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It is challenging to evaluate the relevance of any given chemical system or

geological environment to the origin of life. At the same time, life is the product

of prebiotic chemistry that took place in some environment. Wemay attempt to

quantify the probability landscape of organic systems and their host

environments on prebiotic worlds as a preliminary step to solving the origin

of life. Mapping out the environments and chemical systems of prebiotic

habitable worlds requires an integration of at least two fields: prebiotic

chemistry, which can discover relevant systems of reactions; and

geosciences, which can identify likely planetary environments in which

prebiotic systems can develop. However, parallel exploration of prebiotic

environmental conditions and chemical systems is inefficient given the

immense parameter space available. Here, we propose to emphasize the

combined experimental study of prebiotic systems and their proposed host

environments, which we term interference chemistry. Environmental variables

may interfere either constructively, neutrally, or destructively with specific

pathways of organic chemical synthesis, as tracked by e.g., yields or rates of

reactions. In turn, prebiotic chemical systems may modify the wider

environment, e.g., bulk solution chemistry. Interference chemistry therefore

offers an efficient way to construct, describe, and discover prebiotic

environmental scenarios, which should in turn assist us assess plausibility for

origin of life scenarios.
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Introduction: Interference chemistry and the
prebiotic earth

Life relies upon reactions between organic molecules that do not proceed in the

absence of enzymes (Benkovic and Hammes-Schiffer, 2003). In doing so, biology exploits

energy sources in the environment that abiotic chemical pathways fail to eliminate.

However, enzyme assembly without biochemical intervention has not yet been observed

in naturally occurring settings. Therefore, whilst almost everything about the origin of life

remains uncertain, we can be sure that organic chemical pathways on the prebiotic Earth,
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occurring at least to begin with in the absence of enzymes,

differed hugely from those observed today.

The diversity and prevalence of organic molecules on

prebiotic Earth will have depended crucially on their stability

and interactions with habitable—but uninhabited—geochemical

environments. It is therefore necessary at some level to link

geoscience constraints on planetary environments with

experimentally demonstrable chemical systems when defining

a prebiotic scenario (Schwartz, 2013). This situation applies both

to scenarios simply describing environmental chemistry and

those that attempt to explain the emergence of biochemistry.

Prebiotic scenarios must describe reaction pathways

(collectively a chemical system) hosted in one or more

geochemical environments. Prebiotically plausible syntheses

have now been published for membranes, information-storing

polymers, and compounds that appear universally in extant

metabolism, and systems chemistry research linking some of

these pathways has been pursued (Deamer and Oro, 1980;

Lebouteiller and KuassiviFerlet, 2005; Griffith and Vaida,

2012; Ritson and Sutherland, 2012; Barge et al., 2014; Damer

and Deamer, 2015; Patel et al., 2015; Islam and Powner, 2017;

Milshteyn et al., 2018; Barge et al., 2019; Bonfio et al., 2019;

Morasch et al., 2019; Pasek, 2019; Wu and Sutherland, 2019;

Bonfio et al., 2020; Liu et al., 2020; Yadav et al., 2020). New

discoveries about early Earth geochemistry offer constraints on

the possible environmental settings for these systems (see Section

3, Table 1). Despite this progress, substantial challenges remain

with linking these promising chemical and geological constraints

into prebiotically plausible scenarios.

Experiments are necessarily run under controlled conditions

that are generally absent in naturally occurring environmental

scenarios. The mismatched complexity between experiments

investigating prebiotic chemistry and naturally occurring

environments may be seen as broadly problematic (Shapiro,

1984). On the other hand, this discrepancy might be viewed

as an opportunity for great progress. In order to make that

progress, we require some broad agreement on the nature of the

problem, the tools at our disposal, and the way in which discrete

approaches to the study of prebiotic chemistry should interact.

