 Petrophysical analysis

We have utilized well J32 as a case study in order to

investigate the pattern of the vertical distribution of lithofacies

in the Hangjinqi area. The ZOI lies between depths of

2,888–3048 m. The ZOI enclosed four formations which

include xiashihezi (also known as Shihezi-1), Shanxi-1,

Shanxi-2, and Taiyuan Formations. Member-1 of LSF

(Shihezi-1) is a proven reservoir. Results of the petrophysical

analysis show that Shihezi-1 is composed of mudstone and

sandstone facies. The sand is abundant as compared to

mudstone in this region, with a very small amount of

limestone. There are two porous and permeable zones that are

gas-saturated that lie in the middle and lower regions. Within the

Shanxi-2 Formation, there are three lithologies which are

mudstone, sandstone and coal. There are two thin

intercalations of coal that lie in the middle region. A porous,

permeable, and gas-saturated zone also lies at the bottom of the

Shanxi-2 (Upper Shanxi) Formation. Within the Shanxi-1

(Lower Shanxi) Formation, there are three porous, permeable,

gas-saturated zones that lies in the top, middle and bottom

region. Also, there is a thin coal layer at the top and a thick

coal layer at the near-bottom region. The lithologies within the

Shanxi-1 incorporate mainly sandstone, mudstone, coal, and a

small amount of limestone. On the other hand, the Taiyuan

Formation is mainly composed of mudstone and coal facies

which is the main source of rock within the study area. Below

the Taiyuan Formation, there is a thick zone of carbonate rocks

which suggests the transition from continental to marine settings

(Figure 2).

The sand and coal facies are distinguished by the difference in

logging characteristics. As compared to coal facies, the sand facies

shows low GR, moderate resistivity, moderate CNL, high DEN,

and low AC values. On the other hand, coal facies shows the

lowest GR, low DEN, high AC, high CNL, and high resistivity

values. For the coal facies, variations in log values may be

attributed to differences in the rank, kind, gas concentration,

and adsorption content of the various types of coal (Deng et al.,

2013; Mangi et al., 2020, 2022; Wood and Cai, 2022). The

porosity values of gas-saturated zones are low suggesting the

presence of tight sandstone facies. Two thick layers of coal near

the Shanxi-1 Formation exhibit high permeability which might

be associated with the presence of fractures in the region. The

coal layers which showed high permeability show intermixing

with the tight sandstone facies. Whereas, the coal layers which

does not show permeability lies within the mudstone shaly

region. The coal facies are not porous and show zero porosity.

Overall, our results show that Shihezi-1 and Shanxi-2 show the

characteristics of a good reservoir as compared to Shanxi-2. The

presence of coal within the Shanxi Formation can be targeted as

an unconventional gas resource.

We also employed crossplot analysis of well J32 to distinguish

the numerous lithofacies. The crossplot was plotted within ZOI.

The AC log was used to make the p-velocity (Vp) log. The DEN

log was available within J32, which was used along with the Vp to

calibrate a p-impedance. Results show that coal has low velocity

and low impedance and is easily distinguishable. The mudstone

and tight sandstone show overlapping, but mudstone show lower

impedance values as compared to tight sandstone. The tight

sandstone shows the highest impedance values as compared to

coal and mudstone. Whereas, there is a small cluster of limestone

that shows the highest velocity and highest impedance values

(Figure 3).

4.2 Inversion analysis

4.2.1 Horizon interpolation and creating the
density log

Loaded horizons were smoothed using the Jason program to

make interpretation mapping as smooth as feasible. This limited

the data’s dips and peaks. This approach provided a smoothed

version of the interpolated well-log AI throughout the complete

survey. Figure 4A shows the seismic section’s T9c and T9d

horizons, while Figures 4B–D show their interpolated

structural maps. Initially, not all research wells had a

p-impedance log. To complete the inversion, an AI log was

constructed by averaging the AC log on the ZOI using

Backus’ method. Since AI includes DEN and AC, updated AC

logs were used to construct the missing DEN. By applying

FIGURE 3
Crossplot of ZOI of well J32 showing the p-velocity and
p-impedance presenting the different lithofacies in the Hangjinqi
area. Coal showed low velocity and low impedance, limestone
showed high velocity and high impedance. Mudstone and
sandstone show overlapping, but mudstone shows lower
impedance as compared to tight sandstone.
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Gardner’s method to the data (Gardner et al., 1974), the missing

DEN log was created.

