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The Middle–Late Triassic climates have attracted the attention of paleontological
and geological scientists for the Carnian pluvial event in the early Late Triassic. The
event is well-documented in the pelagic and epi-continental marine deposits of the
Tethys, Gondwana, and Laurasia. However, inland terrestrial deposits are less
frequently depicted, with high-resolution palynological biostratigraphy
constraints. In this study, we report the palynological records from the YC8-1 and
YC7-3 sub-members of the Yunmeng profile in the Ordos Basin, China, where the
YC7-3 was dated at 236.0–234.1 Ma. Two palynological assemblages were
recognized and named the Lundbladispora watangensis–Taeniaesporites
combinatus assemblage and Lundbladispora communis–Discisporites granulus
assemblage for the YC8-1 and YC7-3 sub-members, respectively. Their ages
were determined to be the latest Ladinian and early Carnian, respectively, for
their stratigraphic correlations with the global boundary stratotype section and
point (GSSP) of the base of Carnian in Europe and additional co-occurring floras
with condonts in the Upper Triassic of South China. The coexistence of Cyathidites
minor (Couper, 1953), Dictyophyllidites harrisii (Couper, 1958), Apiculatisporis
bulliensis (Helby ex De Jersey, 1972), Aratrisporites xiangxiensis (Li and Shang,
2011), Piceaepollenites omoriciformis (Bolkh.) (Xu and Zhang, 1984),
Podocarpidites ornatus (Pocock, 1962), Discisporites granulus (Zhang, 1984), and
Classopollis (Pflug, 1953) is equivalent to the Carnian palynostratigraphic criterion
reported in the North China palynofloristic realm. Vegetational changes, especially
those occurring at the boundary between Ladinian and Carnian, account for
approximately 70% of ferns and over 30% of gymnosperms lost. These were
discovered and attributed to the strong seasonal arid climate, indicated by the
emergence of Cheirolepidiaceae and Pinuspollenites. We thus know that the
climate during the latest Ladinian and early Carnian was “hot house”with seasonal
aridity. In addition, three strong monsoonal pluvial pulses were signaled by the
humidity index of lowland plants. The present study will enable a better
understanding the Carnian pluvial event in the Late Triassic inland basin.
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1 Introduction

While the Triassic period (201.3–252 Ma; Benton and Newell,
2014) might be “hot house” period, as evidenced by ice-free poles
covered by green forests (Harris, 1937; Vasilevskaya, 1972; Smith,
1974; Harland, 1997; Cuneo et al., 2003; Strullu-Derrien et al., 2012),
eolian deserts were widespread in tropical and subtropical areas during
the Early and Middle Triassic, with green vegetation present only
along permanent rivers (termed “gallery forest”; Zhu et al., 2020; Shi
et al., 2021). The most important plate tectonic event occurred in the
tropical Tethys realm, represented by the closure of the Paleo-Tethys
and opening of the Neo-Tethys during the Triassic period (Boucot
et al., 2009; Domeier and Torsvic, 2014). The climate of the
supercontinent Pangea was characterized by a mega-monsoonal
circulation which reached its maximum volume in the Triassic
(Kutzbach and Gallimore, 1989; Parrish, 1993).

Meanwhile, in the circum-Paleo-Tethys area during the Early and
Middle Triassic, the climate might have been like the Mediterranean of
today. Hot and dry summers might have eliminated most plant life from
the winter ponds, which were inhabited by small hydrophytic quillworts
and surrounded by lycopod shrubs and small conifers (Retallack, 1997).
Thence, the Late Triassic climate changed to pluvial, with green vegetation
and coal deposits overlying the former red continental sediments (Boucot
et al., 2009). Frequent floods may have led to the formation of black
organic-rich shale in lakes and the Panthalassa seacoast (Hornung and
Brandner, 2005; Liu et al., 2022)—a notable characteristic of the Carnian
Pluvial Event (CPE) (Simms and Ruffell, 1990). The palynoflora, both in
the tropical Tethys (Dubiel et al., 1991; Shi et al., 2009; Preto et al., 2010;
Wang et al., 2012; Mueller et al., 2016) and boreal areas (Mueller et al.,
2015), and even in the middle latitudes of Gondwana (Césari and
Colombi, 2016; Colombi et al., 2021), recorded vegetation and climate
changes in the seasonal paleoclimate’s rainfall during the CPE. As it
coincided with negative carbon isotopic excursion (Dal Corso et al., 2012;
Dal Corso et al., 2015), the CPE has been attributed to the release of CO2

from large volcanic eruptions (Dal Corso et al., 2012; Dal Corso et al.,
2015; Mueller et al., 2016).

This study presents the results of a palynological investigation of
lacustrine deposits that were calibrated as early Carnian by U-Pb
isotopic dating of bentonites in the Ordos Basin, China (Figure 1), in
order to shed new light on our understanding of the CPE in the Late
Triassic inland basin.

2 Geological setting

Located in the eastern realm of the Paleo-Tethys, the Triassic Ordos
Basin was situated at 18.3–25.4°N (Ma et al., 1993) in the North China
Craton. The basin was derived from an epi-continental sea that developed
during the Late Carboniferous to Middle Triassic. The Ordos became a
foreland basin due to the collision of the South and the North China
Cratons along the Mianlue suture from approximately 250Ma; however,
recent detrital zircon U-Pb isotope dating of the early Late Triassic
Yanchang Formation shows that the protoliths were sourced only
from the North China Craton and not the South China Craton and
the Qinling Orogenic Belt (Xie and Heller, 2013). The deposition of
Triassic sediments in the Ordos Basin can be divided into two cycles
(IGCAGS, 1980; PCOC, 1992): 1) the Lower and Middle Triassic cycles,
including the Liujiagou, Heshanggou, and Ermaying formations, which
are widespread throughout the entire North China Craton; 2) the Upper

Triassic cycle composed of the Yanchang Formation (sensu lato)
comprising alluvial, fluvial, deltaic, and lacustrine sedimentary rocks,
approximately 1,000–1,300 m in thickness. The Yanchang Formation
(Pan, 1934) or Group (ECSDC, 2000) can be divided into five members
(Y1–Y5) (IGCAGS, 1980) and 10 oil layers or members (YC1–YC10),
based on the depositional sequences (S1–S5), regional and local indicator
beds (K0–K9), and bentonite beds (B0–B6) (PCOC, 1992; Pang et al.,
2010; Yang et al., 2017; Deng et al., 2018; Zhang et al., 2019; Sun et al.,
2020). TheChang 7 oil layer (member) of the Yanchang Formation (YC7)
is one of the best layers of source rocks in the Ordos Basin (PCOC, 1992),
shale oil being the most important fossil energy source in China and
elsewhere (Jin et al., 2019; Liu et al., 2022). YC7 shale oil is deposited in
deep or semi-deep lacustrine environments when the basin extends to its
maximum; known as “Zhangjiatan Shale,” it is also a regional marker for
stratigraphic correlation. The shale has also been proposed for the division
of Triassic strata and their geological age. Its presence was assigned to the
uppermost Tongchuan Formation (IGCAGS, 1980; Tong et al., 2019) or
the lowest Yongping Formation (Li et al., 2016), while its age was assigned
to either theMiddle (IGCAGS, 1980; Deng et al., 2018) or Late Triassic (Li
et al., 2016; Tong et al., 2019; Sun et al., 2020). However, the Yanchang
Formation (sensu lato) is widely used (Bureau of Geology and Mineral
Resources of Shaanxi Province, 1998) in geological references (Table 1).
The formation conformably overlies the Middle Triassic Ermaying
Formation (or Zhifang Formation), which is characterized by purple
or grayish-red siltstones and mudstones intercalated within grayish and
yellowish-green sandstones.

