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The Houge’zhuang gold deposit, located in the Penglai–Qixia gold belt of the

Jiaodong peninsula, is a representative auriferous quartz vein-style deposit.

Pyrite is the most common and main gold-bearing mineral and shows complex

textures in the Houge’zhuang gold deposit. Study of ore-related pyrite is of

great significance for understanding the metallogenesis of this deposit,

especially the gold precipitation mechanism. The present study applied

systematic microscopic observation, fluid inclusion analysis, electron

microprobes, in situ LA-ICP-MS trace-element analysis, and in situ sulfur

isotope analyses. Three types of fluid inclusions were identified, among

which the ore-forming fluids exhibited medium–low salinity and

temperature, with the fluid inclusions mainly comprising H2O and CO2.

Three types of pyrites were identified: 1) Py0, characterized by low

concentrations of As and Au and low δ34S values (5.51–6.86‰). 2) Py1, found

in the gold-quartz-pyrite veins and homogeneous in chemical composition

with no obvious zonal growth but with notably more gold and chalcopyrite

inclusions. Py1 contained medium and uniform concentrations of As and was

Au-rich, with δ34S values ranging from 7.13 to 7.89‰ (mean 7.44‰). 3)

Py2 contained arsenic-bearing pyrite and was found in quartz-polymetallic

sulfide veins, with distinct As enrichment and As-rich rims of pyrite and growth

zoning. Consequently, the primary ore-forming fluids passed through some

arsenic and δ34S-rich sedimentary rocks, such as the Jingshan, Fenzishan, and

Penglai groups. With the occurrence of stable water-rock interaction, the

extracted fluids were enriched for As and δ34S. Furthermore, Au was closely

associated with As, visible gold grains tended to occur in association with Py1 at

stage II, and invisible gold was related to the Au-As-rich Py2 of stage III. The As-
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bearing pyrites shared a close spatiotemporal relationship with gold, playing an

important role in the formation and exploration of high-grade gold deposits.
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Houge’zhuang gold deposit, ore-related pyrite, in situ trace element, lattice gold, in
situ sulfur isotope

Introduction

The Jiaodong Peninsula is the largest and most productive

gold province in China, with more than 5000 t of gold reserves.

Although the Jiaodong area accounts for only 0.2% of the total

area of the country, it holds about 25% of China’s total gold

reserves (Deng et al., 2006; Liu et al., 2014; Yang et al., 2016a; Fan

et al., 2016; Yang et al., 2018; Chai et al., 2020a; Deng et al., 2020a;

Deng et al., 2020b; Deng et al., 2020c; Zhang et al., 2020; Wang

et al., 2021). In this region, pyrite is the most common and

important metal sulfide mineral widely distributed within the

gold orebodies and country rocks. The content of pyrite in gold

ores directly affects the gold grade. Statistics of the main gold

deposit types in the Jiaodong area indicate that pyrite accounts

for more than 90% of the total metal minerals. More than 85% of

the gold is distributed in the pyrite interstice and fissures, and

within pyrite crystals (Li et al., 2007), with the remainder being

invisible gold, primarily nanogold and lattice gold (Li J. et al.,

2020). The nanogold is adsorbed by pyrite (Möller and Kersten,

1994; Simon et al., 1999a; Simon et al., 1999b; Li R. H. et al.,

2020), while lattice Au is likely present as Au+ or Au3+ in the

lattice of arsenic-bearing pyrite (Arehart et al., 1993; Chouinard

et al., 2005; Reich et al., 2005; Deditius et al., 2014; Meng et al.,

2022). Au is closely associated with As, such as As1- + Au1+ sitting

at the atom sites of S2- + Fe2- or As3++Au1+ replacing Fe2+. The

element changes in pyrite can appear in the micro-texture of

pyrite. Consequently, the micro-composition and trace elements

of pyrite can record the transportation and deposition of gold;

thus, detailed studies on gold-bearing pyrite are crucial to

elucidate the genesis and prospecting of gold deposits in this

area (Barker et al., 2009; Large et al., 2009; Cook et al., 2009; Cook

et al., 2013; Tanner et al., 2016; Yang et al., 2016a; Chai et al.,

2019a,b,Chai et al., 2019c).

Previous studies on the gold deposits in the Jiaodong area

have primarily focused on the petrology, geochronology,

elemental and isotopic geochemistry, and structure, among

others; however, the factors controlling the high-grade gold

mineralization and the origin and relevant implication for

transportation and deposition of gold remain controversial

(Hou et al., 2006; Hou et al., 2007a; Goldfarb and Santosh,

2014; Yan et al., 2014; Li et al., 2015; Song et al., 2015; Zhu

et al., 2015; Deng et al., 2017; Deng et al., 2018).

The Penglai–Qixia belt is an important gold belt in the

Jiaodong Peninsula, which contains several medium-sized gold

deposits. These deposits are notable for the local presence of

native gold shoots, which are rarely seen in the other regions of

the Jiaodong Peninsula. Several high-grade gold ores in many

orogenic Au deposits are also present (Ma et al., 2015; Feng, et al.,

2018; Feng, et al., 2020). They are commonly associated with As-

rich pyrite and/or arsenopyrite. However, pyrites from the

Jiaodong gold deposits generally contain negligible As, while

arsenopyrite is rare, which restricts research on the relationship

between Au and As in Jiaodong. However, arsenic-bearing pyrite

(As up to 2.5wt%) and abundant visible gold grains have recently

been reported in the Houge’zhuang gold deposit in the

Penglai–Qixia belt, indicating a close spatial association with

visible Au. This finding provides an opportunity to study the

behaviors of Au and As during gold mineralization and to better

understand the origin of high-grade ores in this deposit.

Advances in microanalytical techniques such as EMPA and

LA-ICP-MS have allowed the observation of detailed elemental

and isotopic information from individual pyrites with complex

internal micro-textures. These details can help in unraveling the

growth histories and deducing the sources, nature, and evolution

of relevant ore-forming fluids.

Based on previous research, the present study systematically

assessed gold-bearing pyrites from the Houge’zhuang deposit by

conducting detailed field geological investigation, sampling,

microscope observation, major and trace element mapping,

and in situ trace element and sulfur isotopic analyses. These

data may facilitate the better elucidation of the behaviors of As

and Au during the gold mineralization process and provide a

thorough understanding of the mechanism of gold

mineralization and precipitation in the Houge’zhuang deposit.

