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Though sedimentary mercury in marine sediments has been regarded as a

geological indicator of volcanic activity based on volcanism activity is the

dominant natural source of Hg to the oceans, the influence of diagenesis on

mercury cannot be dismissed. Marine mudstone has been selected to explore

the migration of mercury from the syn-sedimentary stage to the diagenetic

stage in this review. Marine mudstones undergo a series of significant

transformation processes, including the illitization of smectite and the

formation of framboidal pyrite aggregates during the diagenetic stage. This

processmakes the adsorption capacity ofminerals change significantly that clay

minerals are weakened, while pyrites are enhanced. In this reason, it is inferred

that the sedimentary mercury may re-migrate from clay minerals to pyrite. This

at least means that the indication of volcanic activity by mercury enrichment in

marine mudstone need to be re-evaluated.
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Introduction

In the Phanerozoic Earth, there is a correlation between volcanic activity and several

major biological extinction events, such as in the Ordovician/Silurian, Permian/Triassic

and Cretaceous/Paleogene (Font et al., 2016; Grasby et al., 2016; Sial et al., 2016; Shen

et al., 2019a; Shen et al., 2019b). Mercury has been widely recognized as tracer evidence of

volcanic activity in sedimentary records from Large Igneous Provinces (LIPs), and so the

enrichment of sedimentary mercury before and after biological extinctions has been used

to assess regional/global volcanic activity (Grasby et al., 2019; Shen et al., 2020).

Mercury is mainly present in various inorganic species in marine sediments (>98% of

total Hg; Morel et al., 1998; Boszke et al., 2003). The retention of mercury in sediments

usually should require attachment to the mineral surfaces, including organic matter, clay

minerals, sulfides, and other phases (Krupp, 1998; Oliveri et al., 2016; Ravichandran, 2004;

Sanei et al., 2012; Selin, 2009). Organic matter mainly exists in form of organic-mercury

complex (Ravichandran, 2004). Clay minerals can also adsorb mercury because of its high

surface area, moderate to high cation exchange capacity and high negative surface charge

(Farrah and Pickering, 1978; Horowitz, 1991). Sulfide minerals may be the main hosts of
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Hg in anoxic environments due to the high affinity of Hg for

sulfide (Bower et al., 2008; Shen et al., 2019c). Other phases (such

as metal oxides) also have certain adsorption capacity for

mercury, but they do not play an absoulute role in mercury

adsorption (Gobeil and Cossa, 1993; Feyte et al., 2010).

According to the modern and ancient mercury sedimentary

hosts, the main hosts of mercury include organic matter, clay

minerals and pyrite (Shen et al., 2020).

In Mcneal and Rose (1974), mercury content in unconsolidated

sediments was much higher than those in sedimentary rocks,

suggesting that mercury is lost during diagenesis. Furthermore,

when sediment undergoes redox changes because of organic

matter mineralization (Froelich et al., 1979), the Hg bound to or-

ganic matter can be released in pore water (Cossa and Gobeil, 2000;

Gagnon et al., 1997). All of the above suggest that mercury re-

migration may occur after entering the sediment.

Because most minerals are transformed during the diagenetic

stage, the possibility that Hg may move after entering sediments

cannot be ignored (Young et al., 1973). This problem has also led to

intensive debate about whether the core profiles of Hg enrichment at

the sediment surface reflect digenesis (Rasmussen, 1994). However,

the specific change mechanism of mercury in the diagenetic stage is

still unclear. For this reason, based on previous studies on diagenesis

of marine mudstones, we propose a remobilization mechanism of

mercury that mercury migration from clay minerals to pyrite.

Finally, when this migration reaches a certain extent, mercury is

no longer suitable as an effective tracer for the volcanic activity of the

same fire province.

Properties of mercury

Mercury is a toxic heavy metal that exists in nature with a

variety of sources, including soils and surface volatilization of

water bodies, geothermal and volcanic activities, forest fires,

spontaneous combustion of coal and degassing of the Earth’s

crust (Lindberg and Stratton, 1998; Gustin, 2003; Obrist, 2007).

Among which, volcanic eruption is the main natural source of

mercury (Pirrone et al., 2010).

