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We investigated helium isotopes on gas extracted by crushing from melt and

fluid inclusions in minerals from Plinian and inter-Plinian tephra and lavas of

Vesuvius, Italy. Erupted products of different ages were considered, from

Avellino eruption (1995 BCE) to the last eruption of 1944, with special focus

on the 79 AD Plinian eruption. 3He/4He ratios between 1.5 and 2.7 RA were

measured, with the highest values associated with rocks representative of the

roof and thewalls of themagma chambers (cumulates). Lowest values occurred

in sanidines representative of magma-skarn interfaces. Noteworthy, the highest

measured values of the 79 AD pumices were comparable with both lavas and

tephra emitted from flank vents and under open-conduit conditions during the

Medieval Period and Present Period of Vesuvius activity, and present-day

fumarolic discharges. 3He/4He values are buffered within an extended,

deep-seated reservoir at about 10 km filled with magma rising from the

mantle. A fact that might potentially limit the accuracy of future eruption

forecasting through monitoring of 3He/4He changes in Vesuvius fumaroles.

Ageing and interaction with crustal rocks emerged as possible mechanisms that

lowered the 3He/4He ratio of the melt during its intra-crustal magma chambers

stay, with highest values associated with more dynamic conditions.
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Introduction

The volcanoes of Monte Somma, Vesuvius, and Phlegraean Fields occupy the

southern part of the Campania Plain, southern Italy, and border a densely populated

region currently inhabited by more than two million people that also includes the

metropolitan city of Naples. Starting in the 1980s’, the high volcanic risk related with the

possible renewal of activity of one of these volcanoes fostered an intense scientific effort to

increase knowledge on the eruptive history and mechanisms of these volcanoes (e.g.,

Barberi et al., 1984; De Vivo et al., 1993). Present volcanic activity mostly consists of active
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seismicity, ground deformation with alternation of deflation/

inflation episodes (mostly in the Phlegraean Fields area),

moderate fumarolic emissions, and hot spring discharges.

At Vesuvius, over the last decades, a large number of rock

and fluid samples have been collected, and an extended database

of mineralogical and geochemical analyses of various deposits is

now available (De Vivo et al., 2010; Peccerillo, 2020). The historic

activity of the Vesuvius volcanic system is characterized by

occasional Plinian eruptions (Avellino, 79 AD, 472 AD, 1631)

separated by periods of inactivity or semi-persistent activity

(Arnò et al., 1987). During semi-persistent phases of activity,

the volcano experienced an open-conduit behavior, and

produced effusive, often from flank vents (Principe et al.,

2004), and mixed (effusive and explosive) eruptions, from

Strombolian, to Violent Strombolian and Sub-Plinian type

(Arrighi et al., 2001).

As the last eruption occurred in 1944, most of the current

scientific interest is in the possible correlation between ongoing

observed dynamics and past geological record. In particular, the

link between present-day fluid composition and magma

degassing at depth is considered a key element in

understanding the mechanisms that could control any possible

future volcanic activity.

Due to its well-defined isotopic signature for different

geological settings (e.g., Kurz et al., 1982; Ozima and Podosek,

1983; Mamyrin and Tolstikhin, 1984; Burnard, 2013), the helium

isotope composition (expressed as the 3He/4He ratio measured

in the sample, R, normalized to same isotope ratio measured in

air, RA = 1.39 × 10−6) has the potential to be usefully employed to

investigate eruptive mechanisms and magma dynamics. As a

general statement, under closed conduit conditions, a number of

information on the primary magma source could be lost due to

the long residence time of a magma into shallow intra-crustal

magmatic chambers. Despite this uncertainty, theR/RA signature

of gases extracted from fluid inclusions can disclose important

information on the evolution of melts inside the magmatic

chambers, and on the interactions between magma and wall

rocks. Further to this, the comparison of 3He/4He ratios

measured on fluid inclusions of phenocrysts with values from

present-day fluids (fumaroles, hot springs, gas dissolved in water,

mofettes, etc.) provide additional insights on the time evolution

of the magmatic-hydrothermal system, because variations in the

chemical and isotopic composition of fluids may reveal the onset

of a new phase of volcanic activity (e.g., Ozima and Podosek,

1983; Mamyrin and Tolstikhin, 1984; Porcelli et al., 2002;

Burnard, 2013).