Regional geology

The Jiaodong peninsula is an important gold-enriched area

in China. Tectonically, this area is located in the Jiaobei uplift of

the Jiaoliao uplift on the eastern margin of the North China Plate

(Figure 1) (Zhai and Santosh, 2011; Yang et al., 2016a; Yang et al.,

2016b; Deng and Wang, 2016). The basement rocks in the

Jiaodong Peninsula include the Jiaodong Group of the

Archean TTG rock series, the Jingshan and the Fenzishan

Groups of lower Proterozoic metamorphic rocks, and the

Penglai Group of upper Proterozoic metamorphic rocks

(Wang et al., 2011). In upward sequence order, the clastic and

carbonate rocks of the Penglai Group overlie the lower

Proterozoic Jingshan and Fenzishan groups. The Linyi

Formation of quaternary loose sediments is distributed along

the seashore and riverside on the north of the study area.
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Mesozoic granitoid, which covers more than two-thirds of the

bedrock outcrops in this area, consists primarily of Linglong

granite, aged 160–150 Ma(Yang et al., 2014; Deng et al., 2015a;

Deng et al., 2015b; Yang et al., 2018a; Yang et al., 2018b; Yang

et al., 2020), and Guojialing porphyritic granodiorite, aged

132–126 Ma, which contains most of the gold deposits in the

area. Dyke rocks such as lamprophyre, diorite porphyrite, and

diabase are also present in the study area.

The Jiaodong gold belt is divided into the

Zhaoyuan–Laizhou, Penglai–Qixia, and Muping–Rushan belts.

The Houge’zhuang deposit, the study area, is located in the

Penglai–Qixia belt, which is characterized by many medium

to large-sized quartz vein-style gold deposits controlled by the

NE and NNE-trending Qixia, Xiaogu’jia faults (Feng et al., 2018;

Feng et al., 2020).

Deposit geology

Geology of the Houge’zhuang deposit

The Houge’zhuang gold deposit is a medium-sized and

representative auriferous quartz vein-style deposit controlled

by the Daliu’hang fault, with a strike generally in the

NNE direction (15°–30°) and dip to the SE, with steep

dipping angles (60–65°) and lengths ranging from hundreds

to thousands of meters but widths of only a few meters

(Figure 2A).

In the gold field, the widely distributed magmatic rocks are

Early Cretaceous Guojialing granodiorite, which is the main host

for the Au-bearing quartz veins (Hou et al., 2004; Yan et al.,

2014). The gold deposit is surrounded by basic-intermediate to

felsic dikes, such as lamprophyre, diorite porphyrite, and granite

porphyry, among others. The terrane is composed of the

Proterozoic Jinshan Group, Early Cretaceous Qingshan Group,

and Quaternary formation. Precambrian metamorphic basement

and Cretaceous sedimentary are present in the southern part of

this deposit.

The Houge’zhuang gold deposit is mainly composed of three

gold veins, which occur mainly in the form of veinlets, reticulate

veins, and agglomerates that strike generally in the NNE

direction (5–20°) and dip to the NW, with steep dipping

angles (60–75°), showing the characteristics of pinch-out and

recurrence (Figures 2B, 3A). The gold grade varies from 0.3 to

52.4 g/t, with an average of 7.95 g/t. The ore is dominated by a

massive and disseminated structure.

FIGURE 1
Geological map of the Jiaodong gold province showing the major gold deposits and lithological units. Modified after Wen et al. (2015).
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Mineral assemblage and paragenetic
sequence

The ore minerals of the Houge’zhuang deposit include pyrite,

sphalerite, galena, and other sulfides. The subordinate minerals

are K-feldspar, carbonates, chlorite, kaolinite, chalcopyrite, and

electrum. Tellurobismuthite occurs locally, with trace amounts of

arsenopyrite, pyrrhotite, enargite, hessite, and tetrahedrite

(Figure 4). Pyrite, sphalerite, galena, and other sulfides

account for 10–60% of the total minerals; among them, pyrite

is the most closely related to gold mineralization and is the most

important gold-bearing mineral (Figure 5). The alteration halos

are typically 0.2–1 m wide, are weakly developed, and include

potassic alteration, silicification, sericitization, and sericite-

quartz-pyrite alterations.

Based on the detailed microscopic observations and their

cross-cutting relationships, four principal stages similar to the

other Jiaodong gold deposits can be distinguished, namely, the

pyrite-quartz (I), gold-quartz-pyrite (II), gold polymetallic

sulfides (III), and quartz-carbonate (IV) stages, wherein stages

II and III are the main gold mineralization stages. Stage I, which

is the early stage of mineralization, mainly comprises milk-barren

quartz, with minor sericite and fine pyrite as inclusions

(Figure 4A). Very little or no gold mineralization occurs at this

stage (Figure 3A). Stage II is defined by quartz-pyrite veins, which

commonly cut stage I quartz veins (Figures 3B–D). In this stage,

the predominant mineral is pyrite, with small amounts of quartz

and chalcopyrite. Gold mainly occurs in the form of inclusion,

interstitial, and fissure gold, which are commonly present in pyrite

and quartz grains, as well as occasionally along the boundaries

between pyrite grains. Stage III is characterized by gold-quartz-

polymetallic sulfide veins dominated by pyrite, arsenopyrite,

chalcopyrite, galena, sphalerite, and arsenic. The gold is

primarily invisible gold, with the presence of nano-gold and

crystal-gold. Stage IV is characterized by barren quartz–calcite

veins, with almost no gold mineralization.

Sampling and analytical methods

Sampling and sample preparation

Representative samples were collected from the underground

workings of the Houge’zhuang deposit. The samples were cut and

FIGURE 2
Geological map of the Houge’zhuang gold mining area (A) and the geological section of Line 20 (B).
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polished to produce thin sections for microscopic observation,

back-scattered electron (BSE) scanning microscopy, and in situ

trace element and sulfur isotope analyses. The pyrite from stage

Ⅳ was not analyzed in detail.

Fluid inclusion analysis

The fluid inclusion microthermometric experiments were

conducted on a Linkam THMS600 heating/cooling stage

mounted on a microscope at the Shandong Institute of

Geological Sciences (SIGS), Jinan. Liquid nitrogen was used as

a coolant and the stage was routinely calibrated at 0 and 374.1°C

based on the ice-melting and homogenization temperatures of a

pure water synthetic fluid inclusion with the critical density, and

at −56.6°C based on the CO2 melting temperature of a pure CO2

fluid inclusion, respectively. The estimated uncertainties

were ±0.2°C below room temperature and 5°C in the

temperature range higher than 200°C, respectively (Bodnar,

1994; Shen et al., 2018; Shu et al., 2020).

The Raman spectroscopic analyses were conducted using a

Renishaw inVia Raman microspectrometer at SIGS, with

wavelengths of 532 nm and 785 nm. The spectra were

recorded at a counting time of ~1 ectrum, with spectra

ranging from 0 to 4500cm−1 for one accumulation. The

salinity and compositions of the fluid inclusions were

calculated using the HokieKlincs spreadsheet and algorithms

described by Steele MacInnis et al. (2011 and 2016) for

H2O-NaCl and H2O-CO2-NaCl systems, respectively.