3 Materials and methods

Palynological samples were collected from the Yunmeng profile
(GPS: N 35°15′58.87″, E 109°13′50.7″, H 1,298.45 m) which was
manually outcropped at Ruzhihe Village in Yunmeng Town, Yijun
County, Tongchuan City, Shaanxi Province, northwestern China
(Figure 1). YC8 and YC7 on the profile are construed as Middle
and Late Triassic in age, respectively (Ji and Meng, 2006; Sun et al.,
2020). The total thickness of the measured Yunmeng profile is >30 m
(Supplementary Figure S1). Some 27 palynological samples were
collected from the black shale layers of YC8-1 (9.01 m thick and
dominated by gray fine-grained sandstone and siltstone), and
60 samples were collected from YC7-3 (21.29 m thick and mainly
composed of dark gray, brown oil-shale, shale, and thin-layered
bentonite).

Each 50 g sample was broken into pieces <1.0 mm in diameter and
treated with HCl (30%) for 24 h and HF (36%) for 2 days. ZnCl-mixed
KI heavy liquid (2.2 g/cm3) and an 8 µm sieve were used to separate the
organic residue from minerals and gather the palynomorphs. All
samples, slides, and stubs numbered with the prefix STYM were
housed in the Research Center of Paleontology and Stratigraphy,
Jilin University, China. Details of the samples are provided in
Supplementary Appendix S1.

4 Results

4.1 Palynological assemblages

Among the 87 palynological samples collected from the
Yunmeng profile, only 15 samples containing over 100 grains of
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pollen and spores were quantitatively analyzed. A total of 45 species
assigned to 24 genera (Figures 2–4) were described; their botanical
affinity is shown in Supplementary Appendix S2. Their relative
abundance was calculated using TiLIA software (2.1.1). Two
palynological assemblages were recognized using CONISS within
TiLIA (Grimm, 1991–2016) in ascending order (Figure 5).

4.1.1 Lundbladispora watangensis–Taeniaesporites
combinatus assemblage (WC)

This palynological assemblage comprised 10 samples collected
from the YC8-1 sub-member in the Yunmeng profile, from which
1,092 specimens were identified. The taxa in this assemblage
comprised 121 species of 47 genera, including spores of 54 species
belonging to 17 genera and pollens of 67 species belonging to
30 genera, respectively (Supplementary Appendix S1).

The fern spores (21%–48%) in the WC palynological assemblage
mainly belonged to Lundbladispora (5%–20%), Aratrisporites (2%–
10%), Verrucosisporites (0%–11%), Cyclogranisporites (1%–8%),
Duplexisporites (0%–6%), and Calamospora (0%–6%). The
dominant species were L. watangensis (0%–6%), L. playfordi (0%–
5%), Aratrisporites tenuispinosus (0%–6%), A. granulates (0%–3%),
Verrucosisporites krempii (0%–6%), V. scitulus (0%–5%),
Duplexisporites rotundatus (0%–6%), Kraeuselisporites apiculatus
(0%–5%), and Asseretospora gyrata (0%–2%). The pollen (52%–
79%) in the WC assemblage mainly comprised Taeniaesporites
(2%–18%), Chasmatosporites (4%–16%), and Alisporites (3%–13%),
as well as Platysaccus (1%–5%), Striatoabieites (0%–7%),
Podocarpidites (0%–7%), Ovalipollis (0%–7%), Klausipollenites (0%–
6%), Piceaepollenites (0%–4%), Cycadopites (0%–3%), and Cedripites
(0%–3%). The most important species of pollen in theWC assemblage

FIGURE 1
Geographical and geological location of the Yunmeng Profile in the Ordos Basin (after Sun et al., 2020). (A) Reconstructed topography in late Middle
Triassic (after Zhang et al., 2019). (B)Geographic map of China showing location of the Ordos Basin; NC Craton, North China Craton; SC Craton, South China
Craton. (C) Paleogeographic map of YC7 showing the isopach of oil-shale.
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were Taeniaesporites combinatus (0%–9%), T. watangensis (0%–1%),
Alisporites aequalis (0%–5%), Platysaccus proximus (0%–3%), P.
queenslundi (0%–2%), Striatoabieites duivenii (0%–2%), Ovalipollis
ovalis (0%–4%), O. breviformis (0%–3%), Podocarpidites paulus (0%–
2%), and Cycadopites typicus (0%–2%).

4.1.2 Lundbladispora communis–Discisporites
granulus assemblage (CG)

This palynological assemblage comprised 20 samples
collected from the YC7-3 sub-member in the Yunmeng profile,
from which 1,083 specimens were identified. The taxa in this
assemblage were less diversified, with only 76 species of 45 genera
in total, including spores of 22 species belonging to 13 genera and
pollen of 54 species belonging to 32 genera (Supplementary
Appendix S1).

Fern spores (20%–39%) in the CG palynological assemblage
mainly consisted of Lundbladispora (4%–12%), Cyclogranisporites
(2%–8%), Dictyophyllidites (0%–5%), Aratrisporites (1%–3%),
Kraeuselisporites (0%–3%), Lunzisporites (0%–5%), and
Cyathidites (0%–1%). Common species identified were
Lundbladispora communis (0%–4%), L. playfordi (1%–4%),
Dictyophyllidites harrisii (0%–5%), Duplexisporites rotundatus
(0%–6%), Lunzisporites sparsus (0%–5%), and Kraeuselisporites
spinosus (0%–3%). Pollen (52%–79%) in the CG assemblage
mainly comprised Ovalipollis (3%–13%), Discisporites (0%–

17%), Protopinus (5%–11%), and Pristinuspollenites (0%–12%).
Alisporites (2%–8%), Klausipollenites (1%–8%), Podocarpidites
(0%–7%), Platysaccus (2%–5%), and Cycadopites (3%–7%) were
common. The most important pollens (with stratigraphic

significance) in the CG assemblage were Discisporites granulus
(0%–4%), Cycadopites typicus (1%–3%), Ovalipollis ovalis (1%–

3%), Klausipollenites schaubergeri (0%–3%), and P. queenslundi
(0%–2%).

4.2 Comparison of the palynological
assemblages in the Ordos Basin

Qu (1980) and Liu et al. (1981) reported palynological assemblages
from the upper member of the Tongchuan Formation on the Qishuihe
profile near the Yunmeng profile. These were characterized by
abundant fern spores (66.8%–77%) represented by Verrucosisporites
(8.3%–16.7%), Punctatisporites (33.2%), and Todisporites (46.5%) (Qu,
1980; Liu et al., 1981). Aratrisporites are normally rare in the Qishuihe
profile, whereas they are abundant (13%–29%) in the Qingyang profile
(Liu et al., 1981). Miao et al. (1984) also recorded the palynological
assemblage from the upper member of the Tongchuan Formation in the
Guluo and Kongyu outcrops in Hongdong, Shanxi Province, North
China, located in the southeastern Ordos Basin. The assemblage is
dominated by fern spores (60.4%–78.0%) including Punctatisporites
(42.8%–65.1%), Calamospora (4.0%–6.3%), and Verrucosisporites
(2.0%–7.0%). The pollen (22.0%–39.6%) in the assemblage mainly
comprises Piceaepollenites (7.0%–11.6%), Chordasporites (1.6%–8.7%),
and Psophosphaera (2.5%–8.0%) (Miao et al., 1984). As the upper
member of the Tongchuan Formation includes YC8 and YC7,
researchers in the 1980s did not realize the palynological difference
between the two members. Sun et al. (1995) reported that the
Anisian-Ladinian palynological assemblage in the northern China

