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Introduction

In the surface mixed layer (SML) of a sediment body, sedimentary particles such as

skeletal remains are mixed and moved by a variety of processes. In its simplest form, their

movement can be described by a burial component (advection, specified by the

sedimentation rate), and a mixing component (diffusion, specified by mixing intensity

and mixing depth; Guinasso and Schink 1975). The interaction of these two components

plays an important role in different geoscientific disciplines, as it influences how

information recorded by sedimentary particles enters the geohistorical record. After

transiting the SML, younger particles can be buried below older particles (e.g., Dominguez

et al., 2016). The resulting age inversions contradict the paradigm of age-depth modeling

that the age of sedimentary particles strictly increases with their burial depth (Haslett and

Parnell 2008). The stratigraphic offset of particles of identical age can be more than a

meter (Tomašových et al., 2018), generating age inversions when individual particles are

dated to construct age-depth models. Similarly, particles found at the same stratigraphic

position can have ages that differ by millennia. This reduces the temporal resolution of

stratigraphic time series and limits the fastest ecological change recognizable in the fossil

record (Kidwell et al., 1991). Understanding how sedimentary particles are mixed and

buried in the SML is thus crucial to the proper interpretation of geohistorical data.

Multiple databases of surface sediment parameters that describe individual aspects of

the surface mixed layer have been published in the past. This includes bioturbation depth

and mixing coefficients in Teal et al. (2008), bioturbation intensity by Solan et al. (2019),

and sedimentation rate and biodiffusion coefficient byMiddelburg et al. (1997). However,

these databases record individual SML parameters from different sampling locations. As a

result, they don’t allow simulating the SML.

Here, I present a database of empirically informed models of the SML in marine

environments that captures the dependencies between mixing and burial on a global scale.
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The models have been compiled from published literature and

curated. Each model provides a description of the burial and

mixing processes at a well-defined sampling-site. The models are

described as box models with parameters estimated from tracer

experiments, and can be used directly to inform simulations of

the surface mixed layer. SMLbase v. 1.0 is available for download

at zenodo under https://doi.org/10.5281/zenodo.6509267

(Hohmann 2022).

Data compilation and selection

A literature search on Google Scholar and Web of Science

with for the keywords “Sedimentation”, “Bioturbation”, and

“Biodiffusion” was used to identify relevant publications.

From these publications, those that recorded marine sampling

sites where data on sedimentation rate, bioturbation depth, and

biodiffusion coefficients was available, were selected. From this

selection, the following were excluded:

1. Sites where bioturbation depth was determined by tracer

penetration depth (e.g., Caroll et al., 2008). In the box

models used, bioturbation depth parameters should reflect

a change in mixing intensity (Figure 1). Tracers with longer

half-lives persist in the sediment for longer and thus have

larger penetration depths, demonstrating that penetration

depth does not reflect a change in mixing intensity.

2. Sites where mixing coefficients did not drop to 0 at the bottom

of the core (e.g., Legeleux et al., 1994). Sedimentary particles

reaching depths where mixing is zero will be absorbed in the

deep sediment layer, and enter the geohistorical record. At

sampling locations where mixing does not drop to zero,

particles can hypothetically resurface due to mixing,

making these sites unsuitable for models that examine how

geohistorical information is fixed in the stratigraphic record.

3. Sites where mixing values were larger than 105 (e.g. Edelman-

Furstenberg et al., 2020). If mixing is rapid relative to tracer

half-life, tracer concentration in the SML will be constant,

leading high estimated values of biodiffusion with large

uncertainties (effectively transitioning from the model by

DeMaster and Cochran (1982) to the model by Erlenkeuser

(1980)). Sites with very large diffusion coefficients should thus

be considered completely homogenized on the timescale of

the used tracer, with no reliable estimate of mixing intensity

available.

For tracer records that were analysed multiple times (e.g.

volcanoclastics from Glass et al. (1973), analysed by both

Guinasso and Schink (1975) and Officer and Lynch (1983)),

the most recent analysis was used. When estimates based on

tracers with different half lives are given for the same sampling

site, the set of estimates that has the most consistent half life is

listed in the data base to circumvent biases that arise from the

scaling of mixing and sedimentation rate with the time scale of

observation (Sadler 1981; Smith et al., 1993), see also “Database

Characteristics”. Sediment mass accumulation rates (e.g., in

g cm−2 a−1) were converted into sedimentation rates (in cm

a−1) using the sediment density measured at the sampling site.

A total of forty-seven publications published between 1973 and

2020 met these criteria and contributed data to the database

(Glass, 1969; Nozaki et al., 1977; Peng et al., 1979; Cochran and

Krishnaswami, 1980; Ruddiman et al., 1980; DeVito, 1981;

Carpenter et al., 1982; Nittrouer et al., 1984; Li et al., 1985;

Zuo et al., 1991; Buffoni et al., 1992; Radakovitch, 1995; Van

Weering and de Stigter, 1995; Soetaert et al., 1996; Middelburg

et al., 1997; Zuo et al., 1997; Abassi, 1998; Dellapenna et al., 1998;

Alperin et al., 1999; Radakovitch et al., 1999; Sanchez-Cabeza

et al., 1999; Smith and Schafer, 1999; Smoak and Patchineelam,

1999; Nie et al., 2001; Alperin et al., 2002; Masqué et al., 2002;

Masqué et al., 2003; Radakovitch et al., 2003; Muñoz et al., 2004;

Miralles et al., 2005; Niggemann, 2005; Niggemann and Schubert,

2006; Carroll et al., 2008; Cox et al., 2008; Mouret et al., 2009;

García et al., 2010; Maiti et al., 2010; Carvalho et al., 2011; Stolze,

2016; Edelman-Furstenberg et al., 2020).