Firstly, it is important to state that prebiotic systems

experimentation is often carefully designed in order to 1)

obtain a result in the timeframe of a project, 2) understand

the reaction(s) at hand, and 3) to satisfy the burden of proof that

is typically expected for a novel chemical synthesis. Including the

complete inorganic and organic complexity inherent to a

naturally occurring environment in a novel synthesis

experiment is not conducive to these aims—especially to

understanding the novel chemistry being explored in any

TABLE 1 A geochemical roadmap of prebiotic Earth.
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given experiment. However, as an understanding of plausible

prebiotic chemistry accumulates, increasingly multi-faceted

approaches may usefully be pursued to evaluate their efficacy.

In particular, it is now increasingly common to study a series of

linked reactions—prebiotic systems chemistry (Islam and

Powner, 2017)—and, separately, the efficacy of those prebiotic

systems in the context of environmental perturbation (Miller,

1987; Robertson et al., 1996; Miyakawa et al., 2002; Todd et al.,

2019).What is currently lacking is a widely shared and systematic

approach to recording, reporting, and ultimately leveraging

insights from interference chemistry. Here, we present a

formalisation of the latter approach: interference chemistry.

We define interference chemistry as the study of interactions

between a prebiotic system and a host environment (Figure 1).

The environmental scenario encompasses the pressure and

temperature conditions at which reactions take place as well

as environmental context, e.g., atmospheric, aqueous and

substrate composition, environmental geometry, fluid

dynamics, timescales, etc. Prebiotic systems encompass abiotic

organic chemical reactions, which may or may not have

synthesized molecules of purported relevance to the origin of

life. Natural environments in which prebiotic systems could have

developed are messy, containing many spectator ions, mineral

phases, and spatially and temporally variable physical processes,

e.g., wet/dry cycles. Each of these environmental variables may

interfere with prebiotic systems.

Interference chemistry involves tracking some measurable

outcome of inorganic (environmental or chemical) and abiotic

organic (potentially prebiotically relevant) processes. This

outcome may be as complex and broad as the overall

chemical make-up of an environment of interest (this may be

local, e.g., a pond, or global, e.g., a planetary atmosphere) or as

simple as the yield of a reaction deemed to be of particular

interest. Where the goal is simply to describe in detail plausibly

prebiotic environments then individual interferences need not be

categorized as constructive or destructive. The outcome in this

general case is of interest regardless of the details, as we are

learning about which environments may have prevailed on early

Earth.

Alternatively, we may test the performance of the system

given some environment, e.g., yield of a specific product. In this

case we require some way to categorize the outcomes and

implications of interference chemistry. Take the example of a

FIGURE 1
The scientific context of interference chemistry. In prebiotic
systems chemistry, an experimentally verified synthesis is plausible
if all reactants may have co-occurred on early Earth in one or
several linked environments (a scenario). In geoscience,
theoretical and analytical constraints are leveraged to describe
ancient environments in which prebiotic chemistry may have
taken place. Interference chemistry is the interface between
prebiotic chemistry and geoscience: the response of a chemical
system across a range of apparently self-consistent environmental
factors. From an interference chemistry perspective, a prebiotic
scenario is plausible if a prebiotic system proves robust to those
interferences associated with a proposed environmental setting. A
critical caveat is the fact that constraints from prebiotic chemistry
and geoscience are not final, but instead should be weighted by
the evidence available. Interference chemistry may therefore be
leveraged to quantify and compare prebiotic plausibility for
scenarios given the available chemical and geological evidence,
but can only ever yield results that are as certain or uncertain as the
input data.

FIGURE 2
Venn-diagram illustrating the constraints that can be
achieved on prebiotic scenarios with different scientific
approaches. Geoscience can constrain localised environmental
chemistry as well as planetary-scale boundary conditions via
the analysis of preserved rocks or with theoretical models, while
systems chemistry can identify reactions leading to pre-biological
molecules. An interference chemistry approach to (i) geoscience
involves the systematisation (self-consistency, ranges of
uncertainty) of existing constraints, and to (ii) systems chemistry
involves the application of interferences to experiments and
collation of resulting effect sizes (delta yield/rate, and so on).
Where geoscientific, systems chemistry, and interference
chemistry constraints all indicate that a scenario is robust, an
evaluation of prebiotic plausibility can be assessed (subject to
change in all three types of input).
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reaction pathway known to produce a molecule of known