TABLE 1 Historical division of the Yanchang Formation (sensu lato) in Ordos Basin, China.
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FIGURE 2
Selected spores and pollen identified at the Yunmeng profile (taxon name followed by sample number and position in England finder in parentheses).
(A) Cyathidites minor (Couper, 1953) (a-STYM94, J11-2); (B) Converrucosisporites decoratus (Shang, 2011) (b-STYM48, R17-4); (C) Dictyophyllidites
harrisii (Couper, 1958) (c-STYM48, N34-3); (D) Duplexisporites rotundatus (Shugaevskaya, 1969) (d-STYM01, N41-4); (E) Verrucosisporites rotundus
(Singh, 1964) (e-STYM03, N23-3); (F) Kraeuselisporites spinosus (Jansonius, 1962) (f-STYM16, F20-1); (G) Apiculatisporites bulliensis (Helby et De
Jersey, 1972) (g-STYM94, R8-3); (H) Lundbladispora playfordi (Balme, 1963) (h-STYM12, I26-1); (I) Asseretospora gyrata (Playford et Dettmann)
(Schuurman, 1977) (i-STYM16, B21-4); (J) Asseretospora curvata (Qu, 1980) (j-STYM28, J12-2); (K) Lundbladispora watangensis (Qu, 1984) (k-STYM12,
R36-2); (L, M) Lundbladispora subornata (Ouyang and Li, 1980) (l-STYM01, O45-2; m-STYM01, U25-4); (N) Lundbladispora communis (Ouyang and Li,
1980) (n-STYM94, K17-3); (O) Lundbladispora sp. (o-STYM01, M26-4); (P) Aratrisporites exiguous (Qu, 1984) (p-STYM28, M31-2); (Q) Aratrisporites
tenuispinosus (Playford, 1965) (q-STYM01, N37-1); (R) Aratrisporites coryliseminis (Klaus, 1960) (r-STYM01, N37-1); (S, T) Aratrisporites granulates (Klaus)
(Playford and Dettmann, 1965) (s-STYM21, R45-4, t-STYM01, T16-2).
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palynofloristic realm could not be divided into two sub-assemblages
according to their sporo-pollen sampling horizons and named the
Punctatisporites–Aratrisporites–Taeniaesporites–Parataeniaesporites
assemblages for both the Ermaying and Tongchuan formations in the
Ordos Basin (Sun et al., 1995). Furthermore, the spores in the
Yongping and Wayaobu formations (equivalent to members
YC7 to YC1) on the Tuweihe profile in the northern Ordos
Basin accounted for 56.2%–61.5% of the total grains (Wang
et al., 2003). Therefore, it seems difficult to determine whether

the palynological characteristics of the YC7 member are related to
the lower layers (from YC8 to YC10) or upper member (from
YC6 to YC1).

Finally, based on the samples from 12 boreholes (including
X17, X30, X36, X40, X43, and X44) in the Ordos Basin, located
136 km westward of the Yunmeng profile, the palynological
assemblages for the YC8 and YC7 members were separated and
named Aratrisporites–Punctatisporites and Asseretospora–Walchiites,
respectively (Ji and Meng, 2006). The Aratrisporites–Punctatisporites

FIGURE 3
Selected pollen identified at the Yunmeng profile (taxon name followed by sample number and position in England finder in parentheses). (A)
Plicatipollenites indicus (Lele, 1964) (a-STYM01, J46-3); (B) Striatoabieites sp. 1 (b-STYM21, L47-4); (C) Striatoabieites brickii (Sedova, 1956) (c-STYM01,
L19-3); (D–F) Striatoabieites duivenii (Jansonius) (Hart, 1964), (d-STYM21, N41-3; e-STYM16, S14-1; f-STYM28, S23-1); (G) Taeniaesporites combinatus
(Qu and Wang, 1990) (g-STYM01, M18-4); (H) Taeniaesporites albertae (Jansonius, 1962) (h-STYM28, F39-1); (I) Taeniaesporites junior (Klaus, 1960)
Wu, 1982 (i-STYM88, A42-1); (J) Taeniaesporites leptocorpus (Qu, 1984) (j-STYM21, L45-1); (K) Protohaploxypinus samoilovichii (Jansonius) (Hart, 1964)
(k-STYM48, T13-3); (L) Protopinus subluteus Bolkh, 1956 (l-STYM21, O34-4); (M) Alisporites nuthallensis (Clarke, 1965) (m-STYM01, K28-4); (N) Alisporites
parvus (De Jersey, 1962) (n-STYM82, E21-4); (O) Platysaccus luteus (Bolkh.) (Li and Shang, 1980) (o-STYM88, I41-3); (P) Platysaccus queenslundi (De
Jersey, 1962) (p-STYM21, L44-2).

Frontiers in Earth Science frontiersin.org06

Li et al. 10.3389/feart.2022.1008707

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1008707


assemblage is characterized by abundant fern spores (52.5%–88.7%),
including Aratrisporites (6.8%–66.2%), Punctatisporites (4.0%–50.4%),
Osmundacidites (3.5%–25.6%), Verrucosisporites (2.3%–18.0%), and

gymnosperm pollen (11.3%–45.7%) represented by Alisporites
(4.0%–14.1%), Abietineaepollenites (4.8%–10.2%), Pinuspollenites +
Piceaepollenites (2.2%–13.3%), Walchiites (2.2%–12.0%), and

FIGURE 4
Selected pollen identified at the Yunmeng profile (taxon name is followed by sample number and position in England finder or stub number in parentheses).
(A) Podocarpidites paulus (Bolkh.) (Xu and Zhang, 1980) (a-STYM16, P7-2); (B, C) Podocarpidites ornatus (Pocock, 1962) (b-STYM94, M34-4; c-STYM97, M34-1);
(D, E)Podocarpidites unicus (Bolkh.) (Pocock, 1970) (d-STYM-88, N35-2; e-STYM16, R42-1); (F)Podocarpiditesmulticinus (Bolkh.) (Pocock, 1970) (f-STYM30, I29-
4); (G–J)Ovalipollis ovalis (Krutzsch, 1955) (g, h-STYM01, O23-1, Stub-01; i-STYM26, P36-1; j-STYM01, N33-1); (K, L)Ovalipollis breviformis (Krutzsch, 1955)
(k, l-STYM21, Q37-3, Stub-21); (M, N)Chasmatosporites apertus (Rogalska) (Nilsson, 1958) (m, n-STYM12, T20-3, Stub-12); (O)Duplicisporites granulatus (Leschik,
1955) (o-STYM94, L37-4); (P–R) Cycadopites typicus (Maljavkina) (Pocock, 1970) (p-STYM48, D46-1; q, r-STYM16, T23-2, Stub-16); (S) Cycadopites adjectus (De
Jersey, 1964) (s-STYM27, I34-2); (T)Cycadopites tivoliensis (De Jersey, 1971) (t-STYM28, M47-4); (U–W)Ginkgocycadophytus spp. (u-STYM74, R34-1; v-STYM97,
J31-2; w-STYM90, P16-2); (X, Y) Discisporites spp. (x-STYM74, D44-2; y-STYM94, G38-2).
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Cycadopites (1.0%–6.0%). The Asseretospora–Walchiites assemblage
comprises fern spores (15.9%–44.7%) represented by Asseretospora
(5.2%–20.2%) and Aratrisporites (4.0%–15.8%), and gymnosperm
pollen (53.3%–84.1%) including Abietineaepollenites +
Pinuspollenites (8.4%–34.0%), Walchiites (4.0%–22.2%), and
Alisporites (4.7%–15.6%).