There are three main types of atmospheric mercury, including

gaseous elemental mercury (Hg0), active mercury ion (Hg2+) and

Hg2+ compounds associated with particles (Hg(P)) (Schroeder and

Munthe, 1998). It usually settles to the sea surface, soils or plant

surface through dry or wet deposition (dry deposition: settling or

uptake the surface without precipitation; wet deposition: removel

from the atmosphere through precipitation; Mason et al., 1994;

Selin, 2009). Hg0 can remain in the atmosphere for a long-time

period (0.5–1 year; Selin, 2009), and be responsible for long-

distance transportation and exchange, based on its low water

solubility and dry deposition rate (Lamborg et al., 2002; Selin,

2009), but also is the main occurrence state, accounting for 97%–

99% of the total mercury content (Fitzgerald, 1995). Compared to

Hg0, the content of Hg2+ is less than 3% and it is soluble in water

(Lindberg and Stratton 1998).

In the atmosphere-ocean system (Figure 1), Hg0 can be

oxidized to Hg2+, which is removed from the atmosphere by

the oxidation by halogen, ozone and other free radicals

(Schroeder and Munthe, 1998; Selin, 2009). Some Hg2+

arriving at the seawater surface could be transformed

through photochemical reduction and then re-emitted to

the atmosphere (Ravichandran, 2004). Under biotic and

abiotic action, Hg2+ can convert into methylmercury (Me-

Hg) and mercury sulfide complex (HgS), respectively

(Ravichandran, 2004). Me-Hg can then be used as an

intermediate to form organic mercury complex (Hg-OM),

which is deposited into sediments or adsorbed by clay and

pyrite, while HgS would be precipitated in an environment

rich in hydrogen sulfide (Percival et al., 2015).

FIGURE 1
Circulation, transport and form of mercury in nature (modified from Percival et al., 2015).
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Migration of mercury

Generally, the transportation of mercury from volcanic

activity to sediments is the main focus, but the migration in

the diagenetic stage has been rarely studied previously. Due to the

influence of diagenesis, mercury may undergo significant

migration (Smit et al., 2016). Based on the mobility of

mercury in mineral transformation, we propose a migration

mechanism from clay minerals to pyrite during diagenesis.

Therefore, it is of interest to explore the migration processes

of mercury in water bodies, and during syn-sedimentary, and

diagenesis stages (Figure 2). This will affect the effectiveness of

mercury as an indicator of volcanic activity.

In water bodies

The mercury derived from the atmosphere or terrigenous

debris before entering the water mass is mainly Hg(P) and Hg2+

ions (Lin and Pehkonen, 1999). After entering a water body,

particulate mercury can be directly adsorbed by porous media,

such as organic matter, clay minerals and pyrite (Ravichandran,

2004; Holmes et al., 2009). Under the biotic and abiotic actions,

most Hg2+ would form Me-Hg and be adsorbed by organic

matter, clay minerals and framboidal pyrite (Amyot et al.,

1997; Holmes et al., 2009). Some Hg2+ reacts with sulfide to

form HgS in anoxic water which could be directly precipitated

when the water column becomes saturated (Ravichandran,

2004). Unsaturated in concentration, it is methylated to form

Me-Hg which would endure the transformation to migration to

precipitation process (Niessen et al., 2003).

Syn-sedimentary stage

At this stage, there are mainly three kinds of porousmedia for

mercury adsorption, including organic matter, clay minerals

dominated by smectite and framboidal pyrite (Shen et al.,

2020), although other hosts (iorn and manganese oxides) can

also have an important role (Gobeil and Cossa, 1993; Feyte et al.,

2010). Organic matter and clay minerals mainly come from

terrestrial weathering products (Singer, 1984), while

framboidal pyrite is a syn-sedimentary authigenic mineral

formed in anoxic water columns (Wilkin and Barnes, 1997).

The formation of sedimentary pyrite is mainly related to bacterial

sulfate reduction (BSR) (Berner, 1984). In anoxic water, organic

matter is used as reducing agent and energy source to form

sulfide (mainly hydrogen sulfide) (Eq. 1), which combines with

free active iron to form iron monosulfide microcrystals (Eq. 2)

(Wilkin et al., 1996). The microcrystals react to form greigite

(Fe3S4) and aggregate, and finally form framboidal pyrite (Wilkin

et al., 1996). Then framboidal pyrite monomer can be

accumulated and preserved in sediments after gathering

(Wilkin and Barnes, 1997).

SO2−
4 + 2CH2O→BSR 2HCO−

3 +H2S (1)
H2S + Fe2+ → FeS + 2H+ (2)

Diagenetic stage

There are three main groups of clay minerals, namely

smectite, illite and kaolinite. During the diagenetic stage,

transformations take place, including illitzation of smectite

and kaolinite (Curtis, 1985). The transformation of smectite to

illite is a most important diagenetic chemical transformation in

mudstone with increasing burial depth (Pollastro, 1993; Schicker

et al., 2021).