prebiotic interest, e.g., synthesis of RNA in water, and

temperature—a universal environmental parameter. In this

case, interference may be constructive, e.g., the warming of an

environment to melt ice and allow aqueous reactions to occur;

destructive, e.g., the continued heating of the environment and

eventual thermal degradation of organic products; or neutral,

having no effect on the pathway at hand, e.g., insensitivity of a

particular reaction to temperature across some range of

measurement.

Combining the logic of systems and interference chemistry

approaches, we propose a new over-arching definition of

prebiotic plausibility: a prebiotically plausible scenario is one

in which the proposed prebiotic system is 1) demonstrable in the

laboratory setting, 2) utilises only reactants and processes that

likely co-occurred in geological environments. Where the

scenario is to be extended from merely a description of

plausible environmental chemistry to a plausible synthesis for

a specific molecule or set of molecules (or complex chemical

interaction, or life itself) then additional constraints must be met:

3) remaining efficacious given interference by the local

environment, or suite of connected environments, and 4)

producing sufficiently high yields at each step to

continue—without arbitrary intervention—through to

completion.

Interference chemistry encapsulates the testing of point (3):

the direct incorporation of multiple environmental factors into

successful prebiotic systems, and then—by a process of

iteration—identifying prebiotically plausible parameter space

(Sasselov et al., 2020). As such, interference chemistry draws

on distinct types of information to geoscience or systems

chemistry alone (Figure 2). Moreover, by leveraging insights

unique to geoscience, systems chemistry, and interference

chemistry, quantitative constraints may be obtained for

FIGURE 3
Schematic example of interference chemistry workflow to determine prebiotic plausibility. (A) Initial experimental conditions for a proposed
prebiotic reaction step or system that has been considered successful. (B) Reported range of conditions for various types of environment (i, ii, and iii).
Outside of the reported range may be considered prebiotically implausible in a strict sense, but this should never be considered final given the ever-
improving geoscientific knowledge base. (C) Results from interference chemistry exploration of the reaction/system under consideration.
Some experimental initial conditions emerge as being close to the local maximum scenario, e.g., in the parameter space encompassed by
environment ii. In other cases, significant yield improvement is observed by traversing parameter space, e.g., traversing the conditions that occur in
environment i. More information might be gained by evaluating the delta yield that results from applying numerous interferences, i.e., approximating
more closely the messy environments that occur in nature. (D) The combination of experimental, environmental, and interference chemistry
constraints yields one way to quantify prebiotic plausibility for any given scenario—subject to propagated chemical/geological uncertainties. (E)
Prebiotic plausibility could be further formalised in terms of probability. In our case, this would be in terms of yield: the product of probability that an
environmental condition may occur, combined with the yield at those conditions.
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scenarios that address each component of prebiotic plausibility,

as defined above (Figure 3). Crucially, this definition of prebiotic

plausibility applies to the conjunction of chemistry and

environment, and only provides information within certain

logical bounds. For example, if some proposed chemistry fails

in environment A (contradicting points 1 and 3), it might still

work in environment B, and if some species X needed for the

chemistry is unlikely to be present in environment A

(contradicting 2), it says nothing about whether species X is

likely to be found in environment B.

An interference chemistry study is distinct from a chemical

or geoscience study in that it does not set out to demonstrate a

novel synthetic system or to place novel constraints on an

environment, but to systematically examine the response of

the chemical system to relevant environmental conditions

(Figure 3), i.e., a multi-factor experimental approach. In

Figure 3 we have illustrated for the sake of simplicity a

(schematic) two-dimensional parameter space showing

interactions between pH and anion composition. In reality,

prebiotic chemical systems are high-dimensional systems.

Visualizations of real systems will therefore be

correspondingly more complex. Tackling and overcoming this

complexity is the main opportunity and difficulty of

implementing interference chemistry.