Electron microprobe analysis

Electron microprobe and element mapping analysis of gold-

bearing pyrite was performed at the Jinan Mineral Resources

Supervision and Inspection Center at the Ministry of Natural

Resources, using a JEOL JXA8230 instrument. The instrument

parameters were set with a quantitative acceleration voltage of

15 kV, a beam spot current of 2×10−8A, a beam spot diameter of

0.5 µm, and a data collection time of 20~60s. The ZAF method was

used to revise the data and ensure an analysis accuracy of better than

1%. The detection limits were 200 ppm (Fe), 175 ppm (Co), 196 ppm

(Ni), 248 ppm (Cu), 281 ppm (Zn), 92 ppm (S), 478 ppm (Pb),

127 ppm (Ti), 235 ppm (Au), 114 ppm (Ag), 328 ppm (Bi), 354 ppm

(Se), 144 ppm (Te), 140 ppm (Sb), and 233 ppm (As).

In situ trace element analysis

The in situ trace element analyses of gold-bearing pyrite in

thin sections were conducted by LA-ICP-MS at the testing center

of the Shandong Bureau of China Metallurgical geology bureau.

FIGURE 3
Photographs of various mineral assemblages and mineralization stages in the Houge’zhuang gold deposit.
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The GeoLasPro 193 nm ArF excimer system produced by

Coherent (USA) was combined with a Thermo Fisher ICAP

Q quadrupole ICP-MS for the experiments. The 193-nm ArF

excimer laser, homogenized by a set of beam delivery systems,

was focused on the mineral surface with a fluence of 10–12 J/

cm2. Each acquisition incorporated a 20 s background (gas

blank), followed by a spot diameter of 30 um at a 5 Hz

repetition rate for 60 s. Helium (750 ml/min) was applied as

a carrier gas to efficiently transport aerosol out of the ablation

cell and was mixed with argon via T-connector before entering

the ICP torch.

The external calibration standards included American

National Bureau of Standards and Technology synthetic

standard glass, NIST610, and United States Geological Survey

basaltic glasses, including GSD-1G and BCR-2G. Raw data were

reduced offline by ICPMSDataCal software using a

normalization strategy without applying an internal standard

(Liu et al., 2008). Chinese Geological Standard Glasses MASS-1

were used for quality control.

In situ sulfur isotope analysis

The LA-MC-ICP-MS in situ sulfur isotope analysis was

performed by the Jinan Mineral Resources Supervision and

Inspection Center of the Ministry of Natural Resources on a

Neptune Plus multi-receiver plasma mass spectrometer (Thermo

Scientific) coupled with a GeoLasPro 193 nm laser ablation

FIGURE 4
Representative reflected-photomicrographs (A–C) and backscattered electron (BSE) images. (D–I) Occurrences of visible gold and textural
features of pyrite.
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system. The appropriate area was selected according to a scanned

photo of the sample, and the laser ablation system was used to

ablate the sulfide (point ablation). The diameter of the laser beam

was 44 μm, with an energy density of 6J/cm2, a frequency of 6Hz,

and high-purity helium as the carrier gas. The sulfide standard

samples HN, JX, and ZX were used to debug the instrument

parameters. In the analytical process, sulfide similar to the sample

matrix was used to replace the standard sample, and the

standard-sample-standard crossover method was used for

quality discrimination correction.

FIGURE 5
Paragenetic sequence of the Houge’zhuang gold deposit. Thick lines: high abundance. Thin lines: low abundance.

FIGURE 6
Photomicrographs (A–C) and laser Raman (D,E) spectrogram of fluid inclusions in the Houge’zhuang gold deposit.
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Results

Fluid inclusion analysis

The fluid inclusions in the Houge’zhuang gold deposit are

relatively developed and mainly distributed in transparent quartz

grains with growth zoning. The present study primarily selected

quartz inclusions from stages I and II of mineralization for

testing. Based on the observed phases at room temperature,

three types of fluid inclusions were observed from the ores:

single-phase (type I), two-phase aqueous (type II) (Figures

6A,C), and CO2-rich three-phase (type III) (Figure 6B)

inclusions. Type I is the predominant type in the

Houge’zhuang gold deposit, contributing approximately

40–50% of the total fluid inclusions, which is composed of the

pure CO2 (liquid or vapor) and pure H2O (liquid or vapor)

phases. Most of the type II inclusions are ellipse in shape, with

those measuring <6 μm on the long axis accounting for ~20–30%

of the total fluid inclusions, with vapor/liquid ratios <30–40%,

predominant round and ellipse shapes, and measuring

approximately 5–10 μm. The main components of the vapor

and liquid in type I are CO2 and H2O, respectively. Type III is

composed of CO2 vapor and liquid phases and H2O liquid

phases, with round, ellipse, and irregular shapes ranging in

size from 4 to 7 μm. All three types of fluid inclusions were

found in stages I, II, and III of mineralization.

The microthermometric results showed that the

homogenization temperatures of the fluid inclusions in stage I

ranged between 146.9°C and 342.6°C, whereas those for stages II

and III were 141.1–332.1°C and ~211 and 252°C, respectively

(Table 1). As the CO2–H2O inclusions with variable phase ratios

were trapped from the immiscible CO2–H2O fluids, the lower

temperature (~ 141–211°C) was their formation temperature.

The salinities in stages I, II, and III were similar, with NaCleq of

~2.74–8.51%, ~ 3.71–8.81%, and ~3.58–4.51%, respectively.

These findings suggest that the ore-forming fluids were of

medium-low salinity and temperatures.

Furthermore, the results of laser Raman spectroscopy

showed that the fluid inclusions were mainly composed of

H2O and CO2 (Figure 6), while the vapor phases were mainly

CO2, with less CH4, N2, H2S, organic matter, etc.

Pyrite texture and chemical composition

Micro-texture and type of pyrite
The microstructure of pyrite is controlled by multiple factors

including the distribution of elements and crystallization

conditions (Reich et al., 2005; Large et al., 2009; Cook et al.,

2009; Deditius et al., 2014; Peterson and Mavrogenes, 2014;

Román et al., 2019; Hu et al., 2020). Increasing contents of

trace elements such as As, Co, Ni, and Cu in pyrite can result in

different bands in BSE images. Different crystallization

conditions can also result in varied microstructures.

Based on microscope observation, BSE images, and element

mapping, the pyrites in the Houge’zhuang gold deposit can be

divided into three types, Py0, Py1, and Py2, which showed good

correspondence with the mineralization stages Figures 7A–C.

Py0: This type is mainly present in pyrite-quartz veins (stage I),

and is medium-fine-grained (~10–50 μm) with euhedral to

subhedral shapes (Figure 4A). The symbiotic minerals are

mainly quartz, with small amounts of sericite. Py0 mainly has

two output forms in the gold ore, one of which occurs as single-grain

disseminated in quartz veins (Figure 4A); the other form occurs as a

core to form new pyrites with later-formed pyrites (Figures 7E,F).