4.2.2 Evaluation of average wavelet and
synthetic seismogram

The wavelet is contingent upon the seismic source, the

filtering of the Earth, and the processing that is given to the

reflectivity data. In addition, the process of estimating wavelet is

an under-determined issue since the noise component as well as

all the other elements that were described are unknown. Wavelet

components include amplitude and phase spectra. Phase

spectrum is more challenging to define than amplitude

spectrum. Since the phase spectrum is the main source of

inversion mistakes, it is crucial to utilize the proper phase

spectrum to get the right inversion and outcomes. The

synthetic seismograms were generated for each well to match

seismic and well data (Anees et al., 2017; Abbas et al., 2019).

Because reliable ties are needed to acquire the low-frequency AI

trend, constructing a synthetic seismogram was followed by an

iterative procedure to enhance the tie. Autocorrelation on seismic

data yields the amplitude spectrum. We used autocorrelation to

eliminate the phase from seismic data by smoothing the

spectrum. A correlation coefficient was generated between the

real and the synthetic seismic trace in order to assess the quality

of a well-tie. This correlation coefficient was produced across the

intended time in which the well-log data was accessible. When

applying this approach, it is possible that the majority of the wells

will have a well-tie that has significant uncertainty. As a result, the

quantitative seismic analysis included only those well ties that were

showing dependable results. This method was used to improve the

quality of the tie for the estimated wavelet and continued until a

suitable tie had been created. The algorithm then moved on to the

next step, which was the wavelet estimation procedure.

Incorporating the estimate of wavelet amplitude spectrum into

this approach involved making use of several seismic traces as an

input in order to construct a zero-phase wavelet as an output.

The estimated wavelet was used in the production of

synthetic seismograms, which were then subjected to the

customary stretch and squeeze procedure using time-depth

(T-D) functions in order to ensure a close match between the

synthetics and the seismic data (Young et al., 2000). Following

the completion of the tying operation, the wavelets for all the

wells were created. Because the seismic inversion needed a

wavelet, only those wavelets that do not exhibit any

inconsistency were kept after the process. In light of the fact

that the wavelet of some wells was displaying inconsistency, the

wavelets of those wells were excluded from the subsequent

inversion. Well locations and quality were considered while

FIGURE 4
(A) A inline showing a regional section crossing well J32. Three horizons are marked named T9c, T9d, and T9e. (B) A zoomed section highlights
the deflections of P-impedance log within the ZOI. (C) Basemap showing the corresponding studied inline (AB) and well J32.
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extracting the average wavelet from the seismic survey. The

wavelet was produced from the reservoir enclosing T9c

through T9e horizons (Figure 5A). All these wells were

utilized to calculate the average wavelet for consistent AC and

DEN logs reaching T9c and T9e (Figure 5B).

4.2.3 Low-Frequency earth modeling
Low-frequency turbulences in seismic data ruin low-

frequency information, which disturbs recorded seismic data.

The low-frequency model generated a zero-Hz component that

converted relative to absolute AI. Our work used Ferguson and

Margrave’s (Ferguson and Margrave, 1996) low-frequency AI

model and methodology. This model uses iterative forward

modeling (Veeken and Da Silva, 2004). Using integrated well-

log data (primarily AC and DEN logs), an estimate of average

wavelet, 3D seismic data (band limited), and seismic horizons

using seismic reflectivity data enhanced low-frequency

information. All wells with logs extending to T9c were used

for low-frequency seismic data. Figure 6 illustrates the Hangjinqi

3D low-frequency model.