Implementing interference chemistry requires overcoming

three main challenges: 1) that mapping destructive interferences

necessarily means running experiments that produce low yields

of a desired product—this is a challenge to a culture where we

may be encouraged to report only on successful experiments; 2)

the volume of environmental parameter space to be explored is

too large to be exhausted in the lab; and 3) the reality that what is

considered environmentally plausible is uncertain, and subject to

continual advances being made in geoscience.

Screening for multi-factor interactions is commonplace in

the study of certain biological and chemical industrial processes

(Novack, 2000), and has been commented on before in the

context of synthetic biology (Moschner et al., 2022) and even

in prebiotic chemistry (Cleaves, 2013). The outstanding question,

then, is not merely whether interference chemistry might be a

useful pursuit, but whether its widespread implementation is

both feasible and justifiable.

Interference chemistry in practice

We examine the experimental feasibility of interference

chemistry by considering both published studies that might be

categorized as investigating the interference chemistry prebiotic

systems, and by briefly reviewing what is currently known about

early Earth environmental conditions. We propose distinct

burdens of proof for progress in the study of prebiotic

systems, environments, and interference chemistry,

respectively, arguing that agreement on what these different

approaches should individually seek to achieve has the

potential to unlock information flow between disparate fields

that collectively seek to understand the environmental chemistry

of prebiotic Earth.

Previous interference chemistry
approaches

There are numerous published studies that might be

considered as falling under the umbrella of interference

chemistry. These studies share the common trait of having

taken a particular prebiotically relevant species/reaction/

system and systematically exploring its response to

environmental variables of interest. We consider several

specific examples, from prebiotic compartmentalisation, to UV

transmission, to bystander-ion-driven catalysis.

Prebiotic membrane-bound compartments have previously

been subjected to a diverse range of environmental analogue

conditions—both in the lab, and in the field. An outcome of these

studies is that certain simple prebiotically plausible amphiphiles

will spontaneously assemble into compartments in freshwater

and modern hot spring systems but will not do so in seawater

(Milshteyn et al., 2018). Meanwhile, other classes of amphiphiles

are quite robust to the interferences present in seawater (Jordan

et al., 2019a). Much is also known about the response of these

structures to pH, ionic strength, and temperature (Yanagawa

et al., 1988; Terasawa et al., 2012; Joshi et al., 2017; Milshteyn

et al., 2018; Jordan et al., 2019a; Jordan et al., 2019b; Lopez and

Fiore, 2019; Bonfio et al., 2020), from which a picture is emerging

of which compartments may plausibly have been present in end-

member prebiotic environments.

Ultra-violet light is a crucial component of several recently

proposed reaction schemes, acting to drive otherwise challenging

steps in a high yielding and stereoselective manner (Ritson and

Sutherland, 2012; Patel et al., 2015; Rimmer et al., 2018; Rimmer

et al., 2021). However, many by-stander species may attenuate

the transmission of UV light in geochemically realistic complex

aqueous solutions. Ranjan et al. (2021) found that Fe-containing

species in e.g., ferrocyanide lakes are efficient at attenuating UV

transmission, diminishing the potential for UV-driven

constructive organic synthesis, but similarly slowing UV-

driven degradation of other molecules that may go on to

accumulate and constructively interact along different paths,

e.g., meteoritic nucleobases (Pearce et al., 2017). The existing

body of work on compartment stability and UV light

transmission in the presence of varying environmental

interferences provides a model for future work on more

complex systems.