At Vesuvius, 3He/4He ratios have been mostly determined

on olivine and pyroxene phenocrysts separated from lavas

emitted under open conduit conditions during the last

400 years (from 1,631 to 1,944; Graham et al., 1993; Graham

and Lupton, 1999; Martelli et al., 2004). Until today, no He

isotope were available for products—such as Plinian

pumices—emitted after long periods of permanence in a

magmatic chamber under closed conduit condition—or from

Violent Strombolian and Sub-Plinian products—deriving from

the refilling of the open conduit with gas-rich magma from a

deep-seated reservoir. This paper aims at filling this gap, by

integrating the existing He isotope composition data with new

data on minerals from tephra and lavas belonging to all these

types of eruptions. Special emphasis is on volcanic products

emitted during the 79 AD Plinian eruption.

Geological-volcanological setting

Monte Somma is a complex volcanic structure affected by

several calderas and structural collapses (e.g., Principe et al.,

2021). In the middle of the resulting morphological depression,

the volcanic cone of Vesuvius has grown. Along with the

Phlegraean Fields volcanic area and the Roccamonfina

stratovolcano, Monte Somma-Vesuvius volcano is hosted in a

large graben within the Campania plain (Figure 1) that originated

during the Upper Pliocene-Lower Pleistocene. This graben is part

of a macro-regional extensional system that stretches along the

Tyrrhenian margin of the Apennine mountainous chain, from

southern Toscana to northern Calabria. This belt experienced

widespread volcanism in Pleistocene (e.g., Scandone, 1979; Turco

et al., 2006).

The volcanic activity in the area now occupied by Monte

Somma and Vesuvius started about 400 ka BP (Brocchini et al.,

2001). The outcropping deposits all belong to the volcanic

activity following the Campanian Ignimbrite eruption (about

39 ka ago; Rosi and Sbrana, 1987). Dated to about 22 ka BP

(Cioni et al., 2008), the Pomici di Base eruption—the oldest

eruption considered in the present work—is the first one and the

major Plinian eruption occurred in Vesuvius area (Bertagnini

et al., 1998). Other major explosive eruptions followed, such as

the Greenish Pumices Sub-Plinian eruption (about 20 ka BP;

Cioni et al., 2003), and the Pomici di Mercato Plinian

eruption (about 8,900 years BP; Mele et al., 2011). The activity

occurred at Vesuvius during the last 4 ka BP has been subdivided

into four synthematic units, on the basis of major geological

events, marked by depositional unconformities (Paolillo et al.,

2016): 1) Proto -Vesuvius, between the Plinian eruptions of

Pomici di Avellino (about 4 ka ago) and 79 AD; 2) Ancient

Vesuvius, between 79 AD Plinian eruption and 472 AD Sub-

Plinian eruption; 3) Medieval Vesuvius, from the 472 AD Sub-

Plinian eruption and the 1631 small-scale Plinian eruption; 4)

Present Vesuvius, between 1631 and 1944 eruptions.

The Medieval Vesuvius activity is characterized by the

emission of lava flows from flank vents opened on the slopes

of the Vesuvius cone, and of Strombolian and Violent

Strombolian scoriae fallout (Principe et al., 2004; Paolillo

et al., 2016). During the Present Vesuvius period, the volcano

passed from effusive and markedly Strombolian activity to

episodes of violent Strombolian and Sub-Plinian eruptions
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FIGURE 1
(A) Geodynamical sketch map of Southern Italy, with location of the Monte Somma and Vesuvius (modified after Montone et al., 1999). Bold
lines = structural arcs; shaded triangles = active compressional fronts; solid triangles = active oceanic subduction; open triangles = front of the Plio-
Pleistocene thrust, now prevalently affected by extension. (B) Simplified geological map of the Campania plain and volcanic districts.
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with mixed effusive and explosive character (Arrighi et al.,

2001).