Py0 accounted for 10–20% of all pyrites in the gold ore.

Py1: This type occurs in gold-quartz-pyrite veins (stage II),

and is coarse-medium-grained (~100–2000 μm) with euhedral to

subhedral shapes. Py1 always occurs as aggregates or veins and is

spatially associated with visible gold. This type is mainly porous

TABLE 1 Microthermometric measurements of fluid inclusions of different mineralization stages in the Houge’zhuang gold deposit.

Stage
of mineralization

Rock
type

Fl type TmCO2/°C Ti/°C TCl/°C Tht/°C Salinity
(wt.%NaCl
eq0

Data
source

Stage I Pyrite quartz vein I –56.2~–56.3 — 5.3~7.2 309.2~319.8 5.33~8.51 This article

II - –1.6~–4.9 - 146.9~304.6 2.74~7.73

III - –1.4~–2.1 - 251.7~342.6 2.41~3.55

Stage II Gold pyrite vein I - - 7.2~8.1 141.1~227.4 5.33~3.71

II - –5.7~–2.8 172.7~273.2 4.65~8.81

III –56.1~–56.3 - 7.2~8.3 285.4~332.1 5.33~3.33

Stage III Gold-sulfide vein I, II - - - 211~252 3.58~4.51 Wang et al. (2018)

Tht/°C, homogenization temperature; Ti/°C, last melting temperature of ice; TCl/°C, last melting temperature of hydrohalite; TmCO2/°C, last melting temperature of CO2.
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and has a honeycomb structure and metasomatic-relict texture,

and displays cataclastic textures due to later stress (Figures

4C–F), with micro-fractures locally filled with visible gold

grains (Figures 4G–I). The symbiotic minerals are mainly

quartz, chalcopyrite, and visible gold. The element mapping

images showed a higher As content in Py1 than that in Py0,

but less than that in arsenic-bearing pyrite (Py2) (Figures 7D–F).

Py1 accounted for 70–80% of pyrites in the gold ore.

Py2: This type is arsenic-bearing and occurs in quartz-

polymetallic sulfide veins (stage III) (Figures 7D,F). Py2 is

produced in two forms. The first is characterized by

distinctive core-rim textures, showing oscillatory or patchy

zoning of arsenic. The core components of Py2 are mainly

Py0 or Py1, which were formed early. The other form is

independent arsenic-bearing pyrite, with fine-grained

(~10–20 μm) distribution. Py2 is usually inter-grown with

coarse-grained chalcopyrite, galena, sphalerite,

tellurobismuthite, and magnetite, which occur adjacent to the

boundary. Different from the gold in Py0 and Py1, the gold in

Py2 is invisible, especially nanogold and lattice gold.

Py2 accounted for 5–10% of pyrites in the gold ore.

In situ trace elements
Most of the trace elements in the pyrite crystals were

classified as siderophile and sulfophile elements and are found

in the periodic table between Fe and S. Some elements can readily

enter the pyrite crystal lattice in the form of isomorphic

substitution. For example, Co and Ni can replace Fe, while

As, Se, Te, etc. can replace S in the pyrite crystal lattice.

Another possibility is that trace elements such as Au, Ag, Cu,

Pb, Zn, etc. occur in pyrite as mechanical mixtures (Bi et al., 2004;

Zhang et al., 2014; Guo et al., 2019; Li J. et al., 2020; Chen et al.,

2020c).

The results of the LA-ICP-MS trace element analysis of three

different pyrite types from different mineralization stages of the

Houge’zhuang gold ores are shown in Table 2. A total of

37 points were analyzed, including eight points for Py0,

19 points for Py1, and 10 points for Py2. All representative

trace element contents, such as Co, Ni, Cu, Pb, Zn, As, Ag, Sb, Hg,

Bi, and Se, showed regular variation in concentration in Py0, Py1,

and Py2. Among them, As was the most abundant, with averages

of 498 ppm in Py0, 5419 ppm in Py1, and 8113 ppm in Py2, with

a gradual increase in concentration from Py0 to Py2. The change

in Au concentration was similar to the change in As

concentration, with averages of 1.14 ppm in Py0, 2.82 ppm in

Py1, and 4.07 ppm in Py2. The calculated Co/Ni ratios were

~0.11–1.46 (average 0.54) in Py0, ~0.03–46.98 (average 7.16) in

Py1, and ~0.28–8.79 (average 2.62) in Py2. In addition, all three

pyrite types comprised Cu (~81.44–2414 ppm in Py0,

~0.56–726 ppm in Py1, and ~1.51–173 ppm in Py1), Zn

FIGURE 7
Backscattered electron (BSE) images (A−C) and element mapping images (D−F) of pyrites in the Houge’zhuang gold deposit.
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(~8.31–104.75 ppm in Py0, ~0.06–83.5 ppm in Py1, and

~1.45–462.4 ppm in Py1), Ag (~5.58–70.3 ppm in Py0,

0.08–86.4 ppm in Py1, and ~0.09–11.1 ppm in Py2), and Pb

(~26.3–5791 ppm in Py0, 2.49–10639 ppm in Py1, and

~1.69–802.69 ppm in Py2).

The comparative trace element concentrations of the three

pyrite types are illustrated in boxplots (Figure 8), showing the

relative variations in trace elements in different types of pyrite

grains. Co, Ni, and As were enriched in Py2, with an increasing

trend from Py0 to Py2, similar to Au, indicating their close

relationship to gold mineralization. The ore elements, such as Zn,

Pb, Cu, Ag, Sb, and Bi, were enriched in Py0 and depleted in

Py2 relative to Py1, with a downward concentration trend

contrary to that in Au.

TABLE 2 Representative trace element concentrations (in ppm) of three pyrite types from the Houge’zhuang gold deposit analyzed by LA-ICP-MS.

Sample
No.

Type Co Ni Cu Zn As Ag Sb Au Hg Bi Pb Se Co/
Ni

w-3 Py0 0.96 2.40 81.44 8.31 87.88 5.58 4.06 0.18 0.00 0.00 113.54 0.24 0.40

w-4 13.36 18.79 958.34 83.90 24.57 65.53 9.71 0.14 0.00 1.65 5791.07 0.00 0.71

w-18 3.28 15.11 664.22 21.98 14.93 22.55 1.81 0.09 0.01 0.00 26.33 0.00 0.22

w-19 18.48 29.28 2414.91 37.80 148.86 51.61 9.44 0.43 0.04 0.08 165.96 3.18 0.63

w-20 11.51 21.59 587.31 104.75 1598.79 39.33 11.51 5.66 0.26 0.22 1533.98 0.53 0.53

w-26 65.39 44.87 0.00 24.70 586.91 57.73 23.37 0.62 0.00 3.92 3914.61 3.07 1.46

w-27 95.38 351.18 2599.15 87.79 1466.84 70.31 59.08 1.78 0.05 1.11 2437.10 0.24 0.27