The projects outlined above are strong examples of how

interference chemistry may be experimentally tractable in some

cases. However, there are other examples where novel

combinations of prebiotic systems and geological conditions
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yielded surprising constructive interferences, without necessarily

having focussed on parameter space exploration. An important

example are the cases of phosphate and borate in prebiotic

chemistry. These topics have received a great deal of attention

previously (Fernández-García et al., 2017; Liu et al., 2019), and

we make no attempt to summarise the breadth of previous

discussion on the issue here. Instead, we point to the fact that

these anions have proved diversely useful in prebiotic chemical

synthesis when used at high concentrations. Phosphate in these

experiments has utility either as a general acid-base catalyst or as a

chemical buffer, greatly enhancing reaction selectivity and yield

(Powner and Sutherland, 2010; Patel et al., 2015; Islam and Powner,

2017; Morasch et al., 2019). Similarly, borate acts to make the

formidably messy formose reaction far more selective for the

synthesis of compounds of apparent prebiotic interest, e.g., by

stabilizing, ribose sugar (Benner et al., 2012; Kim et al., 2016).

The above constructive interferences by phosphate and borate

in prebiotic chemical synthesis occur only when these anions are

present at high concentrations. Both phosphate and borate are

scarce in most modern aqueous environments, which may at

first glance appear to damage the plausibility of prebiotic

scenarios relying on the use of either (Table 1). However,

geochemical scenarios are now being independently developed in

which phosphate and/or borate may indeed have been present at the

high concentrations required by published syntheses (>10 mM),

reshaping our view of what may count as prebiotically plausible

(Rasmussen et al., 2021; Ingalls et al., 2022).

If the once prevailing view of limited phosphate and/or

borate availability on early had been used as a stringent guide

for experimental progress, the valuable constructive roles in

prebiotic organic synthesis of anions which are currently

scarce in surface environments—but might not always have

been—may never have been fully recognized. Examples of

such unexpected interactions inform us that it is crucial for

prebiotic environmental constraints to be explored in the

intentionally broad manner that we hope interference

chemistry can help to promote. That is to say, prebiotic

plausibility only applies to a combination of both chemistry

and environment, and is a matter of probabilities and degrees of

confidence. Wandering outside what we think of as plausible,

even as defined here, can be immensely scientifically rewarding.

However, this type of research is limited not only by

experimental practicality, but also by our knowledge of which

specific interferences are associated with prebiotic

environments—an uncertainty that makes it difficult to bridge

lab and environment (Figure 1).

Environmental parameter space of
prebiotic earth

Much is uncertain about the nature of prebiotic Earth. The

timeline, surface conditions, and basic geology of the planet in

this state are all difficult to ascertain, owing to a lack of a rock

record for the first half billion years of Earth history

(4.45–4.0 Ga—early Earth, from here-on-in). Via a

combination of extrapolation and theoretical study, there is

consensus that early Earth atmosphere was anoxic, with

somewhat clement surface temperatures, and that there were

surface oceans rich in dissolved iron (Valley et al., 2002; Zahnle

et al., 2007; Shaw, 2008; Harrison, 2009; Sessions et al., 2009;

Planavsky et al., 2011; Partin et al., 2013; Scott et al., 2013; Lyons

et al., 2014; Planavsky et al., 2014; Ge et al., 2018). Much more

uncertain is the extent of emergent land (of any rock type), the

composition and mere existence of continents, whether or not

the atmosphere was highly reducing, and if those generically

habitable surface conditions leaned towards global icehouse or

hothouse conditions (Valley et al., 2002; Barley et al., 2005;

Rollinson, 2007; Zahnle et al., 2007; Harrison, 2009; Sleep,

2010; Bell et al., 2011; Marchi et al., 2014; Roberts and

Spencer, 2014; Thomassot et al., 2015; Hastie et al., 2016;

Johnson et al., 2017; Smit and Mezger, 2017; O’Neill et al., 2018).

In Table 1, we summarize the geochemical characteristics of

commonly invoked prebiotic environmental scenarios for early

Earth. Our compendium provides an overview of environmental

parameters that can be used as a starting point for interference

chemistry research, e.g., by the exposure of a proposed prebiotic

systems to a set of environmental interferences.

We rely onmodern analogues that have been studied in detail

as the basis of our compendium, supplemented where possible

with what is known about each specific environmental

interference on early Earth. Some species found in key

environments for prebiotic chemistry are highly sensitive to

surface conditions yet have not received detailed modelling or

experimental studies relevant to early Earth conditions. In

Table 1, such especially uncertain estimates are shaded in

orange. Conversely, estimates derived from studies designed to

investigate prebiotic and/or early Earth (Archean) conditions are

shaded in green.