Since the last eruption of 1944, Vesuvius entered a period of

eruptive rest. In the crater area, temperatures between 600 and

800°C were recorded in the fumaroles during the period

1944–1960 (Chiodini et al., 2001), before starting to gently

decrease close to the boiling point of water at the crater

altitude (around 95°C) during the 1990s, down to present-day

sub-boiling temperatures (about 72°C). The residual activity

consists of fumaroles, diffuse degassing (e.g., Baubroun et al.,

1991; Chiodini et al., 2001; Federico et al., 2002; Frondini et al.,

2004), general subsidence and low-magnitude seismicity (e.g.,

Ricco et al., 2021; and references therein). The present-day,

mildly fumarolic activity is concentrated near the crater only,

whereas diffuse soil emissions widely occur around the flanks of

the volcano, in correspondence of structural and volcano-

tectonic elements (Paolillo et al., 2016). In this area, the

extensive interaction between rising magmatic fluids and

groundwater has been revealed by C-He systematics of

dissolved species (Federico et al., 2002).

Methods

Bulk rocks samples were disaggregated and the mineral

phases of interest separated with a magnet separator. Then,

olivine and pyroxene crystals were carefully collected from the

enriched fraction by handpicking under binocular microscope,

and cleaned ultrasonically. Mineral samples successively

underwent several hours under-vacuum degassing at

100–150°C to minimize air contamination on crystal surfaces.

Fluid inclusions gases were then extracted by under-vacuum

crushing of 1–2 g of the selected mineral fragments (grain size

from 0.5 to 1 mm). The crushing efficiency was checked by

verifying that the granulometric size of the powder was below

20 μm for all samples.

Both fumarolic gases and minerals were processed on a

stainless-steel vacuum line equipped with cold and hot Ti

getters to separate noble gases from the gaseous mixture. The

extraction line was connected to both a magnetic mass

spectrometer (MAP 215-50) equipped with ion counting

detector, and a quadrupole mass spectrometer (Spectralab 200,

VG-Micromass; Magro et al., 2003).

The 3He/4He resolution was close to 600 AMU for

HD_3He at 5% of the peak. Typical blanks, during the

measurement period, were on the order of 0.6–1 × 10−9 cc

STP for 4He, with R close to air. No blank corrections were

applied to R values of fumarolic gases, as the He

concentration of these samples was several orders of

magnitude higher than the blank (a few hundred ppm in

the samples vs. ppb level concentrations in the blank).

Minerals samples with He concentrations below the

arbitrary threshold of five times the concentration of the

blank, or with 4He/20Ne ratios lower than five times the air

ratio were marked as “low-gas samples” in Supplementary

Table S1A.

A standard volume of air at different pressures (from

1,013 to 10.13 mbar) was introduced into the extraction line

and processed like the samples. The reproducibility of
3He/4He and 4/(20 + 22) mass ratios measurements on air

samples was better than 10% and 5%, respectively, over the

analysis period. To check He isotopes results, we performed

duplicate analyses on: 1) the gas extracted from an olivine

crystal from the 1983 Mt. Etna eruption (3He/4He between

6.0 and 6.7 RA; Marty et al., 1994); 2) the gas extracted from a

pyroxene crystal of the 1906 lava flow of Vesuvius

(3He/4He = 2.61 ± 0.08 RA; Graham et al., 1993); 3) the

gas extracted from an olivine and a pyroxene crystal of the

1944 lava flow of Vesuvius (3He/4He = 2.42 ± 0.14 RA;

Graham et al., 1993). These results are summarized in

Supplementary Table S1C.

The CO2 fraction extracted from three sanidine samples was

first entrapped in a stainless-steel finger equipped with high-

vacuum valves, and then analyzed in a stable isotope mass

spectrometer (Europe lab) for the determination of δ13C values.