During diagenesis, the petroleum generation process can

theoretically release a large quantity of organic acid and

carbon dioxide (CO2) (Barth and Bjorlykke, 1993; Seewald,

2003). This process can promote the dissolution of minerals

(mainly feldspar and mica), and then release a large quantity of

potassium ions, which would enhance the transformation of

smectite to illite (Eq. 3) (Berger et al., 1999). Among the clay

minerals, smectite not only has the largest specific surface area

FIGURE 2
Migration and occurrence mode of mercury in syn-
sedimentary and diagenetic stages.
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(Passey et al., 2010), but also is the only mineral that has a

significant correlation with mercury (Kongchum et al., 2011).

Undergoing transformation of smectite to illite, the adsorption

capacity of clay minerals is substantially reduced, which could

lead to mercury that was adsorbed by smectite in the syn-

sedimentary stage entering into pore water to find a new host

(Loukola-Ruskeeniemi et al., 2003). However, because of the Hg-

OM have relatively high stability constants (1022–1028)

(Ravichandran, 2004) and the strong reducing environment of

marine mudstones, the mineralization organic matter

contributes little to the mercury content in pore water.

Smectite + Al3+ + 2K+ → Illite + Si4+ (3)

At the same time, pyrite also undergoes significant

transformation in mudstone. The single particle (diameter <6
㎛) framboidal pyrite monomer formed during syn-sedimentary

deposition has a certain adsorption capacity (Wilkin et al., 1996;

Wilkin and Barnes, 1997). Under certain conditions, because of a

large quantity of sulfur and iron sources enriching, the individual

framboidal pyrite crystals began to form framboidal pyrite

aggregates, which could greatly improve the specific surface

areas (Wilkin and Barnes, 1997). At this time, with the

increase of the specific surface area, the adsorption capacity of

pyrite can be greatly improved (Pugh et al., 1981). Furthermore,

mercury is associated with abundant pyrite in Shen et al. (2019c),

which commonly has a stonger affinity for Hg than other

potential host phases (e.g., organic matter, clay minerals;

Ravichandran, 2004; Bower et al., 2008). Therefore, free

mercury being released by smectite can enter the framboidal

pyrite aggregate.

Previous studies have demonstrated that clay minerals are

one of the main hosts of mercury (Selin, 2009; Kalvoda et al.,

2019; Shen et al., 2019d). However, in the Jiaoye section of the

Ordovician/Silurian in South China, it is found that there is

almost no mercury in the clay minerals, while a large amount

of mercury is enriched in the framboidal pyrite aggregates

(Shen et al., 2019c). This also demonstrates that the re-

migration of mercury from clay minerals to pyrite during

diagenesis. Furthermore, mercury isotope mass-independent

fractionation (Hg-MIF) generally occurs in special

photochemical processes, such as photoreduction or

photooxidation (Blum et al., 2014). Therefore, the Hg-MIF

can effectively identify the source of mercury. However,

photochemical processes are not involved in the diagenesis

process, so the isotopic mass-independent fractionation of

mercury did not change significantly during this migration

process. In other words, the isotopes do not distinguish

whether the source of mercury is diagenetic re-migration.

Therefore, when the amount of sedimentary mercury that

migrates between layers is large enough, it means that the

sedimentary mercury cannot be used as an effective indicator

of volcanic activity in LIPs.

Conclusion

According to previous studies, it is found that the diagenetic

transformation of the main host of mercury has a great influence on

the retention of mercury. In addition, there is a phenomenon in the

marine Ordovician/Silurian boundary in South China that a large

quantity of mercury is enriched in framboidal pyrite aggregates, but

almost lost in clayminerals. These aspects support the assumption of

sedimentary mercury migration. For this reason, a diagenetic re-

migration model of mercury based on mineral transformation is

proposed that migration from clay minerals to pyrite. However,

mercury is not suitable as an effective tracer of volcanic activity in

large igneous provinces when the interlayer flow of mercury occurs

and the mobility is sufficient to limit the reconstruction of the

paleoenvironment by mercury. Therefore, inferences about volcanic

mercury inputs associated with LIP may need to be re-evaluated.

Finally, future research needs to better understand the influence of

diagenesis on the migration of mercury are recommended.
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