Because AI inversion was band-limited, a low-frequency

model was required. This well-log-derived low-frequency

model was added to a seismic-derived band-limited AI

model. The triangulation technique was chosen as the

FIGURE 5
(A) The well editing window shows the synthetic seismogram utilizing the well J32. The first panel shows seismic data from well traces. The
second and third panels show synthetics, third shows the correlation between the seismic and synthetics. The highest value shows a good
correlation, whereas the lowest value shows a minimum correlation. An overlay log on the correlation panel shows the variations of the RHOB log
within ZOI. The last and fourth panel shows the time and P-impedance log of well J32. (B) An average wavelet along with amplitude and phase
spectrums were made by utilizing the wavelets of all the studied wells.
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preferred interpolation method for the research’s regional data.

This strategy generated the best interpolation results for the

whole survey since it created continuous and smoothed results.

Three horizons (T9c to T9e) were used to interpolate well-logs.

The low-frequency model aided in a reliable explanation of the

lateral and vertical variation of lithofacies within the ZOI.

Results of the overlay well J32 show deflection towards the

left side showing low values of AI that suggests the presence of

red-colored coal facies have now low impedance values. The

layers present above the coal facies give the indication of

mudstone and tight sandstone layers with high impedances.

4.2.4 Constrained sparse spike inversion analysis
After computing wavelets and interpolating AI logs, inversion

parameters were set. They include lambda, trend mismatch,

maximum and minimum AI values the inversion may achieve,

p and q reflectivity parameters, and seismic misfit term. The basic

steps followed to accomplish CSSI were as follows; 1) trends were

edited first. Generally, well log depth increases p-impedance. All

well trends (T9c-T9e) were modified, 2) trace merging of

combined low-frequency and seismic data sets through a band-

pass filter. The cut-off frequency set was 0–50 Hz, 3) the CSSI

lambda factor was used as a QC variable. After modifying all QC

parameters, CSSI was performed to achieve inverted bandlimited

AI. To add low-frequency missing information, a low-frequency

model was added. Full bandwidth inversion findings gave the most

accurate information for interpretation since they had the highest

bandwidth and the fewest wavelet effects. The AI results were

connected to well p-impedance logs for quantitative analysis. Once

areas and ZOI on the full-bandwidth result were identified,

bandlimited component was also investigated to determine the

underlying coalbeds from channel sandstone andmudstone facies.

The CSSI results revealed improved and reliable vertical and

lateral variations in lithofacies’ impedances after integrating it

with the low-frequency model. The resulting broadband model

has maximum resolution and AI variations which allowed to

resolve the disparity between the coal, mudstone and tight

sandstone reservoir facies in the Hangjinqi area. Low-velocity

coal obscures sandstone’s amplitude, due to which the seismic

resolution can’t distinguish coal from tight sandstone. The low-

velocity coalbed layer generated a thick reflector due to its high

amplitude reflection which may be misleading.

The CSSI reliably distinguished the coal deposit from tight

sandstone facies. The thick beds of coal facies (red-yellow) are

present within the T9c to T9d horizons that lie between the

Taiyuan and Shanxi Formations. The AI broadband (absolute)

model indicated multiple lithologies between T9c-T9e horizons

that were not readily resolvable on the seismic section

(Figure 7A). The tight sandstone (purple-blue) differs from

mudstone (green-cyan) and coal (red-yellow) lithofacies. Coal

has the lowest impedance than mudstone and tight sandstone.

Whereas, mudstone shows moderate and tight sandstone shows

the highest impedance in the Hangjinqi area. Results obtained

from the bandlimited AI model also supported the results of the

inverted absolute AI model (Figure 7B).

After the AI model was accomplished, some QC steps were

followed to check the accuracy. We have utilized a p-impedance

log which was overlaid on the inverted absolute AI and

bandlimited AI models.

Impedance sections frequently show reservoir connectivity,

which may be connected with porosity and impedance sections

to delineate the geological model. Because seismic has a poorer

vertical resolution than well-logs, many well-observed beds are

not visible in seismic. To compare well logs and inversion results

more accurately, a high-cut filter was applied to the p-impedance

(AI) log and then filtered back to the inversion result’s frequency.