Cross controls were performed to exclude C isotopic

fractionation during crushing, and in particular, we verified

that CO2 could be not released by the crushing device by

comparing the analytical results of “standard” samples with a

quartz sample without inclusions.

FIGURE 2
R/Ra vs. 4He/20Ne ratio (normalized to air) diagram for Monte
Somma and Vesuvius samples. 1 = Monte Somma and Vesuvius
fluid inclusions (this work); 2 = Monte Somma and Vesuvius fluid
inclusions (data from literature); 3 = Vesuvius present-day
fumaroles (this work); 4 = Phlegraean Fields present-day
fumaroles (this work). Labels are as follows: cpx, clinopyroxene;
dpx, diopside; lc, leucite; ol, olivine; px, pyroxene; sn, sanidine. The
black dashed lines represent binary mixing trends between the
atmospheric end-member (air) and a number of deep
components with different 3He/4He signature and fixed 4He/20Ne
ratio (4He/20Ne = 10,000).
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Results and discussion

The concentration and the isotopic composition of He, and

the 4He/20Ne ratios of fluid and melt inclusions, and fumarolic

gases analyzed for this study are reported in Supplementary

Table S1A (data from this work) and Supplementary Table S1B

(data from the literature).

The 3He/4He ratio (normalized to air) of olivine and

cogenetic pyroxenes range between 2.25 and 2.84 RA, in close

agreement with literature values (2.2–2.7 RA; Graham et al., 1993;

Graham and Lupton, 1999). The lowest 3He/4He values

measured in olivine and clinopyroxene correspond to an

olivine phenocryst from white pumices of the 79 AD Plinian

eruption, the highest ones to a pyroxene of the 1944 tephra

fallout. Sialic minerals, leucites from 1631 to 1944 period (Present

Vesuvius), and sanidines from magma-skarn interface of 79 AD

eruption, show the lowest 3He/4He values, in the range

0.7–1.8 RA. The 3He/4He values for fumarolic gases range

FIGURE 3
(A) R/RA ratios (dots) and

4He contents (bars) for different, individual eruptions (abundances are in ncc/grams of crushed mineral). Empty dots/
grey bars: data from this work. Pale grey dots/pale grey bars: data after Graham et al. (1993). Leucites after Graham et al. (1993) were likely
compromised by air contamination (low He concentrations, and air-like 4He/20Ne and 3He/4He ratios). The dashed line connects olivine and
pyroxene samples. (*) 1,631 lava samples should be attributed to Medieval age activity Principe et al. (2004). Pale blue background: closed
conduit activity; white background: open conduit activity; pale yellow background: present-day fumarolic activity. (B) Simplified conceptual model
of Vesuvius, with indication of various hypothetical levels of magma accumulation and differentiation (modified after Stoppa et al., 2017). Volcanic
activity is driven by the recurrent arrival of primitivemaficmagma batches from themantle into an extended deep-seated reservoir (“deep reservoir”),
where homogenization occurs with resident, pre-existingmagmas. From this reservoir, magmas can be directly emitted at the surface, or stored into
shallow magma chambers (“shallow reservoir”), giving origin to the different eruptive styles and types of volcanic deposits of Vesuvius. Numbers in
red are approximate 3He/4He signatures of different domains/reservoirs.
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from 2.64 to 2.78 RA, that are of the same range of the highest

values measured in pyroclastic products of 1944 eruption. For

comparison, present-day fluids discharged in the neighboring

volcanic area of Phlegraean Fields (mostly in the range

2.4–3.2 RA, up to about 3.53 RA; Tedesco et al., 1990;

Chiodini et al., 1996; Tedesco and Scarsi, 1999) partially

overlap with the upper values of Vesuvius range.