The present WC and CG assemblages are comparable to the
Aratrisporites–Punctatisporites and Asseretospora–Walchiites
assemblages, respectively. The WC assemblage from the YC8-1 sub-
member (i.e., the upper part of YC8 member) is part of the
Aratrisporites–Punctatisporites assemblage from the whole
YC8 member, while the CG assemblage from the YC7-3 sub-member
(the lower part of the YC7member) is part of theAsseretospora–Walchiites
assemblage. This enables researchers to see all characteristics and the
details of the palynological transition from the uppermost Ladinian
to the lowest Carnian. The percentage of spores decreases from the
YC8 to YC7, with an obvious excursion at the boundary between
YC8 and YC7. While this might result from the withdrawal of lake
shore vegetation accompanying the lake’s widening and deepening,
the number of spore species decreased greatly, especially
Lundbladispora and Aratrisporites. Deng et al. (2018)
summarized the palynological assemblages of the Yanchang
Formation (sensu lato) in the Ordos Basin, named the
Asseretospora–Apiculatisporis–Chordasporites (YC1–YC6)
assemblage and Punctatisporites–Aratrisporites–Verrucosisporites
(YC7–YC10) assemblage. Spore abundance varied between 30%
and 70% in each, and, in many outcrops, the Aratrisporites content
was as high Punctatisporites and Verrucosisporites in the
Punctatisporites–Aratrisporites–Verrucosisporites assemblage,
including the Qishuihe profile (Deng et al., 2018).

Three palynological assemblage zones were recently
recognized based on 11 samples from the Triassic
Tanzhuang and Anyao formations in the Jiyuan Basin (which
might comprise the Ordos Basin), Henan Province,
China—named the Paleoconiferus–Cyclogranisporites–Rotundipollis,
Cyclogranisporites–Osmundacidites–Punctatisporites, and
Pseudopicea–Paleoconiferus–Protoconiferus assemblage zones (in
ascending order) (Lu et al., 2021). The first and last assemblages
were dominated by gymnosperm pollen (52.3% and 47.6%,
respectively) represented by Paleoconiferus and Pseudopicea, with
fern spores mainly including Cyclogranisporites, Osmundacidites, and
Punctatisporites. However, the second assemblage was dominated by
algae (56.5%), fern spores (33.3%), and gymnosperm pollen (10.2%).
This was also observed in the present WC and CG assemblages, which
were dominated by gymnosperm pollen, along with algae at the horizon
of the CG assemblage.

5 Discussion

5.1 Geological age

5.1.1 Isotopic dating
Although the geological age of YC7-3 on the Yunmeng profile is

assigned to the Carnian based on U-Pb isotopic dating of three
continuous rhyolitic tuff layers and ages 236.0 ± 1.7 Ma, 234.8 ±
2.1 Ma, and 234.1 ± 2.4 Ma have been obtained in ascending order
(Sun et al., 2020), the latest isotopic dating near the Yunmeng profile
showed the ages to be much older (240.9 ± 0.9 Ma for the detrital zircons
from the tuffaceous sandstone in Mazhuang; Zhao et al., 2020). The old

FIGURE 5
Stratigraphy, lithology, productive sample position, and relative sporo-pollen abundances at the Yunmeng profile, Ordos Basin, China.
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group of detrital zircons could not be regarded as of eruptive and
depositional ages (Fedo et al., 2003), and they were also detected as
inherited zircons in sample STYMD-62 (Sun et al., 2020). Some inherited
zircons were dated older in the Yunmeng profile; however, considering
the number of concording zircons and the stratigraphic sequence, the
isotopic dating results indicated that YC7 in Ordos Basin was deposited at
234.1–236.0 Ma (Sun et al., 2020).

5.1.2 Palynological biostratigraphy
Unlike in South China and Europe, the Triassic successions in the

Ordos Basin are terrestrial without any marine interlayers; therefore,
palynology is one of the major fossils indexes used for stratigraphic
correlation (Liu et al., 1981; Shang, 2011). At the GSSP section of the
Carnian, the palynological criteria of the basal Carnian are the first
observations of Vallasporites ignacii, Patinasporites densus, and
Aulisporites cf. A. astigmosus, together with Duplicisporites
verrucosus and Camerosporites secatus, “Lueckisporites” cf. singhii,
which are auxiliary indicators of the Carnian (Mietto et al., 2012).
Because the GSSP of the Carnian is indicated by Daxatina canadensis,
it is lower than the traditional base of the Carnian (including
Cordevolian, Julian, and Tuvalian) in the Alps and circum-Tethys
area, which was marked by the Trachyceras aon zone (Visscher and
Brugman, 1981). Meanwhile, C. secatus was recorded in Yunnan and
Guizhou, China, where the bases of the palynomorph-bearing strata
are Carnian-aged marine limestones, as evidenced by the presence of
conodonts (Neogondolella polygnathiformis zone; Yang et al., 1995).
Thus, this praecolpate pollen, together with other palynomorphs in
the Banan and Sanqiao formations in Guizhou Province, China, are
late Tuvalian in age (Shang, 2011). The present WC and CG
assemblages in the Yunmeng profile in the Ordos Basin shared
17 known species with those in the Banan and Sanqiao formations,
Guizhou Province, China, including Calamospora nathorstii, C.

padata, Punctatisporites crassexinis, Dictyophyllidites harrisii,
Verrucosisporites congestus, V. morulae, Lundbladispora playfordi,
Aratrisporites scabratus, Lueckisporites triassicus, Taeniaesporites
albertae, T. junior, T. leptocorpus, Klausipollenites decipiens,
Platysaccus proximus, P. queenslandi, Ovalipollis ovalis, and
Cycadopites tivoliensis. In addition to these species, 22 have been
recorded in Late Triassic deposits in Eurasia, South America, North
America, Australia, and Antarctica (Halle, 1908; Couper, 1953;
Couper, 1958; Leschik, 1955; Nilsson, 1958; Klaus, 1960; De Jersey,
1962; De Jersey, 1964; De Jersey, 1972; Bharadwaj et Singh, 1964;
Mädler, 1964; Clarke, 1965; Gair et al., 1965; Playford, 1965; Playford
and Dettmann, 1965; Scheuring, 1970; Arjang, 1975; Fisher and Bujak,
1975; Schuurman, 1977): Cyathidites minor,Verrucosisporites krempii,
V. remyanus, Lunzisporites lunzensis, L. sparsus, Asseretospora gyrate,
Aratisporites coryliseminis, A. granulates, A. coryliseminis, A. strigosus,
A. tenuispinosus, A. aequalis, A. circulicorpus, A. nuthallensis, A.
parvus, Ovalipollis grebeae, O. minimus, Duplicisporites granulatus,
Chasmatosporites apertus, Cycadopites adjectus, C. reticulatus, and
Perinopollenites elatoides. However, six species—including
Cyclogranisporites multigranus, Apiculatisporis bulliensis,
Kraeuselisporites apiculatus, K. spinosus, Plicatipollenites indicus,
and K. schaubergeri—from the Permian or even the Carboniferous
of France, England, Canada, Australia, and India (Potonie and Klaus,
1954; Jansonius, 1962; Lele, 1964; Smith and Butterworth, 1967) have
also been recorded in the Triassic of South and North China (Song
et al., 2000; Ouyang et al., 2011; Ji et al., 2015; Ji et al., 2017; Liu et al.,
2015). Moreover, 18 species from the Jurassic–Cretaceous or Paleogene
from Canada and Siberia—Converrucosisporites saskatchewanensis,
Verrucosisporites asymmetricus, V. rotundus, Duplexisporites
rotundatus, Alisporites bilateralis, A. rotundus, Protopinus subluteus,
Piceaepollenites omoriciformis, Platysaccus luteus, Podocarpidites
multicinus, P. ornatus, P. paulus, P. unicus, Pseudowalchia crocea,