w-28 36.00 319.36 1730.80 36.44 36.88 64.15 9.08 0.26 0.00 0.01 192.29 0.00 0.11

w-1 Py1 465.44 200.01 1.03 0.06 5867.05 0.19 1.18 0.97 0.05 0.04 15.52 3.17 2.33

w-2 287.48 6.12 0.56 0.52 9290.97 0.08 0.21 0.18 0.06 0.02 2.49 0.00 46.98

w-5 5.47 8.73 227.26 17.70 4656.00 12.96 41.46 7.21 0.00 0.22 592.42 1.08 0.63

w-6 27.60 49.95 691.26 59.01 8066.78 30.43 34.45 8.34 0.01 0.07 2572.65 0.38 0.55

w-7 375.95 209.71 726.38 44.48 8370.30 30.96 14.62 9.09 0.01 0.28 532.86 0.00 1.79

w-8 171.75 150.78 190.21 8.03 5586.06 86.35 24.05 3.95 0.00 2.10 2938.74 0.00 1.14

w-9 1378.88 86.63 69.46 22.73 5847.85 20.19 5.25 1.98 0.00 0.82 1111.68 0.00 15.92

w-10 1524.58 164.84 2.23 12.24 7690.34 0.31 0.40 0.58 0.14 0.00 4.17 1.30 9.25

w-14 4.77 157.42 1.13 11.94 4387.27 0.57 3.21 0.30 0.16 0.05 17.66 3.42 0.03

w-16 1044.19 37.21 3.77 2.63 8674.15 1.64 6.14 3.25 0.08 0.03 42.60 2.58 28.06

w-17 52.68 55.63 16.16 2.61 5609.36 4.07 6.76 0.94 0.29 0.13 55.51 2.28 0.95

w-22 27.77 32.72 1.43 0.41 4248.24 1.14 2.10 0.56 0.24 0.05 13.56 0.00 0.85

w-24 0.00 408.17 5.48 9.63 1640.20 9.28 2.80 0.43 0.00 0.11 150.75 1.28 0.00

w-25 643.82 244.53 177.23 1.07 5847.32 2.67 6.99 3.22 0.09 0.60 311.31 0.00 2.63

w-29 193.66 176.89 731.99 83.48 2430.24 79.07 20.07 3.53 0.00 6.77 10639.46 0.00 1.09

w-30 427.09 41.94 0.54 0.76 3320.79 0.30 0.61 0.05 0.17 0.00 11.22 1.17 10.18

w-34 25.89 123.75 576.25 30.61 313.04 26.51 13.18 0.66 0.18 0.19 301.99 0.00 0.21

w-35 81.97 6.34 0.00 0.63 6499.52 3.52 8.03 8.01 0.00 0.13 181.75 0.00 12.93

w-36 12.03 27.18 2.99 5.48 4618.93 0.60 0.96 0.29 0.00 0.05 16.31 0.00 0.44

w-11 Py2 81.60 35.74 10.01 14.10 18199.02 1.09 9.09 10.82 0.23 0.12 30.25 0.00 2.28

w-12 391.23 181.09 3.41 8.96 13545.67 0.24 0.43 4.82 0.06 0.00 1.92 1.31 2.16

w-13 364.40 536.98 21.36 13.00 6688.88 0.09 0.22 5.08 0.04 0.04 1.69 0.00 0.68

w-15 491.76 370.84 0.00 10.39 3818.49 0.92 1.81 3.58 0.01 0.06 9.40 1.24 1.33

w-21 24.71 12.61 34.34 462.39 6994.45 9.17 6.03 5.25 0.00 0.18 802.69 0.00 1.96

w-23 91.93 15.10 1.51 1.45 4821.76 0.94 1.26 0.30 0.11 0.02 27.39 1.07 6.09

w-31 652.19 725.78 3.14 1.88 8823.44 0.00 0.09 5.08 0.00 0.00 3.06 0.00 0.90

w-32 315.98 1112.36 11.94 1.92 8396.25 6.41 3.42 1.97 0.14 0.28 565.26 1.51 0.28

w-33 1498.45 170.50 173.09 10.22 7473.56 11.16 11.93 3.45 0.00 0.15 311.02 0.00 8.79

w-37 173.95 98.52 21.92 4.90 2374.04 0.35 0.73 0.37 0.09 0.02 5.72 0.00 1.77
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Elemental mapping of pyrite

Electron microprobe mapping plays an important role in the

study of element distributions. Element microprobe mapping

analysis can intuitively reveal the combinations and spatial

distributions of major, minor, and trace elements in pyrites at

different stages. Thus, pyrites formed at different stages can be

identified and used to study the evolution of ore-forming fluids

(Chi et al., 2020).

The pyrite of stage III was selected for EMPA element

mapping to reveal the distribution and correlation of the

major and trace elements (Figures 7D–F). The As content in

the core of the pyrite crystals was relatively low, with clear

boundaries (Figures 7B,C), and was distributed irregularly in

the intermediate part of the Py0 pyrite. In contrast, the As

content at the edge of the pyrite crystal was significantly

higher than that at the core of the pyrite and showed

irregular oscillatory zoning (Py1). At the extreme edge of

the pyrite, the As content increased significantly and was

distributed in intermittent bands, forming arsenic-bearing

pyrite (Py2). Therefore, according to the As concentration,

the pyrite related to gold mineralization in the

Houge’zhuang gold deposit can be divided into Py0, Py1,

and Py2. Py0 with low As concentration and without obvious

zoning occurred mainly in the core of pyrite crystals and was

formed in stage I. Py1, with a higher As concentration than

that in Py0, showed oscillating zoning and was formed in

stage II. In contrast, Py2 occurred mainly at the crystal edge,

with the highest As concentration, and was formed in

stage III.

Gold distribution

The microscopic observations, BSE images, and EPMA

mapping findings showed that the gold in the Houge’zhuang

deposit was distributed in the pyrite interstice, fissures, and

within pyrite crystals, while the rest was invisible gold

(particularly nanogold and lattice gold).

Gold mainly occurred in stages II and III, but in different

ways. Stage II showed a high amount of readily visible gold along

with pyrite fissures (Figures 4G,H) distributed throughout the

interstice and quartz inclusions (Figure 4I). The most common

form was native gold, with bright golden yellow color, granular

texture, andmainly fine particles (~5–30 μm). The other type was

electrum, which had an irregular fine-grained and granular

texture and a low amount of natural gold in comparison. In

contrast to stage II, the gold in stage III was mainly invisible gold,

such as nanogold and lattice gold, and was closely associated with

arsenic-bearing pyrite (Py2) and arsenopyrite. Nanogold or fine-

grained gold (~1–5 μm) was scattered in Py2. The lattice gold was

most likely to be present in the lattice of the arsenic-bearing

pyrite.