The R/RA vs. 4He/20Ne correlation plot (Figure 2) shows that

most of samples from this work plot along mixing lines connecting

the atmospheric end-member with a possible deep-seated

component having a 3He/4He signature of 2–3 RA. Samples

with lowest 4He/20Ne values possibly suggest the mixing with a

correspondingly 3He- enriched component (up to about 3.5 RA),

but the R/RA ratios of these samples are affected by a relatively large

error due to the low amount of He extracted from minerals, and

should be treated with caution. Only sialic minerals from leucites

(data from literature) do not follow this trend, plotting at

comparatively lower 3He/4He values (~1 RA). Overall, all plotted

values are markedly lower than most 3He- enriched values

measured in most volcanic arcs (7–9 RA; Poreda and Craig,

1989), and the average range of subduction zones worldwide

(5.4 ± 1.9 RA; Hilton et al., 2002). The compositional

resemblance between mineral separates from the considered

eruptive units, and present-day fluids indicates a common

magmatic source that has remained almost unchanged over time.
3He/4He time patterns over the course of different phases of

activity of the volcano (Figure 3) indicate that: 1) coexisting

olivines and pyroxenes are characterized by similar R/RA values;

2) the two generations of dark (i.e., ferrosalitic) and light

(i.e., diopsidic) green pyroxenes of 1944 tephra have by

similar R/RA values; 3) grey and white pumices of the 79 AD

eruption have a significantly lower He content (one order of

magnitude less) compared to cumulates of the same eruption.

Vesuvius cumulates are typically dunites, wherlites, and biotite-

bearing pyroxenites (e.g., Joron et al., 1987; Belkin and De Vivo,

1993), with clinopyroxene, phlogopite, biotite, apatite,

plagioclase, and fosteritic olivine (Fo80−90) as main phases; 4)

the He content of olivine and pyroxene from lavas of the

1631–1944 Vesuvius phase of activity is generally lower than

cogenetic tephra, despite similar 3He/4He values, whereas the

products of 1944 and 1906 eruptions do not show the same

differences in helium abundance; 5) R/RA values systematically

decrease from femic to sialic minerals, and sanidines are

characterized by the lowest He contents, despite the presence

of volatile-rich fluid inclusions (mostly CO2-enriched).

Data from literature suggest low 3He/4He ratios and He total

content typically associated with leucites can be tentatively

attributed to a relatively minor efficiency in volatile trapping

of this mineral during magma transport and cooling. Structural

reasons (i.e., a less compact structure of sanidine crystals

compared to more retentive minerals like pyroxene and

olivine) can be invoked to explain gas loss phenomena

affecting sanidines (Graham et al., 1993).

Data from this work point to a negligible effect (at least on He

isotope distribution) of processes such as later crystallization

and/or wall rock assimilation in magma chambers, because

pyroxenes are not characterized by a 4He-richer signature

than coexisting olivine, as found elsewhere, where these

processes are active (e.g., Hilton et al., 1995; Marty et al.,

1994; Shaw et al., 2006). Overall, highest 3He/4He ratios were

observed in 79 AD cumulates, representative of the roof and the

walls of the magma chambers (e.g., Cioni et al., 1995). Lowest

values occur in sanidines representative of the magma-skarn

interface (e.g., Fulignati et al., 1998, 2005). Noteworthy, the

highest measured values of the 79 AD paleo-fluids are

comparable with both lavas and tephra emitted under open-

conduit conditions during the 1631–1944 period, and present-

day fumarolic discharges. Medieval Period lavas are phonolitic

basanites, with primitive magmatic composition (i.e., the

Vesuvius parental melts). These lavas have modal olivine

~10%, MgO content >7 wt%, high Mg# (83–86) and high Cr

+ Ni (usually in the 200–270 ppm range), which are reasonable

figures for primitive, mantle-derived melts (Stoppa et al., 2017).

Lavas and tephra of the Present Period are phono-tephrites

(Figure 3B).