FIGURE 6
Distribution of selected palynological taxa during the Ladinian–Carnian transition in the Yunmeng profile, Ordos Basin, China.
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Ovalipollis breviformis, Psophosphaera cognatus, Araucariacites australis,
and Cycadopites typicus (Cookson, 1947; Malyavkina, 1949; Krutzsch,
1955; Bolkhovitina, 1956; Rouse, 1959; Pocock, 1962; Pocock, 1970; Singh,
1964; Shugaevskaya, 1969)—were found in the present assemblages;
however, most of them have also been reported in other Triassic
palynological assemblages worldwide (Varyukhina, 1961; Clarke, 1965;
Scheuring, 1966; Schulz, 1967; Pocock, 1970; Warrington, 1970;
Gradstein, 1971; Planderova, 1972; Horowitz, 1973; Tuzhikova, 1975;
1979; Kimyai, 1977; Tuzhikova, 1980; Semenova, 1987; Song et al., 2000).
Another 20 local species, including Cyclogranisporites callosus,
Converrucosisporites decorates, Verrucosisporites mimicus, V. scitulus,
Apiculatisporis pilosus, Baculatisporites versiformis, Asseretospora
curvata, L. communis, L. microreticuIata, L. minuta, L. sinica, L.
subornata, L. watangensis, Aratrisporites exiguous, Arat. xiangxiensis,
Taeniaesporites combinatus, T. divisus, T. watangensis, Podocarpidites
transverses, and D. granulus, have been recorded in the Triassic or early
Jurassic in China, especially in theOrdos Basin (Ouyang, 1982;Miao et al.,
1984; Zhang, 1984; Song et al., 2000). Therefore, the overall geological age
of the present palynoflora is around the Carnian.

The CG assemblage from YC7-3 was considered to be Late Triassic
Carnian in age because, around the world, the species Cyathidites minor
(Couper, 1953), Dictyophyllidites harrisii (Couper, 1958), Apiculatisporis
bulliensis (Helby ex De Jersey, 1971), Aratrisporites xiangxiensis (Li and
Shang, 1980), Piceaepollenites omoriciformis (Bolkh.) (Xu and Zhang,
1980), Podocarpidites ornatus (Pocock, 1962), and Discisporites granulus
(Zhang, 1984), and genusClassopollis (Pflug, 1953) were only found in the
CG assemblage and were never aged older than the Carnian of the Late
Triassic (Figure 6).

Meanwhile, some of the species in the WC assemblage, including
Lundbladispora nejburgii (Schulz, 1964), Plicatipollenites indicus (Lele,
1964), Striatoabieites bricki (Sedova, 1956), S. duivenii (Jansonius)
(Hart, 1964), and Klausipollenites schaubergeri (Potonie et Klaus)

(Jansonius, 1962) are normally found in the Lower Triassic and the
Anisian in Eurasia (Geiger and Hopping 1968; Sakulina, 1973;
Vinogradova, 1974; Tuzhikova, 1975; Warrington, 1979). Some local
species, such as Cyclogranisporites callosus (Du, 1985), Verrucosisporites
mimicus (Qu and Wang, 1986), Lundbladispora communis (Ouyang and
Li, 1980), L. microreticulata (Qu, 1982), L. minuta (Qu, 1984),
Lundbladispora sinica (Ouyang and Li, 1980), Lundbladispora
subornata (Ouyang and Li, 1980), L. watangensis (Qu, 1984),
Aratrisporites exiguous (Qu, 1984), Taeniaesporites combinatus (Qu and
Wang, 1990), Taeniaesporites divisus (Qu, 1982), and Taeniaesporites
watangensis (Qu, 1984) were reported in the Lower Triassic and never
in the Upper Triassic in China. Thus, the age of the WC assemblage from
YC8-1 was assigned to the Middle Triassic Ladinian (Figure 6).

5.2 Reconstructed palynofloras

Based on the compositions, habitats, and vertical distributions of the
mother plants of pollen and spores, three palynofloras were reconstructed
on the Yunmeng profile in Ordos Basin, China (Figure 7).

5.2.1 Latest Ladinian palynoflora
The latest Ladinian palynoflora reconstructed from the YC8-1

sub-member on the Yunmeng profile in the Ordos Basin can be
represented by the L. watangensis–T. combinatus assemblage (WC). It
is quite diverse in its composition, comprising 121 species of 47 genera
(Supplementary Appendix S1). The spores in this palynoflora include
54 species belonging to 17 genera. The most diverse genera were
Verrucosisporites (10 species), Lundbladispora (10 ), andAratrisporites
(8 ), which accounted for half of the spore species. The botanical
affinity of Verrucosisporites spores might be with those of lycophytes
(Isoetales) or Pteridophytes (Zygopteridales, Botryopteridales, and

FIGURE 7
Diversity and reconstructed living habit of palynofloras at the Yunmeng profile, Ordos Basin, China.
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Marattiales) (Mamay, 1950; Balme, 1995; Taylor et al., 2009); however,
Bromsgrovia with in situ Verrucosisporites spores from the Anisian in
the United Kingdom are considered horsetails (Seyfullah et al., 2013).
Therefore, the Verrucosisporites in the present flora are considered
sphenophytes, an emerging plant on the Triassic Ordos Lake shore.
Lundbladispora spores belong to Pleuromeiales, lycophytes (Balme,
1995), and are recorded in situ in the Devonian lycopod strobill
Bisporangiostrobus (Chitaley and McGregor, 1988) and Triassic
Pleuromeia sternbergii (Grauvogel-Stamm and Lugardon, 2004). As
the remarkable characteristic of three rounded papillae between the
trilete rays on the proximal surface is found in the Triassic Pleuromeia
cone, we agree that the mature microspores of P. sternbergii are
Lundbladispora-type (Balme, 1995). Aratrisporites spores are
additional lycophytic microspores that have been reported in situ
in Annalepis zeilleri, Araucarites tomiensis, Cyclostrobus sydneyensis,
Lycostrobus scottii, Tomiostrobus radiates, and Isoetes ermayingense
(Wang, 1991; Balme, 1995) and are considered quillwort and an
aquatic lycopod (Retallack, 1997). Sphenophytes include
Calamospora, Cyclogranisporites; lycophytes, Kraeuselisporites; and
pteridophytes, Lunzisporites, Punctatisporites, Granulatisporites,
Lophotriletes, Baculatisporites, Apiculatisporis, Duplexisporites,
Asseretospora, Laevigatosporites, and Thymospora. These are herbs
or fern trees surrounding the lake and riverside or distributed on the
wet lowland.