After filtering, the Al log was overlaid over the section at the

studied well J32 location (Figure 7). Within T9d-T9e horizons,

FIGURE 6
Low-frequency model of the ZOI that shows the presence of fault truncations and channel-shaped patterns associated with structural
variations. A highlighted zone evidently highlights the presence of various lithofacies.
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the area shows fewer variations in impedance values suggesting

the presence of mainly tight sandstone facies that belong to the

proven reservoir of the Shihezi-1 Formation. Towards the

bottom between the T9c horizon, the p-impedance log shows

deflection towards the left side which shows the lowest AI values

that are associated with the coal facies. Above the coal facies, the

curve of the AI log curve shows deflection towards the right side

that represents the moderate values of mudstone facies, and a

straight log curve of AI presents the highest AI values that are

associated with tight sandstone facies. The values of coal facies lie

between 4.5 × 106–7.5 × 106 kg/m2s, 6.5× 106–1.5 × 107 kg/m2s for

mudstone facies, whereas the tight sandstone reservoir has AI

ranges from 8.5 × 106–1.25 × 107 kg/m2s. The trend of the

lithofacies within the Ordos Basin is unconventional. Several

FIGURE 7
(A) Absolute AI broadband model along with the zoomed section on J32 location (B). Bandlimited AI model along with a zoom section. An
overlay well J32 on inverted AI models highlights the differences in impedance values. (C) A basemap showing the location of J32 and studied inline
for inverted sections.
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authors in very recent studies have already reported the behavior

of lithofacies within other gas fields of Ordos Basin, where they

have revealed that the coal showed the lowest AI (low velocity

and low density), mudstone showed moderate AI (moderate

velocity and moderate density), and tight sandstone showed the

highest AI values (Liu et al., 2022; Pan et al., 2022).

After the QC, the inverted AI model was further utilized for

reservoir characterization and porosity distribution through

geostatistical analysis.

5 Discussion

5.1 Reservoir quality prediction through
impedance analysis

To analyze the coal seams and the fluvial channel sandstone

facies distribution in the targeted region, AI maps of horizons

T9c to T9d (Taiyuan and Shanxi Formations) and T9d to T9e

(Shihezi-1) were developed. Maps of AI corresponding to the

FIGURE 8
Impedancemaps of (A) T9c, (B) T9d, (C) T9e, (D) T9c-T9d, and (E) T9d-T9e horizons. The studied well J32 as a case study is highlighted by black
color box.
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productive zones were extracted to compute the statistical

attributes. Heretofore, it is apparent from looking at Figure 8

that there is a distinct and more detailed response of the

characteristics during the T9c to T9e period when employing

the inverted AI model. The only AI feature that was shown was

the average root mean square (RMS) values since they provided a

more accurate representation of how the AI is distributed over

the ZOI.

The AImap of the T9cmapmainly shows the presence of low

impedance values highlighted by red and yellow colors. These

lowest impedance values give the presence of coal facies. The

associated green color shows the presence of mudstone facies. On

the other hand, the moderate to high impedance values show the

presence of tight sandstone (blue-purple) facies. The middle

location near J75 and J76 wells, and the eastern region

towards J20 and J16 wells suggest the presence of fluvial

channels (Figure 8A). The AI maps of T9d and T9e show

moderate to highest impedance values. Since there are no coal

facies within T9d-T9e, mudstone and sandstone facies are

prevalent in Shihezi-1. Therefore, the blue-colored facies with

moderate impedance values shows mudstone, whereas the

highest impedance values give the indication of tight

sandstone facies. Results also provided a good illustration of

the distribution of the thick fluvial-braided sandstone channels

(purple color) which are extending from North towards South

(Figure 8B). The AI map of T9e shows the presence of high

impedance values that are associated with tight sandstone facies

(Figure 8C). Our results are in agreement with the recent study

conducted on the T9d-T9e which also showed the presence of

thick braided channels and interdistributary channels (Anees

et al., 2022a).