A tendency of 3He/4He ratios to decrease from South to

North in Central-Southern Italy has been recognized long ago,

based on data from present-days fluids and from fluid/melt

inclusions (e.g., Sano et al., 1989; Graham et al., 1993; Marty

et al., 1994; Tedesco, 1997; Martelli et al., 2004; Martelli et al.,

2008). This trend has been put in relation with the geodynamic

context of this part of the Mediterranean area, dominated during

the last 30 Ma by the subduction of the Ionian-Adriatic plate. As

a result of this subduction process, a large spatial and temporal

heterogeneity of the volcanic products has been identified in the

Tyrrhenian Sea region, associated with a variety of tectonic

regimes (subduction-related, intraplate, rifting, e.g., among

many others, Peccerillo, 2020). The noble gas signature of

present-day fluids and products of Plio-Quaternary volcanism

has been used to constrain the deep sources of the regional

volcanism, and a 6.7–7.1 RA range has been identified as

representative of the mantle component in Southern Italy

(Marty et al., 1994; Martelli et al., 2008). Crustal

contamination acts in the direction of lowering the 3He/4He

value of this component, and a northward increase in 4He is

generally observed in association with an increase in radiogenic

Sr and Pb, and unradiogenic Nd (Martelli et al., 2008, and

references therein). Based on data from Procida Island

(Martelli et al., 2004), we can assume a value of 5.2 RA for

this modified mantle component in the Neapolitan area.

Low R/RA ratios in fumarolic gases and basalt phenocrysts

have been explained in many arc-related environments either by

degassing of subducted sediments or continental crust, or by the

assimilation of crustal material by magma stored in an intra-

crustal condition (Hilton et al., 1993a; Hilton et al., 1993b). A

metasomatizedmantle with a He isotope signature of 2.4 ± 0.4RA
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was suggested by Graham et al. (1993) for the area under study.

Geochemical features of Monte Somma, Vesuvius, Phlegraean

Fields, and Ischia-Procida rocks have been linked by some

authors to a dominant fertile OIB-type (Ocean Island Basalts)

source, probably contaminated by subducted terrigenous (Ayuso

et al., 1998), or pelagic sediments (Gasperini et al., 2002). Some

authors more recently claimed that the release of metasomatic

fluids from the subducting Ionian-Adriatic plate could be

realistically invoked to explain the low-3He signature and the

He-Sr isotope trends of Plio-Quaternary volcanism over all

Central-Southern Italy (Martelli et al., 2008).

Irrespective of these hypotheses, the correlation between He

amounts and R/RA (Figure 4) highlights a relatively uniform and

lower R/RA compositional range for Vesuvius fluid/melt

inclusions, compared to other volcanoes of the Campania

magmatic province. In particular, a partial overlapping with

R/RA values from Phlegraean Fields is recognizable, along

with a clear separation from values from Ischia (about −1 RA)

and Procida (about −2 RA) islands. Noteworthy, all these

volcanoes are only a few kilometers from each other (up to a

maximum of about 40 km between Vesuvius and Ischia Island;

Figure 1), and the observed differences cannot be easily ascribed

to short-scale compositional heterogeneities of the mantle wedge.

Numerical models and laboratory experiments on site-

specific rocks have emphasized the importance of crustal

contamination/assimilation processes at mid-crustal depth

(e.g., Iacono-Marziano et al., 2008; Iacono-Marziano et al.,

2009; Pichavant et al., 2014), in agreement with the geology of

the Vesuvius substratum, that comprises: 1) about 10 km of

Mesozoic carbonates above the Paleozoic crystalline basement

(e.g., Berrino et al., 1998; Brocchini et al., 2001; Improta and

Corciulo, 2006; Di Renzo et al., 2007); 2) a possibly large

(400 km2), deep reservoir zone identified by tomography

imaging at a depth of 8–10 km, well above the supposed

depth of the Moho discontinuity (about 30 km depth; De

Natale et al., 2006).