The pollen of the latest Ladinian palynoflora mainly comprises
Pteridospermophytes: Taeniaesporites (seven species), Alisporites
(seven), coniferophytes: Podocarpidites (five), Ovalipollis (five), and
cycadophytes: Cycadopites (five species). Taeniaesporites and
Alisporites have bisaccate pollen with or without striae on the
corpus and are considered Permotheca disparis-type pollen because
of their morphological similarity to in situ P. disparis (Zalessky)
Naugolnykh pollen (Krassilov et al., 1999; Zhang J. G. et al., 2021).
They might have been evergreen peltaspermale shrubs. Ovalipollis
(Krutzsch) Klaus is an elliptical protobisaccate pollen with anasulcus
being regarded as Majonica alpina-type (Zhang J. G. et al., 2021) and
might be an evergreen tree of Voltziales. The mother plants yielding
Podocarpidites pollen should be Podocarpaceae arbors in the dry
lowlands and uplands as canopy forests (Li et al., 2020).
Cycadopites are heliophyte shrubs present in the lowlands (Mander
et al., 2010; Paterson et al., 2016). These five gymnosperm pollen
genera might represent the leading taxa in lowland and upland
vegetation. Other diverse pollen species included coniferophytes:
Platysaccus (four species) and Pteridospermophytes: Klausipollenites
(three) and Striatoabieites (three), which are evergreen trees and
shrubs. Compared to evergreen plants, deciduous arbor conifer
trees are diverse at the genus level but impoverished at the species
level: Protopinus, Pseudopinus, Cedripites, Piceaepollenites, Piceites,
Protopicea, and Pseudopicea. They may have been present in the
upland or mountainous areas.

In summary, the latest Ladinian palynoflora are diverse in every niche,
including lakes, bogs, rivers, wet and dry lowlands, uplands, and
mountainous peaks. The lacustrine vegetation is characterized by
aquatic Aratrisporites quillworts, Verrucosisporites, and Calamospora
sphenopsids as emerging plants on the shore. The wet lowland
vegetation mainly comprises Lundbladispora lycopods on the riverbank,
Verrucosisporites (Kraeuselisporites sphenopsids), and some herbaceous
ferns such as Lunzisporites, Apiculatisporis, and Asseretospora. The dry
lowland vegetation is characterized by evergreen Cycadopites,
Taeniaesporites bushes, and Duplexisporites–Asseretospora fern trees.

The upland vegetation consists of diverse evergreen arbor forests
represented by Alisporites, Ovalipollis, Platysaccus, and Podocarpidites
mingled with deciduous conifer trees such as Cedripites and
Piceaepollenites on the high mountains.

5.2.2 Earliest Carnian palynoflora
The earliest Carnian palynoflora reconstructed from the lower part

of the YC7-3 sub-member on the Yunmeng profile in Ordos Basin can
be represented by the early sub-assemblage of the L. communis–D.
granulus assemblage (CG-1). This comprises 35 species of 29 genera,
which is small not only in the number of species but also in the quantity
of specimens compared to the latest Ladinian palynoflora
(Supplementary Appendix S1; Figure 7). The spores in this small
palynoflora include only nine species of six genera: Lundbladispora
(three species), Converrucosisporites (two), Aratrisporites, Calamospora,
Verrucosisporites, andDictyophyllidites. Gymnosperm pollen (26 species
of 23 genera) are relatively diverse at the genus level, including
Pteridospermophytes (Protohaploxypinus, Taeniaesporites, Alisporites,
Klausipollenites, Sulcatisporites), Coniferophytes (Plicatipollenites,
Accinctisporites, Protohaploxypinus, Pseudowalchia, Ovalipollis,
Paleoconiferae, Protoconiferus, Pristinuspollenites, Protopinus,
Pseudopinus, Cedripites, and Piceaepollenites), Cycadophytes
(Cycadopites), and Ginkgophytes (Ginkgocycadophytus).

Although it is small, the earliest Carnian palynoflora covers most
niches, including lakes, rivers, wet and dry lowlands, uplands, and
mountains. The lacustrine vegetation comprises aquatic Aratrisporites
quillworts and Verrucosisporites–Calamospora sphenopsids as emerging
plants on the shore. The wet lowland vegetation consists of
Lundbladispora lycopods on the riverbank and some fern trees
represented by Dictyophyllidites and Converrucosisporites. The dry
lowland vegetation is characterized by evergreen Cycadopites bushes
and Pteridospermophytes shrubs such as Taeniaesporites and
Protohaploxypinus, as well as evergreen voltzialean shrubs such as
Plicatipollenites and Accinctisporites. The upland vegetation consists of
evergreen arbor forests represented by Alisporites, Klausipollenites,
Pseudowalchia, Ovalipollis, Platysaccus, and Pristinuspollenites mingled
with deciduous conifer trees such as Cedripites and Piceaepollenites on the
high mountains. The most conspicuous characteristic of upland
vegetation is the acceding of Cheirolepidiaceae and Cupressaceae
evergreen scaly leaf trees represented by Discisporites and
Perinopollenites, respectively. This indicates that the two coniferous
families most likely originated in the early Carnian (Taylor et al., 2009).

5.2.3 Early Carnian palynoflora
The early Carnian palynoflora reconstructed from the upper

part of the YC7-3 sub-member on the Yunmeng profile in Ordos
Basin can be represented by the late sub-assemblage of the L.
communis–D. granulus assemblage (CG-2). It comprises 61 species
belonging to 37 genera, which is much more diverse than the
earliest Carnian palynoflora (Figure 7). The spores in this
palynoflora comprise 16 species belonging to 11 genera,
including Lundbladispora (three species), Verrucosisporites
(two), Duplexisporites (two), Aratrisporites, Kraeuselisporites,
Cyclogranisporites, Lunzisporites, Cyathidites, Dictyophyllidites,
Asseretospora, and Apiculatisporis. The gymnosperm pollen
(45 species in 26 genera) is quite diverse, especially comprising
Cycadopites (five species), Alisporites (five), Taeniaesporites
(three), Ovalipollis (three), Platysaccus (three), and
Podocarpidites (three species).
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TABLE 2 Botanical affinities, habits, eco-groups, and environments of dispersed palynofloras in Ordos Basin, China.

Taxon Infraturma Botanical affinity Habit SEG Environment

Aratrisporites Monolete Lycophytes: Isoetales Aquatic Aquatic Hygrophytic

Lundbladispora Trilete Lycophytes: Pleuromeiales Woody bush Dry lowland Hydrophytic D

Kraeuselisporites Trilete Lycophytes: Sellaginellales Herbaceous Wet lowland Hydrophytic B

Calamospora Trilete Sphenophytes: Equisetales Herbaceous Lacustrine shore Hydrophytic A

Cyclogranisporites Trilete Sphenophytes: Equisetales Herbaceous Lacustrine shore Hydrophytic A

Verrucosisporites Trilete Sphenophytes: Equisetales Herbaceous Lacustrine shore Hydrophytic A

Lunzisporites Trilete Sphenophytes: Equisetales Herbaceous Wet lowland Hydrophytic B

Granulatisporites Trilete Pteridophytes: Botryopteridales Herbaceous Wet lowland Hydrophytic B

Lophotriletes Trilete Pteridophytes: Botryopteridales Herbaceous Wet lowland Hydrophytic B

Baculatisporites Trilete Pteridophytes: Osmundaceae Herbaceous Wet lowland Hydrophytic B

Cyathidites Trilete Pteridophytes: Cyatheaceae Fern tree Wet lowland Hydrophytic C

Dictyophyllidites Trilete Pteridophytes: Dipteridaceae Fern tree Wet lowland Hydrophytic C

Converrucosisporites Trilete Pteridophytes: Dipteridaceae Fern tree Wet lowland Hydrophytic C

Duplexisporites Trilete Pteridophytes: Dicksoniaceae Fern tree Wet lowland Hydrophytic C

Asseretospora Trilete Pteridophytes: Pteridaceae Fern tree Wet lowland Hydrophytic C

Apiculatisporites Trilete Pteridophytes: Marattiales Fern tree Wet lowland Hydrophytic C