As a key example of these uncertainties, we highlight alkaline

lakes. Restricted subaerial and confined submarine crustal

environments are increasingly proposed in scenarios for the

origin of life (Westall et al., 2018; Deamer et al., 2019; Toner

and Catling, 2019; Toner and Catling, 2020). However, there are

many open questions about the interference chemistry of such

basins on early Earth. Sulphate concentrations in alkaline lakes

are very high in the modern, approaching molal concentrations

(Table 1). However, such systems are unlikely to have generated

the same sulphate concentrations under an anoxic atmosphere

and in the absence of sulphide-oxidising bacteria (Visscher et al.,

2020). Similarly, dissolved iron concentrations are directly linked

to oxidising power in the environment. With soluble ferrous iron

(Fe2+) being dominant in early Earth surface environments, it is

likely that prebiotic analogues of modern surficial aqueous

environments may have been fed by iron-rich

inflow—although, iron carbonate mineral precipitation may
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have acted to limit final concentrations (Toner and Catling,

2020).

Finally, atmospheric pCO2 of early Earth is poorly

constrained, rendering Dissolved Inorganic Carbon (DIC)

estimates uncertain for all environments (Krissansen-Totton

et al., 2018; Kadoya et al., 2020). This uncertainty is

problematic, as pCO2 and DIC are a major control on the

pH and overall chemistry of restricted subaerial solutions in

equilibrium with the atmosphere, e.g., phosphate content of soda

lakes (Toner and Catling, 2020). Available DIC is also required

for abiotic production of organic carbon in many proposed

prebiotic environments (Lang et al., 2018).

On the other hand, dedicated studies on ancient

weathering processes and ocean chemistry more tightly

constrain several key interferences in early river

and ocean water (see Table 1). However, for most

environments in Table 1, we do not highlight interferences

as especially likely or unlikely to be reflective of plausibly

prebiotic environments: for now, we simply do not know

either way.

Our survey is far from all-encompassing. Mapping out

environmental chemistry on Earth prior to the rise of life is a

huge undertaking—independent of the specific question of where

life first began, and currently lacking deep integration with

organic prebiotic chemistry. The critical next step is to

understand more deeply the feedbacks between inorganic

planetary chemistry and prebiotic organic chemistry, i.e., the

defining features of prebiotic Earth. It is this broad base of

knowledge that we argue interference chemistry can

contribute to.

The interference chemistry framework has at its core the two-

way flow of information between prebiotic chemistry and the

study of early Earth conditions: whereby the reactions that drove

the origin of life—as well as those that did not, but still widely

occurred—will have acted to shape both local environments and

ultimately global planetary conditions. At the same time,

prevailing environmental conditions will have determined the

plausibility and feasibility of proposed origin of life scenarios.

Interference chemistry may therefore be leveraged in pursuit of

dual constraints on 1) wider environmental conditions at the

dawn of life and 2) the specific environments in which life may

have emerged.

Difficulties in assessing prebiotic
plausibility

From the perspective of planetary science, it is often much

easier to say what interferences were not present than to establish

those which were, and to establish limited global constraints on

environmental conditions, rather than to specify the detailed

local environmental conditions needed to constrain origin of life

scenarios. Especially when studying the ancient past, geoscience

may be more suited to obtaining constraints on processes that

operate over long timescales and large length-scales. In contrast,

prebiotic chemistry—especially those systems that are tractable

in the lab—may largely operate under ephemeral conditions in

local environments (Table 2). Published environmental

constraints may therefore fail to readily describe local

environments that may have hosted prebiotic chemistry.

Moreover, geoscience constraints are constantly updated as

new data is made available. Formulating an assessment of

prebiotic plausibility with environmental constraints may

therefore be flawed, creating an unhelpful barrier to synthetic

chemistry exploration.