Supporting observations to this conjecture include the

following points. 1) The occurrence of effective interactions

between magma and rocks hosting the magma chamber, as

testified by the mineralogical and geochemical characterization

of cognate xenoliths and skarn fragments ejected during the

different eruptions of the volcano (e.g., Barberi and Leoni, 1980;

Belkin et al., 1985; Cioni et al., 1995; Fulignati et al., 1998; Gilg

et al., 2001; Pascal et al., 2009; Stoppa et al., 2017). 2) The

possibility that magma contamination by carbonate rocks widely

occurs in the plumbing system of the volcano, as corroborated by

Sr systematics (e.g., Civetta et al., 1991; Piochi et al., 2006), and

quantitatively modelled by several authors (e.g., Pappalardo et al.,

2004; Pappalardo and Mastrolorenzo, 2010). 3) The emission of

large amounts of CO2 generated by sidewall assimilation

processes after the intrusion of alkali-basaltic magma into the

sedimentary carbonate basement (Iacono-Marziano et al., 2008,

FIGURE 4
R/RA vs.

4He correlation diagram. Data from this work: 1 = Pomici di Base Plinian eruption black pumice; 2 = Pomici di Avellino Plinian eruption;
3 = Pomici di Mercato Plinian eruption; 4 = 79 AD Plinian eruption; 5 = Medieval Vesuvius, Calastro lava; 6 = 1,631 small-scale Plinian eruption; 7 =
Present Vesuvius activity. Data from literature: G = Graham et al. (1993); M = Martelli et al. (2004); G&L = Graham and Lupton (1999). The
compositional fields for Phlegraean Fields, Procida and Ischia islands are also shown for comparison (data fromMartelli et al., 2004). Labels as in
Figure 2.
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2009). In addition, the presence of a mantle source affected by the

incorporation of U-rich carbonated melts has been recently

advanced on the basis of data on U-Th disequilibria and Sr-

Nd-Pb-U isotope systematics (Avanzinelli et al., 2018),

supporting the hypothesis that interactions between

carbonate-rich lithologies and magma may also occur below

the local crystalline basement (Figure 3B).

However, other studies questioned the thermodynamic and

geochemical grounds of conceptual models that consider

extensive (i.e., >10%) country-rock assimilation processes

active in the roots of Vesuvius (e.g., Bailey, 2005; Woolley

et al., 2005; Bell and Kjarsgaard, 2006; Stoppa et al., 2017).

Overall, despite the large amount of geoscientific data now

available, there is no agreement on the actual effectiveness of

carbonate assimilation, and whether the crustal component was

involved at the time of melting of the source, or subsequently

during the ascent of magma, or in what proportions the two

processes can possibly overlap at Vesuvius.

In this complex picture, the main result of our work is to

highlight the striking constancy of the He isotope signal of fluid/

melt inclusions, and its close similarity to the composition of

present-day gaseous emanations. This temporal stability points

to a common deep source beneath the volcano, and to a

mechanism of compositional homogenization that has the

potential to smooth variations possibly related to the ascent of

new magma batches. In the frame of the currently accepted

multi-depth magma chamber (MDMC) model, this entails that

magma ageing and interaction with crustal rocks could be

effective in lowering the 3He/4He ratio of the primitive melt

during its intra-crustal storage, most likely during the stay inside

the “deep reservoir” of Figure 3B. TheMDMCmodel foresees the

presence of a shallow reservoir, possibly migrating up and down

over time within the upper 8 km under Vesuvius (Auger et al.,

2001; Scaillet et al., 2008; Pappalardo and Mastrolorenzo, 2010;

and references therein), and of a large, deep-seated reservoir at

about 10 km (De Natale et al., 2006). The longer is the storage

time, the more effective is the expected re-equilibration of fluid

inclusions in femic minerals like olivine and pyroxene. Even

though, the efficiency of this process may also depend on

additional, ill-defined parameters, such the volume ratio of the

reservoir and of the recharge, the feeding frequency of the new

batches of magma and their possible channeling, or any other

structural element which may locally enhance or prevent

magma-rock interactions. Conditions of homogenization are

expected to be easily achieved for helium, due to its high

diffusivity in melts. Based on data from literature (Trull and

Kurz, 1993), we speculate that this homogenization can occur

over a spatial scale of about 1 mm over less than about 1,060 and

2.5 years for olivine and pyroxene, respectively, at temperatures

of about 965°C, with these numbers decreasing to less than

32 years and 10 days at about 1,100°C. These features are

compatible with the hypothesized large range of temperatures

(possibly betweeen 850 and more than 1,150°C) and residence

times (from few months up to thousands of years) experienced

during the magmatic history of Somma-Vesuvius (e.g., among

many others, Macdonald et al., 2016; Scheibner et al., 2008; Di

Renzo et al., 2007; Morgan et al., 2004).