Sulfur isotopic compositions of pyrite

Sulfur isotopes are sensitive indicators of the source and

migration process of ore-forming fluids and the genesis of ore

deposits. These isotopes are often used to depict the physical and

chemical conditions of petrogenesis and mineralization and the

source of sulfur.

FIGURE 8
Comparative box plot of trace element concentrations in the three pyrite types.
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The results of in situ sulfur isotope analysis on the cores and

different zones of gold-bearing pyrite crystals in this study are

shown in Table 3. In situ analyses were performed on Py0 (N = 7),

Py1(N = 15), and As-rich rim in Py2 (N = 9).

The δ34S values of Py0 formed in stage I ranged from 5.51 to

6.86‰ (mean 6.28‰), those of Py1 formed in stage II ranged

from 7.13 to 7.89‰ (mean 7.44‰), and those of Py2 formed in

stage III ranged from 7.02 to 7.95‰ (mean 7.45‰), similar to

that of Py1. Grain-scale variations in δ34S in the pyrite grains

were observed (Figures 7B,C). As shown in Figure 7B, the core

(Py0) had δ34S values of ~5.51–6.62‰, which increased to

~7.15–7.49‰ on the rim (Py1 and Py2). The δ34S values of

Py2 were slightly higher than those in Py1. These findings are in

good agreement with the results obtained by LA-MC-ICP-MS on

another pyrite grain (Figure 7C). The range of δ34S values at the

Houge’zhuang gold deposit was similar to those of other gold

deposits in Jiaodong.

The grain-scale variations in sulfur isotopic compositions

were small but regular, noticeably in pyrite from stages I and III.

A rough, positive correlation was observed between the As

content and δ34S value.

Discussion

Characteristics of the ore-forming fluid

Immiscibility during fluid evolution is an important factor

for the mineralization of certain metals. For example, immiscible

fluid inclusions are frequently observed in contemporaneous

quartz formed during the precipitation stage of large amounts

of gold. Furthermore, physical and chemical experimental studies

have confirmed that fluid immiscibility is beneficial for gold

precipitation. The fluid inclusion types, quantities,

homogenization temperature, and densities have similarities

and differences, reflecting the evolution of ore-forming fluids

(Ramboz et al., 1982; Roedder, 1984; Shepherd and Chenery,

1995; Lu et al., 2004).

The results of fluid inclusion studies and laser Raman

spectroscopy suggest that the ore-forming fluid in different

stages of the Houge’zhuang gold deposit exhibited chemical

and physical properties similar to those in the other Jiaodong

gold deposits (Hou et al., 2007b; Ma et al., 2015). The

homogenization temperatures of the fluid inclusions gradually

TABLE 3 Results of the in situ analysis of sulfur isotopes of pyrite in the Houge’zhuang gold deposit.

Sample No. Type δ34Sv-CDT Average value Sample No. Type δ34Sv-CDT Average value

HGZ-1-04 Py0 6.55 6.28 HGZ-1-02 Py1 7.41 7.44

HGZ-1-05 6.62 HGZ-1-03 7.37

HGZ-1-06 5.75 HGZ-1-08 7.15

HGZ-1-07 5.51 HGZ-2-02 7.89

HGZ-2-03 6.47 HGZ-2-05 7.82

HGZ-2-04 6.21 HGZ-2-1_02 7.52

HGZ-2-2_01 6.86 HGZ-2-1_03 7.62

HGZ-1-01 Py2 7.35 7.45 HGZ-2-1_04 7.46

HGZ-1-09 7.02 HGZ-2-1_05 7.38

HGZ-2-01 7.49 HGZ-2-1_06 7.13

HGZ-2-06 7.16 HGZ-2-1_09 7.30

HGZ-2-1_01 7.58 HGZ-2-2_03-1 7.30

HGZ-2-1_07 7.84 HGZ-2-2_03-2 7.33

HGZ-2-1_08 7.46 HGZ-2-2_04 7.63

HGZ-2-2_02 7.23 HGZ-2-2_04’ 7.26

HGZ-2-2_03 7.95

FIGURE 9
Relationship between Au and As for various lithologies in the
Penglai–Qixia gold belt.
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decreased from stages I to III and the type combinations of the

fluid inclusions also changed. Combined with the results of the

salinity analysis, the fluid inclusions in stage I were the fluid from

the later stage of magmatic evolution, with high

temperature—especially Type III fluid inclusions. In stages II

and III, type III fluid inclusions decreased—especially type II

fluid inclusions. The homogenization temperature was lower

than that in stage I, indicating the evolution of the fluid post-

phase separation and immiscibility. The evolution process plays

an important role in gold precipitation.

The ore-forming fluids of the Houge’zhuang gold

deposit were of medium-low salinity and temperatures,

with H2O and CO2 being the predominant fluid inclusion

components, and CO2 being the predominant vapor phase

component.

As enrichment mechanism

Sources of As fluid
The in situ trace element analysis revealed that the content of

As, the most abundant trace element, gradually increased from

Py0 to Py2 (498 ppm, 5419 ppm, and 8113 ppm, respectively)

(Table 2). A clear paragenetic succession for various types of

pyrite was observed in the elemental mapping (Figures 7D–F).

Py0 was characterized by low concentrations of As and Au,

indicating that the initial hydrothermal fluids may not contain high

concentrations of As and Au, which are not the main ore-forming

fluids. In Py1, the concentration of As increased significantly, with a

relatively uniform distribution and no obvious zonal growth, but

notably more fine gold and chalcopyrite inclusions, indicating that

fluids with high As and Au were the main ore-forming fluids.

FIGURE 10
Binary plots of (A) Au vs. As, (B) Au vs. Ag, (C) Bi vs. Co, (D) Ag vs. Pb, (E) Bi vs. Pb, and (F) Ag vs. Bi in Py0, Py1, and Py2 from theHouge’zhuang gold
deposit.
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Relative to Py1, Py2 exhibited distinct As enrichment, with As-rich

rims of pyrite and growth zoning but a smaller proportion of Py2.

This phenomenon implied a lower content of the ore-forming fluid

and is indicative of the direct precipitation of Py2 from As-Au-rich

solutions.

Regarding the mechanism and source of As enrichment, two

main theories have been proposed. First, they could directly

precipitate from extremely As-rich auriferous fluids (Barker

et al., 2009; Muntean et al., 2011; Peterson and Mavrogenes,

2014). Second, during the fluid migration process, the ore-

forming fluid may react with As-rich sedimentary or

metamorphic rocks to extract As, becoming more enriched,

especially in Carlin-type gold deposits (Ilchik and Barton

et al., 1997; Feng et al., 2018; Feng et al., 2020; Large et al., 2014).