Our proposal for the recognition of interference chemistry

as a discrete approach (Figure 1) is intended to smooth out the

difficulties that may arise when judging systems chemistry

results with a geochemical filter. Geoscience should continue

to strive to understand the initial environmental conditions of

early Earth. Meanwhile, projects explicitly pursuing

interference chemistry can examine the interplay between

state-of-the-art prebiotic systems and knowledge of the

early Earth. In doing so, insights should be gained about

which processes are viable based on current knowledge,

offering up new routes for biomolecule synthesis and novel

perspectives on early environmental chemistry. Here, we

suggested a path for systematic exploration of interference

chemistry parameter space. This exploration can be

systematic without being comprehensive (which represents

an impossible ideal).

It is worth explicitly stating that the implementation of

interference chemistry might be considered as a valuable

opportunity to diminish the extent of geochemical gatekeeping

in prebiotic chemistry. The lessons of the past inform us that even

widely held views about what is plausible from a geochemical

perspective should not be used to inhibit progress in the field of

systems chemistry, as those conceptual boundary conditions may

1-day change. However, given that we must ultimately strive to

find a scenario for the origin of life that is both experimentally

verified and consistent with our understanding of environmental

chemistry on the early Earth, interference chemistry offers a

conceptual space where attempting to fulfil this high burden of

proof seems reasonable.

Interferences provide a sensible metric to quantify

whether or not a chemical system is valuable on its own

merits, e.g., can it provide the products we desire, exist in

an environment known to exist in nature, and function in a

timeframe that is testable in the lab? However, quantifying the

relevance of a given system to the origin of life is a much more

challenging prospect. We might contemplate metrics such as

degrees of self-organisation, self-catalysis, longevity,

discovery of new function, and so on, but the challenge

here is formidable. Until prebiotic synthesis can in any

sense bridge the gap between chemical and biological, it

seems more tractable at present to tackle the smaller—but
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still vast—problem of mapping out prebiotic environments

and their organic chemical systems.

Data collection versus integration

We have argued that interference chemistry provides a

way to explore, make sense of, and leverage geochemical

complexity in a prebiotic context, in terms of evaluating

the plausibility of specific regions of chemical-

environmental parameter space with respect to a specific

system of reactions. However, there are numerous

theoretical issues branching from an interference chemistry

approach that will demand future attention. One such issue is

data collection versus integration.

Interference chemistry as we have pitched it could help to

collect increasingly prebiotically relevant data. However, we are

still then faced with evaluating the relative plausibility of one

prebiotic scenario versus another, some of which may be

mutually exclusive, i.e., integrating disparate data. More

complex forms of environmental and chemical interference

then emerge for us to consider in our quest to map out the

nature of prebiotic Earth, related to the dynamics, timescales, and

sizes of environments.

For example, if we propose that one environment (e.g., glacier

ice) hosting a particular prebiotic chemistry existed on early Earth,

could it have co-existed with another environment (e.g., high

pCO2 atmosphere) invoked in another step of the same

proposed sequence of events? Are these environmental

conditions mutually exclusive? Similarly, would the prebiotic

chemistry of one environment have in fact inhibited that

proposed to have occurred in another, after considering local/

regional/global feedbacks? Can we be sure that the regions of

parameter space involved in a given scenario—explored and tested

for plausibility (using interference chemistry or otherwise)—

remain plausible when placed into a complete planetary context?

Integrating interference chemistry constraints on the nature

of prebiotic Earth will requires reaching ever further beyond the

initial focus of in-situ prebiotic chemistry, e.g., considering the

compositions of planetary crusts that determine local

environmental diversity, and to astrophysical constraints that

determine the chemistry of those crusts. There is no way to

directly account for these types of interferences and boundary

conditions in the context of an individual experiment. Therefore,

whilst the relatively simple multi-factorial experimental design

that we suggested here for interference chemistry may give us

some measure of plausibility for a specific system (within

available experimental or theoretical constraints at the time) it

will fall short of helping us integrate resulting data from many

disparate experiments.