The carbon-isotope composition of CO2 extracted from fluid

inclusions in sanidines of 79 AD plinian syenites further supports

this scenario. The δ13C values of these samples ranges in fact

from +1.3‰ to +2.1‰ (vs. V-PDB; Supplementary Table S2),

higher than present-day crater fumarolic emissions (~0‰;

Federico et al., 2002), and significantly different from both the

typical mantle range (δ13C = −4‰ to −7‰; Pineau et al., 2004),

and the regional mantle end-member of Pantelleria Island,

southern Italy (δ13C = −4.2‰ to −5.8‰; Parello et al., 2000).

The positive δ13C(CO2) values of sanidines are compatible

with both a decarbonation process at near magmatic temperature

(>500°C; Valley, 1986) of local unmetamorphosed carbonates

(δ13C = −0.5‰ to +1.3‰; Fulignati et al., 2005) and/or

metalimestones and metadolostones (δ13C = −2‰ to +2‰;

Gilg et al., 2001), and the degassing (by decompression during

its ascent towards the surface) of a magma that underwent

increasing carbonate assimilation at depth (e.g., Iacono-

Marziano et al., 2008). Independent on the predominant

mechanism between these two, in a more general sense, also

the C-isotope signature of fluid inclusions supports an important

involvement of crustal materials in the mechanisms of magma

generation, transport and physical-chemical evolution at

Vesuvius.

Conclusion

With the aim of shedding light on the precursory path of a

possible future reactivation of Vesuvius, we investigated helium

isotope abundances in gases extracted by crushing frommelt and

fluid inclusions of volcanic products of different type and age,

and we compared them with present-day fumarolic discharges.

For the first time, we analyzed pyroxene, olivine and sanidine

crystals from both lavas and tephra coming from Plinian and

inter-Plinian eruptions. In particular, we focused on volcanic

products emitted after long periods of permanence in a magmatic

chamber under closed conduit condition, by paying special

attention to 79 AD Plinian eruption.

We measured 3He/4He ratios between 1.5 and 2.7 RA, with

the highest values for the deposits emitted from the 79 AD

magma chamber. This striking constancy of the 3He/4He

signal, regardless of the occurrence of open vs. closed conduit

conditions, and its similarity with values obtained on present-day

fumarolic discharges, suggests that helium isotope patterns are

consistent with an efficient mechanism of homogenization at

depth, under Vesuvius.

We related this homogenization mechanism to the existence

of a deep-seated (about 10 km b.g.l.), extended magma reservoir

filled with magma rising from the mantle. This reservoir directly
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fed lava flows emitted from flank vents during the Medieval

Period, and the overlying magma chambers that produced mixed

and explosive eruptions during other phases of Vesuvius history,

through the ascent of pulses of mafic magma. Our data indicate

that, independently of the effectiveness of carbonate assimilation

processes, minor variations in 3He/4He are associated either with

the ascent of magma along the upward path above the main, deep

storage region, or with the formation of shallow magma

chambers, as in the case of 79 AD Plinian eruption. The

hypothesis that crustal contamination/assimilation processes at

mid-crustal depth played a role at Vesuvius, is corroborated by

the occurrence of positive δ13C values of the CO2 extracted from

fluid inclusions in sanidines of the 79 AD event.

Overall, our data emphasize the fundamental role of the

multiple-chamber structure in the magma dynamics of the

Vesuvius volcanic system, and suggest that magma ponding at

crustal depth could be considered a key mechanism that might

have the potential to homogenize the helium isotope signal.

Should this hypothesis be confirmed, the accuracy of future

eruption forecasting through monitoring of 3He/4He changes

in Vesuvius fumaroles would be questioned.
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