Punctatisporites Trilete Pteridophytes: Marattiales Fern tree Wet lowland Hydrophytic C

Laevigatosporites Monolete Pteridophytes: Marattiales Fern tree Wet lowland Hydrophytic C

Thymospora Monolete Pteridophytes: Marattiales Fern tree Wet lowland Hydrophytic C

Plicatipollenites Monosaccites Voltziales: Utrechtiaceae Evergreen shrub Dry lowland Xerophytic

Accinotisporites Monosaccites Voltziales: Utrechtiaceae Evergreen shrub Dry lowland Xerophytic

Distriomonosaccites Monosaccites Voltziales: Utrechtiaceae Evergreen shrub Dry lowland Xerophytic

Protohaploxypinus Striatiti Pteridospermophytes: Peltaspermales Evergreen shrub Dry lowland Mesophytic

Striatoabieites Striatiti Pteridospermophytes: Peltaspermales Evergreen shrub Dry lowland Mesophytic

Striatopodocarpites Striatiti Pteridospermophytes: Peltaspermales Evergreen shrub Dry lowland Mesophytic

Taeniaesporites Striatiti Pteridospermophytes: Peltaspermales Evergreen shrub Dry lowland Mesophytic

Cycadopites Plicates Cycadales Evergreen shrub Dry lowland Mesophytic

Alisporites Disaccites Pteridospermophytes: Corystospermales Evergreen arbor Upland Mesophytic

Klausipollenites Disaccites Pteridospermophytes: Corystospermales Evergreen arbor Upland Mesophytic

Sulcatisporites Disaccites Pteridospermophytes: Corystospermales Evergreen arbor Upland Mesophytic

Lueckisporites Striatiti Voltziales: Majoniaceae Evergreen arbor Upland Mesophytic

Pseudowalchia Disaccites Voltziales Evergreen arbor Upland Mesophytic

Ovalipollis Saccites Voltziales Evergreen arbor Upland Mesophytic

Perinopollenites Poroses Coniferophytes: Cupressiaceae Evergreen arbor Upland Xerophytic

Classopollis Poroses Coniferophytes: Cheirolepidiaceae Evergreen arbor Upland Xerophytic

Discisporites Poroses Coniferophytes: Cheirolepidiaceae Evergreen arbor Upland Xerophytic

Psophosphaera Aletes Coniferophytes: Araucariaceae? Evergreen arbor Upland Mesophytic

Araucariacites Aletes Coniferophytes: Araucariaceae Evergreen arbor Upland Mesophytic

Duplicisporites Aletes Coniferophytes: Araucariaceae? Evergreen arbor Upland Mesophytic

(Continued on following page)
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The early Carnian palynoflora shows characteristics of recovery
from the earliest Carnian palynoflora and adaptation to seasonal
climate. Almost all niches are occupied by different kinds of plants.
The lacustrine vegetation is represented by
Verrucosisporites–Cyclogranisporites sphenopsids as emerging plants
on the shore, as well as some aquatic Aratrisporites quillworts. The wet
lowland vegetation includes abundant Lundbladispora lycopods on
the riverbank and some fern trees, such as Cyathidites,
Dictyophyllidites, Duplexisporites, Asseretospora, and Apiculatisporis.
Dry lowland vegetation is characterized by evergreen Cycadopites
bushes and Pteridospermophytes shrubs, such as Taeniaesporites and
Striatoabieites. The upland vegetation consists of evergreen arbor forests
represented by Alisporites, Klausipollenites, Pseudowalchia, Ovalipollis,
Discisporites, Platysaccus, Podocarpidites, and Pristinuspollenites
mingled with deciduous Ginkgocycadophytus and conifer trees such
as Protopinus and Pseudopicea on the high mountains. The most
conspicuous characteristic of the dry lowland vegetation is the
disappearance of Utrechtiaceae evergreen conical leaf shrubs, which
are seen in the earliest Carnian flora represented by Plicatipollenites and
Accinctisporites; however, they are neither the main components in the
latest Ladinian nor in the earliest Carnian palynofloras.

5.3 Climatic changes

5.3.1 Early and Middle Triassic climate
The Early and Middle Triassic climate in the Tethys area was

arid in the tropical and subtropical areas (Parrish, 1993; Wilson
et al., 1994; Kent and Olsen, 2000), with green vegetation present
only along the permanent rivers (the gallery forests) (Shi et al.,

2021). However, the arid climate periodically experienced humid
pulses during the Early and Middle Triassic (Preto et al., 2010), and
the middle and late Pelsonian humid events of the Anisian are well-
documented by macroflora and palynoflora fossils Kustatscher and
Van Konijnenburg-van Cittert, 2010). These humid pulses might
have been important for climate change in the Ordos Basin as the
changes caused the transition in the deposits from the magenta-red
deposit of the Heshanggou Formation to the green and gray
deposits with red interlayers of the Zhifang Formation (Qu,
1980). The disappearance of the reddish layers and the
appearance of the coal seams indicate the beginning of the
Yanchang Formation (sensu lato) (IGCAGS, 1980), which might
be attributed to the Ladinian humid event marked by paleokarst
breccia in the Dolomite Alps (Mutti and Weissert, 1995).

5.3.2 Carnian pluvial event
The Carnian pluvial event (CPE) is recognized as a carbonate crisis

(Schlager and Schollnberger, 1974), reef crisis (Brandner, 1984;
Donofrio., 1991; Ruttner et al., 1991), and black shale events
(Hornung and Brandner, 2005) that occurred in the early Carnian
epoch, in both the tropical Tethys and boreal areas (Dubiel et al., 1991;
Shi et al., 2009; Preto et al., 2010;Wang et al., 2012; Mueller et al., 2015;
Mueller et al., 2016). Since the CPE is also marked by negative carbon
isotopic excursion (Dal Corso et al., 2012; Dal Corso et al., 2015), it is
regarded as a global event caused by mega-monsoons (Dubiel et al.,
1991; Mutti and Weissert, 1995) or increased atmospheric CO2 from
volcanic eruptions (Dal Corso et al., 2012; 2015; Mueller et al., 2016).
The CPE is marked by a short-lived increase in rainfall (Preto and
Hinnov, 2003; Hornung and Brandner, 2005; Rigo et al., 2007) in the
Carnian. The vegetation changes in the western Tethys during the CPE

TABLE 2 (Continued) Botanical affinities, habits, eco-groups, and environments of dispersed palynofloras in Ordos Basin, China.