The ore-forming fluids of the gold deposits in Jiaodong are

mainly As-poor fluids, which are rare. Compared to the other

gold belts in Jiaodong, the Penglai–Qixia gold belt developed

many Proterozoic Jingshan, Fenzishan, and Penglai groups. Our

analysis of the As content in the formation revealed As

concentrations in the Fenzishan and Jingshan groups of

11.72 ppm and 2.27 ppm, respectively (Tian et al., 2022), both

of which were higher than the average value (0.97 ppm) of the

Jiaodong crust (Figure 9). Further considering the discovery of

As-rich (~0.4–2.5%) pyrite in the surrounding Heilan’gou and

Daliu’hang gold deposits, the primary ore-forming fluids may

pass through some As-rich sedimentary rocks such as the

Jingshan, Fenzishan, and Penglai groups, resulting in stable

water-rock interaction, extraction, and enrichment of As.

Implications for gold mineralization
In hydrothermal gold deposits, pyrite is the main gold-

bearing mineral, as the coupling relationship between Au and

As has been widely recognized. Most scholars believe that this is

the result of As controlling Au enrichment and that the same

relationship exists in the Jiaodong gold deposits. The binary plots

FIGURE 11
Variations in sulfur isotope compositions of various
generations of pyrite in the Houge’zhuang gold deposit.

FIGURE 12
Sulfur isotope composition of Jiaodong group metamorphic rocks, granites, dykes, and ores of gold deposits in the northwestern Jiaodong
area.
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of Au vs. As showed a good linear relationship (Figure 10A) and

good correlations in different lithologies in Jiaodong (Figure 9).

The ore-forming fluids of the Houge’zhuang gold deposit

showed medium-low salinity and temperatures, suggesting that

Au may migrate mainly as Au(HS)−2 complex (Benningand

Seward, 1996; Stefánsson and Seward, 2004; Williams-Jones

et al., 2009; Yang et al., 2016b; Chai et al., 2017).

The porous and honeycomb structures and the metasomatic

relict texture of the Py1 indicated that fluid boiling occurred due

to pressure/temperature changes and a continuous water-rock

interaction, consistent with an altered rock-type mineralization

mechanism. The water-rock interaction changes the

physicochemical conditions, causing the Au(HS)−2 complex to

destabilize and precipitate Au. The visible gold is the paragenesis

gold in Py1.

The difference between Py2 (arsenic-bearing pyrite) and

Py1 suggests two distinct ore-forming fluids Figures 10B–F. The

gold in Py2 was invisible gold, especially nanogold and lattice gold.

Au atoms sit at the Fe atom sites in the As-bearing pyrite structure;

moreover, Au and As in As-bearing pyrite are the most abundant

chemically bound Au+ and As−, respectively. Au+ and As−are both

structurally bound and sit at the Fe and S atom sites of pyrite,

respectively; wherein As1- changes the crystal structure of pyrite,

rendering it easy for Au1+ to replace Fe2+(Palenik et al., 2004;

Kusebauch et al., 2019; Xing et al., 2019; Meng et al., 2022),

resulting in the formation of lattice gold. The enrichment of As in

pyrite may lead to high partition coefficients for Au between fluid

and pyrite, which can effectively adsorb Au-HS complexes from

the fluid onto the As-bearing pyrite growth interface through

chemical adsorption, resulting in nanogold formation.

The analysis revealed that Au was closely associated with As.

Fine and coarse visible gold grains tended to occur in association

with the Py1 of stage II, while invisible gold was related to the Au-

As-rich Py2 of stage III. These As-bearing pyrites showed a close

spatiotemporal relationship to gold, thus playing an important

role in the formation and exploration of high-grade gold

deposits.

Sources of sulfur and ore metals

The sulfur isotope ratios of the sulfides that co-precipitated

with gold have been used as a reliable measure to determine the

source of gold, as gold commonly complexes with sulfide as

Au(HS)2− in hydrothermal fluids (Hayashi and Ohmoto 1991;

Benning and Seward, 1996; Stefansson and Seward, 2004;

Williams-Jones et al., 2009).

The in situ sulfur isotope values of pyrite measured in the

present study were relatively stable, with a narrow variation

(δ34SCDT = ~ 5.51–7.95‰), showing a tower effect and a

positive deviation from meteorite sulfur, similar to the other

deposits in Jiaodong (Hou et al., 2007a; Yan et al., 2014; Wang

et al., 2015; Wen et al., 2016; Feng et al., 2018; Yang et al., 2018;

Chai et al., 2020b).

Grain-scale variations were observed in δ34S in pyrite grains.

The core (Py0) had δ34S values of ~5.51–6.62‰, increasing to

TABLE 4 Sulfur isotopes of typical gold deposits in North Jiaodong.

Area Deposit name Deposit type Object δ34S δ34S
average value (‰)

Number Source

Value ‰)

Jiao Xibei Sanshandao Disseminated-style Py 11.0~12.6 12.2 7 Wang et al. (2002)

Cangshang Py 9.6~12.0 10.8 4 Huang (1994)

Wangershan Py 4.8~8.9 6.3 30 Guo et al. (2019)

Sizhuang Py 7.1-11.5 9.5 16 Yang et al. (2014)

Xincheng Py 7.9~10.7 9.8 18 Li et al. (2020b)

6.63~9.65 7.61 12 Songet al., 2015

Jiaojia Py 7.5~11.46 9.61 15 Songet al., 2015

7.71~12.58 10.32 12 Jiang (2020)

Shuiwangzhuang Quartz vein-style Py 7.0~8.5 7.7 7 Zhang et al. (2018a)

Linglong Py 6.4~8.6 7.6 16 Hou et al. (2006)

Jiudian Py 5.7~8.1 7.4 14 Wang et al. (2002)

Penglai–Qixia Heilan’gou Quartz vein-style Py 6.6~8.8 7.2 68 Feng et al. (2018)

5.5~7.8 6.7 Yan et al. (2014)

6.3~9.5 7.5 8 Hou et al. (2007a)

Daliuhang Py 3.7~8.3 7.1 62 Feng et al. (2020)

Majiayao Py 5.5~8.6 6.37 Tian et al. (2020)

Hexi Py 5.4~8.8 6.95 17 Hou et al. (2004)
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~7.15–7.49‰ on the rim (Py1 and Py2). The δ34S values of

Py2 were slightly higher than those in Py1. The results indicated

that the sulfur isotopes in Py1 and Py2 were highly homogenized

and shared the same sources, while the sources of Py0 differed

(Figure 11).

These δ34S values were comparable to those from the

Jiaodong and Jingshan groups, Linglong granite, Guojialing

granodiorite, and certain basic dykes (Figure 12; Table 4).

However, these δ34S values were closer to those from the

granite country rocks and the Precambrian metamorphites,

FIGURE 13
Gold metallogenic process of Houge’zhuang gold deposit for different mineralization stages.
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indicating that the sulfur in the gold deposits was inherited from

these country rocks. Basic dykes showed a close spatiotemporal

relationship to the gold deposits; however, due to their small

scale, the basic dykes were insufficient to provide such a large

amount of sulfur.