Results of the AI map of T9c-T9d layers show a different

behavior as compared to the individual T9c and T9d AI maps.

The two colors which are prominent are cyan and blue. The other

colors in legend are almost negligible on the map. The spatial

analysis of the T9c-T9d AI map shows that the middle and

western regions are mostly associated with light green-cyan

colors having low values of AI representing the swamp coal

facies and associated mudstone facies. Whereas, the

northwestern region, the area near J55 well, and the eastern

region has blue color with high AI values presenting the tight

sandstone facies (Figure 8D).

The AI map that lies between the T9d and T9e horizons is

shown in Figure 8E. The impedance values are quite variable

which is suggestive of numerous facies present in this area. The

T9d-T9e AI map shows frequent dispersion of blue-colored tight

sandstone facies giving an indication of good reservoir

characteristics. The cyan color with low impedance value

show mudstone facies. The region between T9d to T9e shows

the features of tight sandstone lithofacies, which are quite

prevalent on the whole map. Overall, the results of T9d-T9e

show good results of favorable zones for potential gas

accumulation.

5.2 Reservoir Porosity distribution

Porosity estimate in reservoir rocks is as challenging as it is

critical. When coal measurements are present in reservoir rocks, or

the reservoir rock displays many forms of porosity, it becomes more

difficult to evaluate porosity (Adekanle and Enikanselu, 2013). Data

from wells provides the finest vertical resolution and reliable

estimates of porosity at specific points within the targeted region.

FIGURE 9
A cross plot between the AI and average porosity of T9c-T9d
horizons shows a positive slope trend line.

FIGURE 10
A cross plot between the AI and average porosity of T9d-T9e
horizons shows a positive slope trend line.
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In order to better understand the spatial distribution of porosity, it is

critical to integrate seismic inversion data with petrophysics. Since

wells are distributed across the field, makes it difficult to estimate

reservoir characteristics in the form of porosity.

To evaluate the porosities from the absolute AI model, a

correlation between AI and porosities must be established. The

well data was restricted from the T9c horizon to the T9e horizon

for the estimation of porosities. A mathematical relationship

between the AI log and porosity log was established after the well

data was evaluated for the ZOI. Crossplotting the AI value on

each well log along with the average porosity values for every well

in the targeted region separately led to this correlation. This was

accomplished by performing a polynomial regression of the

second degree for each well to recognize which well gives the

FIGURE 11
Porosity maps of (A) T9c, (B) T9d, (C) T9e, (D) T9c-T9d, and (E) T9d-T9e horizons. The studied well J32 as a case study is highlighted by black
color box.
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most accurate regression and trend. Because the AI and the

predicted average porosities showed a linear connection with a

positive slope, we employed a linear regression approach to

estimate them (Figures 9, 10). The positive slope is the

indication of the direct relationship between coal and tight

sandstone facies. Coal showed low porosity and low

impedance values, while tight sandstone showed high porosity

(around 12–13%) and high impedance values, thus, indicating a

direct relationship (Figures 2, 7).

The average porosity values of all of the wells that extended

from the T9c horizon to the T9e horizon were used to generate

the crossplot that compares the AI to the porosity. The linear

relationship developed for the best fit line showed a good

association of R2 = 0.79 for T9c-T9d horizons, and R2 =

0.77 among T9d-T9e horizons. The Eqs 2,3 for T9c–T9d and

T9d–T9e horizons are as follows;

y � 0.0000061666x − 54.4570284806 for T9c − T9d (2)
y � 0.0000028360x − 20.7542037325 for T9d − T9e (3)

The obtained equations were utilized in Jason’s Function

mode for statistical computations. Porosity maps of horizons T9c

to T9d (Taiyuan and Shanxi Formations) and T9d to T9e

(Shihezi-1) were constructed to estimate porosity distribution.

The porosity ranges between 1 and 8 for T9c-T9d (Figure 9),

whereas it ranged from 5 to 11 for the T9d-T9e (Figure 10). The

low porosity ranges in the study area suggest that tight sandstone

is present in the Hangjinqi area.