Database structure

Each sampling site in the database is assigned a unique site

Id. Each site id has one box model assigned to it, a list of

additional information on sampling sites (water depth in m,

sampling year and month, core name, and sampling site

coordinates in decimal degrees) and bibliographic

FIGURE 1
Parametrisation of the surface mixed layer (SML).
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information on all publications that contributed to the

database entry.

Parametrisation of the surface mixed layer

A two box model is used to describe the surface sediment

layer in the database (cf. Santschi et al., 1980). A box model

consists of sedimentation rate S (in cm a−1), one or two mixing

intensities M1, M2 (in cm2 a−1), and one or two bioturbation

depths L1, L2 (in cm). The first box describes the mixing intensity

M1 between the sediment surface and sediment depth L1, the

second box describes the mixing intensity M2 between the

sediment depths L1 and L2. Below L2, mixing intensity drops

to 0 (Figure 1). This parametrization of the surface mixed layer is

compatible with all empirical data extracted from the compiled

literature, and matches the model assumptions made by methods

that estimate surface sediment parameters from tracer

distributions. To accommodate for models with only one box

(M2 and L2 not given) that report uncertainties in the parameters

M1 and L2 (e.g. Carpenter et al., 1985), values for M1
min, M1

max,

L1
min, and L1

max are also included in the database. For a

description of the methods used to estimate the parameters in

the database please see the original publications where the

parameter values were estimated.

Database Characteristics

The database contains a total of 296 box models. Only 18 box

models (approx. 6%) describe the SML using a two-box model

and thus document depth-dependent mixing within the SML.

The geographic distribution of sampling sites is focused on the

northern hemisphere, with the majority of sampling sites being

from North America and Europe (Figure 2). More than 50% of

sampling sites are located between 40 and 50° latitude north

(Supplementary Figure S1). Sampling sites range from intertidal

to deep sea environments with a range of 0–5,430 m water depth.

Median and mean water depth of sampling sites are 400 m and

997 m respectively. The majority of sampling sites is between

100 and 1,000 m water depth (Supplementary Figure S2). There

are a number of observation biases in the database that are a

direct reflection of where studies on the SML are performed, and

how SML parameters are estimated.

There is a strong geographic bias towards Europe and North

America in the literature. Even within these well sampled regions,

data availability is often determined by large studies and spatially

heterogeneous. As an example, the westernMediterranean is well

represented due to the extensive study of the Rhone delta,

whereas no data from the eastern Mediterranean is available.

Outside of Europe and North America, data is mostly available in

areas with distinct oceanographic properties, e.g., upwelling

(Niggemann and Schubert, 2006) or oxygen minimum zones

(Smith et al., 2000), or because of the presence of hazardous

materials due to radioactive waste disposal (Kershaw 1985) or

nuclear weapons incidents (Smith et al., 1994). As a result of the

geographic biases of the available literature, the spatial and

environmental coverage of the database is patchy.

The tracers used to estimate SML parameters are summarized in

Supplementary Table S1. 210Pb is the most common tracer in the

database, providing more than 75% of SML parameters. Joint

analyses of multiple tracers (e.g., 210Pb and 137Cs) provide for a

total of 10.5% of sedimentation rates, mixing intensities and

bioturbation depths. 84.5% of parameters are estimated based on

FIGURE 2
Localities of sampling sites in the database.
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steady state conditions. Only 5% of box model parameters are based

on single pulse or variable input tracers, while 10.4% are based on a

combination of steady state and single pulse/variable input tracers.

88.9% of the box models use the same combination of tracers to

estimate all box model parameters.

Sedimentation rates and mixing coefficients decrease as the

time scale of observation increases (Sadler 1981; Smith et al.,

1993). For tracer experiments, the time scale of observation is

limited by the tracer half life, and is commonly stated to be

around four times tracer half life (e.g., Masqué et al., 2003).

Because 210Pb is the most common tracer in the available

literature, most studies examine the SML on the time scale of

one century. Data on environments where 1) burial and mixing is

much faster or 2) mixing and burial is much slower than

centennial are thus most likely under-represented in literature

and the database.

Basic information on sampling sites is not consistently

reported in the literature, e.g. for 21.3% (n=63) of sampling

sites no exact measurements of water depth were published, and

for 47% (n=140) of sampling sites, no exact coordinates were

given. To accommodate for this, possible ranges for water depths

and latitude and longitude were extracted from figures and are

reported in the database.

Summary

I have introduced the SMLBase, a curated global compilation

of models of the marine surface mixed layer. Each box model

describes the mixing (diffusion) and burial (advection) of

sedimentary particles and their dependencies at a sampling

site. Box model parameters in the database were extracted

from the published literature and are based on tracer

experiments. The database provides a comprehensive

assessment of the available data on the surface mixed layer,

including the spatial and environmental variability documented

in the literature. It can directly be used to inform simulations of

the surface mixed layer that examine how information enters the

geohistorical record.

Data availability statement

The SMLbase version 1.0 is deposited at zenodo and available

via the doi https://doi.org/10.5281/zenodo.6509267 (Hohmann

2022). It consists of two files:

- SMLBase.csv: File containing the database information

(box model id, box model parameters, water depth and

coordinates of sampling sites, sampling date, short

bibliographical information of publications that

contributed data to the database)

- SMLBaseDataSheet.pdf: File describing the individual fields

of the database in detail and providing full bibliographical

information on all publications that contributed to the

database.

All publications that contributed data to the database are also

listed under “References” in this article. The database will be

updated regularily to include newly published data and data from

sites that were previously not covered.
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