Given the absence of empirical evidence for the nature of

environments and chemistry on the prebiotic Earth, we envisage

that data integration accounting for interference effects will at

some level rely on linked simulations. Progress is this regard being

made in several relevant areas, including the formulation of self-

consistent global biogeochemical models, which are being

employed to reconstruct the evolution of Earth’s surface

environment over time (Lenton et al., 2018; Mills et al., 2018),

and rule-based models of complex chemical systems in the

modelling of physical chemistry (Goldford et al., 2019; Wołos

et al., 2020; Arya et al., 2022). We view these tools as being likely

essential for bridging spatial and timescales that are not tractable in

the lab and for linking fields (e.g., feeding simulations of prebiotic

systems into models of planetary geochemistry). Experimental and

observational approaches then have the pivotal role of informing

the mechanics at play in such simulations.

TABLE 2 Timescales of prebiotic chemistry and environmental processes.
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As with experiments, which we have focused on in this article

(systems and interference chemistry), results from simulations

will only be as strong as the validity of their core assumptions.

Predictions made by simulations may be less unhelpful if they are

left untested and, in some cases, it may not be tractable to

perform an equivalent experiment in the lab. However, data

generated by exoplanetary science may provide us with the

empirical data needed to test planetary-scale simulation

results. Exoplanetary science provides the possibility to

observe worlds of a similar stellar parent body, orbital

configuration, and chemical composition to Earth, of various

ages. Mapping out the distribution of life in our galaxy will

permit us to test origin of life scenarios using real planetary

laboratories, and to build statistical descriptions of prebiotic

chemistry at the planetary scale. Ultimately, we will be able to

answer crucial questions: what do prebiotic Earth-like worlds

look like, and how many Earth-like worlds give rise to life? These

data may then enable cross-environmental data integration in

prebiotic chemistry, i.e., the ability to test predictions made by

planetary-scale simulations of prebiotic chemistry, and then

within that context to re-evaluate which scenarios for

prebiotic environments (and eventually, the origin of life) can

be constructed in a truly self-consistent manner.

Conclusion

As far back as we have been able to reach in Earth’s past,

whether through rocks or through genetics, life’s origins have

remained beyond the horizon. In stark contrast, the alternative

route of working from the ground up via prebiotic chemistry,

aiming to build life in the laboratory, has made outstanding

progress. Carefully regulated laboratory experiments have now

been able to create the building blocks of life: RNA, protein and

lipid precursors. These experiments place prebiotic chemistry in a

firmly testable physical and chemical context, i.e., they point to

specific astrophysical and geological settings where this chemistry

could occur. Whilst in the lab these reactions are carried out under

ideal conditions, in nature the chemistry will inevitably be messier.

Nonetheless, prebiotic chemistry must have emerged from

geochemistry; linking the two is therefore fundamental for

establishing how rocky worlds can give rise to life.

We propose a term to describe research that explicitly

investigates the robustness of prebiotic chemistry to

environmental conditions: interference chemistry. By

identifying the geochemical characteristics of prebiotic

environments, and testing prebiotic organic systems under

these natural conditions, we will refine our view of the

prebiotic planetary ‘wild’. In this article, we summarised

previous experimental approaches fall under our definition of

interference chemistry and presented an initial library of

environmental conditions that could be implemented in future

experiments.

Interference chemistry has the potential to help evaluate the

prebiotic plausibility of a given scenario. However, this possibility

must come with the overarching caveat that any and all input

constraints are subject to change, as our knowledge of

fundamental physical chemistry and the nature of early Earth

continuously improves. Nonetheless, seperating the burden of

proof for environmental plausiblity into a separate strand of

research—interference chemistry—might have the positive

outcome of diminishing the role of geochemical ‘gatekeeping’

in prebiotic chemical research. The revised approach in

interference chemistry, where these two fields are inherently

linked, may more often lead to geoscientific constraints that

inspire, rather than unproductively inhibit, exploration and

innovation in the field of prebiotic chemistry.
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