The Py0 in stage I had relatively low δ34S values, ranging from
5.51 to 6.62‰ (mean of 6.28‰), which were like those of pyrite

from the potassic zone (δ34S, mean of 7.1‰) and Guojialing

granodiorite (δ34S, mean of 6.7‰; Wang et al., 2002). These

similar sulfur isotopic compositions may indicate one major

source of early fluids.

Compared to Py0, Py1 and Py2 showed higher δ34S values

(mean 7.45‰ and 7.44‰, respectively). Mass fractionation

during the precipitation of pyrite cannot account for these

elevated δ34S values; rather, an external 34S-rich fluid injection

is likely. The δ34S values of Py1 and Py2 were similar to those of

the Jingshan group (8.2–12.0‰, average 9.7‰; Zhang, 1999),

which is located around the Houge’zhuang gold deposit,

indicating that some sulfur from the Jingshan group leached

into the ore-forming fluid. This conclusion is also supported by

elevated As and Au concentrations in ore-related pyrite (Feng

et al., 2018; Feng et al., 2020), in which the ore-forming fluids

passed through some δ34S-rich sedimentary rocks, leading to

δ34S-enriched fluid.

Comprehensive analysis suggested that the sulfur in the

Houge’zhuang gold deposit originated from mixed sulfur

sources, especially the Jiaodong metamorphic basement and

Mesozoic granite wall rocks, with precipitation of magmatic

sulfur from the mantle and surface.

Au mineralization process in the
Houge’Zhuang gold deposit

Pyrite is the most important ore and gold-bearing mineral in

the Jiaodong gold deposits. Its precipitation process extends from

the early gold mineralization stage to the late stage; thus,

exploring the structural element and isotope changes of pyrite

at the microscopic scale aids in understanding its complex

growth history, accurately determining the source of ore

materials, and providing an in-depth understanding of the

mineralization process (Ogryzlo, 1935; Helgeson and Garrels,

1968; Henley, 1973; Renders and Seward, 1989; Wood, 1989;

Hayashi and Ohmoto, 1991; Seward, 1991; Gammons and

Williams Jones, 1995; Zotov et al., 1996; Archibald et al.,

2002; Reich et al., 2005; Large et al., 2009; Wu et al., 2019a;

Kusebauch et al., 2019).

The results of previous comprehensive studies on the fluid

inclusions, in situ S isotope analysis, in situ LA-ICP-MS trace

element analysis, and electron microprobe mapping analysis of

the gold-bearing pyrite have shown that the Houge’zhuang gold

deposit was formed during the evolution of multi-stage ore-

forming fluids.

In stage I, the fluid was acidic and weakly reducing under

medium-high temperature conditions (~250–350°C), while the

Au and As content in the fluid was relatively low and only a small

amount of gold was precipitated. The Py0 formed at this stage

was medium-fine-grained. The δ34S values of Py0 ranged from

5.51 to 6.86‰ (mean value 6.28‰) (Figure 13A).

In stage II, the main stage of gold mineralization, the ore-

forming fluids flowed through some δ34S and As-rich sedimentary

rocks and were supersaturated with high sulfur fugacity at

~150–250°C. Fluid inclusion data showed that Au was dissolved

and transported as gold bisulfide [Au(HS)0, Au(HS)2-)] (Shu et al.,

2020). As the pressure of the ore-forming fluid decreased, it boiled,

changing the physicochemical conditions and destabilizing the

Au(HS)2- complex, resulting in the precipitation of visible gold and

simultaneous Py1 formation (Figure 13B).

During the gold polymetallic sulfide stage (III), new ore-

forming fluids formed in the deep, with a lower content than

stage II but rich in polymetals. The ore-forming fluids passed

through some As-rich sedimentary rock, resulting in fluid

enriched with As. During this stage, with the precipitation of

As-rich fluid and deep-circulating meteoric water, the

physicochemical property of the ore-fluid changed from

weakly acidic oxidation to weakly acidic reduction. During

fluid migration, with changes in temperature and pressure,

As1- sat at the atom sites of S2+, which changed the crystal

structure of pyrite, rendering it easy for Au1+ to replace Fe2+.

Moreover, As enrichment in pyrite can lead to high partition

coefficients for Au between fluid and pyrite, which can effectively

adsorb Au-HS complexes from the fluid into the As-bearing

pyrite growth interface through a chemical adsorption

mechanism, resulting in the formation of nanogold and lattice

gold. Meanwhile, H2S andmetal ions such as Fe2+, Zn2+, Pb2+, and

Cu2+ in the ore-forming hydrothermal fluid are consumed,

forming metal sulfides such as sphalerite, galena, chalcopyrite,

and arsenopyrite. Py2 (arsenic-bearing pyrite) is also formed

during this period (Figure 13C).

In stage IV, the temperature of the injected fluid and oxygen

and sulfur fugacity were low, while the gold content in the fluid

was insufficient for mineralization.

Conclusion

1) Three types of fluid inclusions were identified from the ores:

single-phase inclusions (type I), two-phase aqueous

inclusions (type II), and CO2-rich three-phase inclusions

(type III). The ore-forming fluids of the Houge’zhuang

gold deposit exhibited medium-low salinity and

temperatures. The fluid inclusions were composed mainly

of H2O and CO2, while the vapor phases were mainly CO2.

2) The pyrite in the Houge’zhuang gold deposit can be divided

into three types: Py0, Py1, and Py2, which showed good

correlations with the mineralization stages. Py0 was
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characterized by low concentrations of As and Au and low

δ34S values (5.51–6.86‰). Py1, hosted in the gold-quartz-

pyrite veins, was chemically homogeneous with no obvious

zonal growth but with significantly more gold and

chalcopyrite inclusions. Py1 contained medium and

uniform concentrations of As and Au and had δ34S values

ranging from 7.13 to 7.89‰ (mean 7.44‰). Py2, the arsenic-

bearing pyrite, was hosted in quartz-polymetallic sulfide veins

and showed distinct As enrichment with As-rich rims of

pyrite and growth zoning.

3) The primary ore-forming fluids may pass through some As-

rich sedimentary rocks, extracting and enriching As. Au was

closely associated with As. Fine and coarse visible gold grains

tended to occur in association with the Py1 of stage II, while

invisible gold was related to the Au-As-rich Py2 of stage III.

4) The results of comprehensive analyses suggest that the sulfur

in the Houge’zhuang gold deposit originated from mixed

sulfur sources, especially from the Jiaodong metamorphic

basement and Mesozoic granite wall rocks, with the

participation of magmatic sulfur from the mantle and surface.

5) The gold metallogenic process of the Houge’zhuang gold

deposit indicates that the deposit was formed during the

evolution of multi-stage ore-forming fluids.
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