The porosity maps of horizons T9c, T9d, T9e, T9c-T9d, and

T9d-T9e (Figures 11A–E). The porosity map shows the presence

of maximum porosity in the region of fluvial sandstone and

minimum porosity in the region of coal and mudstone. The

porosity maps of T9c, T9d, and T9e horizons show that T9d is the

reservoir horizon that has maximum porosity as compared to

T9e and T9c. The porosity is less than 6% in the majority of the

area of the T9c horizon and is more than 8% in the majority of

the area of the T9d horizon. The porosity of the T9e horizon is

less as compared to the T9d horizon due to the presence of a

greater amount of mudstone in the upper part of the Shihezi-1,

but the overall it also shows a good presentation of sand

accumulation.

The porosity of the T9c horizon shows maximum porosity

(10%–12%) near well locations J75 and J76. But, the overall

porosity map of the T9c horizon revealed the lowest porosity

which lies between 0% and 6%. The porosity of the T9d

horizon shows maximum porosity that mainly ranges from

10%–14% in the middle region, whereas the maximum region

of the T9d map shows moderate porosity values of 6%–9%.

The porosity of the T9e horizon shows the maximum porosity

(8%–11%) in the southwestern region which can be predicted

as a favorable reservoir location, whereas the porosity in the

eastern region is minimum (5%–7%). The porosity map shows

the deltaic and swamp coal source rocks deposition in Taiyuan

and Shanxi Formations whereas fluvial and deltaic sandstone

reservoirs deposition in Shanxi and Lower Shihezi. Corollary,

the estimated porosities through the AI are reasonable for the

geological settings of the Hangjinqi area.

For future research, we proposed the usage of pre-stack

seismic data that will combine sensitive parameters of

hydrocarbons with detailed seismic features such as

amplitude, offset, and incidence angle. The pre-stack inversion

together with elastic parameters will provide more accurate

results as compared to post-stack seismic inversion.

6 Conclusion

The conclusions of the study are as follows;

1. Results of petrophysical analysis of well J32 revealed that the

ZOI shows three thin and three thick coal layers. Shihezi-1

formation shows the presence of two gas-saturated zones,

Shanxi-2 show one gas zone, whereas Shanxi-1 shows three

gas zones. The Shihezi-1 is a proven reservoir, however,

Shanxi-1 (lower Shanxi) also revealed good characteristics

of producing gas reservoir zones. Crossplot of J32 within ZOI

distinguished the lithofacies. Coal showed low impedance,

whereas limestone showed highest impedance. The mudstone

revealed lower impedance values as compared to tight

sandstone.

2. The AI inversion showed useful insights regarding the

horizontal and vertical distribution of coal, mudstone,

and tight sandstone facies through the inverted AI

broadband and bandlimited models. Coal showed the

lowest impedance and is present at the bottom of the

study area. Mudstone lies above coal facies. Whereas the

tight sandstone lies above the thick coal and thin mudstone

layers having high impedance values. The overlay AI log of

well J32 also showed reliable results that also highlighted

that coal has the lowest values (4.5 × 106–7.5 × 106 kg/m2s),

mudstone has moderate-to-high (6.5 × 106–1.15 × 107 kg/

m2s), while tight sandstone showed moderate-to-highest

(8.5 × 106–1.25 × 107 kg/m2s) impedance values.

3. The relationship established for the average porosity and

AI showed good association (R2 = 0.79) for T9c-T9d

horizons, and also good association (R2 = 0.77) among

T9d-T9e horizons. The porosity maps of T9d showed

maximum porosity (mostly 8%–12%), and moderate

porosity (5%–10%) on T9e, while lowest porosity (0%–

6%) on T9c maps. The results of impedance maps of these

horizons are in agreement with the porosity maps. In

addition, the porosity and impedance maps of T9c-T9d

and T9d-T9e horizons overall showed the highest

impedance and highest porosity unconventional

relationship. Wells lie within the fluvial channels should
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be targeted for maximum gas production within the

Hangjinqi area.
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