Taxon Infraturma Botanical affinity Habit SEG Environment

Platysaccus Disaccites Coniferophytes: Podocarpaceae Evergreen arbor Upland Mesophytic

Podocarpidites Disaccites Coniferophytes: Podocarpaceae Evergreen arbor Upland Mesophytic

Pristinuspollenites Disaccites Coniferophytes: Podocarpaceae Evergreen arbor Upland Mesophytic

Quadraeculina Disaccites Coniferophytes: Podocarpaceae Evergreen arbor Upland Mesophytic

Caytonipollenites Disaccites Caytoniales Evergreen arbor Upland Mesophytic

Ginkgocycadophytus Plicates Ginkgoales Deciduous arbor Upland Xerophytic

Paleoconiferae Disaccites Coniferales Deciduous arbor Upland Xerophytic

Protoconiferus Disaccites Coniferales Deciduous arbor Upland Xerophytic

Protopinus Disaccites Coniferophytes: Pinaceae Deciduous arbor Upland Xerophytic

Pseudopinus Disaccites Coniferophytes: Pinaceae Deciduous arbor Upland Xerophytic

Pinuspollenites Disaccites Coniferophytes: Pinaceae Deciduous arbor Upland Xerophytic

Pityosporites Disaccites Coniferophytes: Pinaceae Deciduous arbor Upland Xerophytic

Cedripites Disaccites Coniferophytes: Pinaceae Deciduous arbor Upland Xerophytic

Protopicea Disaccites Coniferophytes: Piceoidea Deciduous arbor Upland Xerophytic

Pseudopicea Disaccites Coniferophytes: Piceoidea Deciduous arbor Upland Xerophytic

Piceaepollenites Disaccites Coniferophytes: Piceoidea Deciduous arbor Upland Xerophytic

Piceites Disaccites Coniferophytes: Piceoidea Deciduous arbor Upland Xerophytic

Chasmatosporites Plicates Gnetales? Liana
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were characterized by a decrease in pollen grains normally attributed
to xerophytic upland vegetation and an increase in hygrophytic
associations attributable to herbaceous Filicopsida (ferns),
Lycopodiales (clubmosses), Equisetopsida (horsetails), and
Cycadeoidales (Roghi et al., 2010). However, palynological data
from the YC7 and YC8 members in the Xifeng area of Qingyang,
Shaanxi Province (Ji and Meng, 2006; Ji and Zhu, 2013) might reveal
another scenario: the climate in the early Late Triassic might have been
as warm and humid as that in the late Middle Triassic. Recent studies
in the Jiyuan Basin, Henan Province, China, showed a depositional
thickness from the CPE of approximately 40 m in the ZJ-1 borehole
based on four of eleven palynological samples scattered in a 140-m
thick core (Lu et al., 2021).

Based on previous research (Balme, 1995; Taylor et al., 2009; Zhang
J. G. et al., 2021), the botanical affinities, habits, eco-groups, and
environments of the palynological taxa were reconstructed for the
palynoflora on the Yunmeng profile in the Ordos Basin (Table 2). To
better understand climate change, both the abundance of palynomorphs
and the diversity at the species level were statistically analyzed (Figure 8).
Not included in the analysis were 16 productive samples (STYM-30, -32,
33, -34, -39, -45, -46, -47, -48, -60, -65, -70, -72, -73, -74, and -80) because
they included <10 taxa. The other 16 samples were distributed in two
groups: the uppermost part of theYC8-1 sub-member and the upperpart
of the YC7-3 sub-member and were subjected to quantitative analysis
(Visscher and Van der Zwan, 1981). The results show that the climates
revealed by the two palynofloras were similar, with both vegetation types
including hydro-, meso-, and xerophytic elements (Figure 8). The
xerophytic plants comprised 11%–38% of the vegetation at the species
leveland14%–35%ofthetotalsporo-pollenspecimens.Evergreenshrubs,

trees, and deciduous arbors were present in the latest Ladinian and early
Carnian palynofloras. The hydrophytic plants, including lycophytes,
sphenophytes, and pteridophytes, comprised 25%–50% and 20%–51%
of the total species and specimens, respectively. The mesophytic plants
included Pteridospermophytes, Ullmanniaceae, Majonicaceae,
Araucariaceae, Podocarpaceae, Caytoniales, and Cycadopites, and
comprised 35%–54% and 32%–49% of the total species and specimens,
respectively. Therefore, the phytoclimatic compositions of the two
palynofloras were generally quite stable. This was also evidenced by
the coexistence of gnetalean liana plants (Chasmatosporites) in the two
palynofloras (Supplementary Appendix S1; Table 2).

However, the compositions of the flora in the two assemblages
differed greatly; the WC assemblage in the YC8-1 sub-member
included 121 species in 47 genera, while the CG assemblage in the
YC7-3 sub-member included only 76 species in 45 genera. The
diversity lost at the species level was 38%. Furthermore, examination
of the spores showed that 38 species—70% of the spores in the WC
assemblage—were lost, including many species from Aratrisporites,
Lundbladispora, Calamospora, Verrucosisporites, Cyclogranisporites,
Asseretospora, and Apiculatisporites. Although the deepening and
enlargement of the Triassic Ordos Lake might have led to the mother
plants being far from the deep and semi-deep lake deposits, the aquatic
Aratrisporites also greatly declined, with only one species remaining from
the former eight. This might imply that the lake was eutrophic, as also
evidenced by the burst of algae and organic-rich oil shales in the YC7-3
sub-member (Liu et al., 2022). Regarding eco-groups (Figure 8), the
hydrophytic A and B types are composed of horsetails and herbaceous
ferns; they were quite abundant and diverse in the WC zone but rare or
absent in the CG zone, especially in the CG-1 sub-zone. Dendroid ferns

FIGURE 8
Reconstructed humidity based on diversity and abundance of palynofloras at Yunmeng profile, Ordos Basin, China.
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also exhibited a similar pattern. Therefore, the lake was eutrophic, and the
climate was warm but likely much more arid than before.

Approximately a third of the pollen (26 species of gymnosperm
pollen) in the WC assemblage was lost in the CG assemblage. The lost
gymnosperms mainly included Peltaspermales, Corystospermales,
Voltziales, Araucariaceae, and some old conifers living upland and
in dry lowlands as evergreen shrubs and deciduous and evergreen
trees, which included the mesophytic and xerophytic plants.
Therefore, this decline is less affected by eco-groups, habitats, and
climate type, which must be an overall loss. Meanwhile,
Cheirolepidiaceae and Pinuspollenites emerged, and Utrechtiaceae
conical leaf shrubs survived. This also indicates a drier climate. In
summary, the loss of spores and pollen in every niche and the
emergence of most xerophytic Cheirolepidiaceae plants indicate
that the climate became drier when the lake became deeper,
broader, and euphytic. This coincided with a strong seasonal
monsoon climate under greenhouse conditions.

5.3.3 Monsoon arid climate
The monsoon arid climate might have begun in the latest Ladinian

when the flora began to fade at the top of the YC8-1 sub-member
(Figure 8). Most hydrophytic and mesophytic plants recovered until the
upper part of the YC7-3 sub-member, and even xerophytic plants
recovered by adding more xerophytic plants. However, hydrophytic C
(dendroid ferns), Lundbladispora, Cycadopites, and Cheirolepidiaceae
exhibited one or two peaks in abundance and diversity in the CG-1
sub-zone. These eco-group peaks in the CG-1 sub-zone appear
contradictory; based on these peaks, hydrophytic C, hydrophytic D,
and Cycadopites favor humid climate, while others such as xerophytic
and mesophytic plants, and Cheirolepidiaceae prefer arid environments.
Cycadopites acme is an indicator of the CPE, together with Aulisporites
astigmousus acme, in the northern calcareous Alps (Mueller et al., 2016).
However, there are no acmes of Cycadopites or A. astigmousus in the
boreal region—for example, Central Spitsbergen (Mueller et al., 2015).
Therefore, it is difficult to provide a key palynological indicator for the
CPE. Meanwhile, the carbon isotopic stratigraphy of the Ladinian and
Carnian deposits in the western and eastern Tethys shows at least four
negative excursion episodes (Dal Corso et al., 2012; Dal Corso et al., 2015;
Dal Corso et al., 2018; Mueller et al., 2016; Sun et al., 2016; Miller et al.,
2017). Recent carbon isotopic chemostratigraphy in the Ordos Basin,
together with cyclostratigraphy and isotopic dating, has revealed several
negative excursions in the YC8 and YC7 members; however, whether
these results are related to Ladinian or Carnian events remains
controversial (Zhang K. et al., 2021; Jin et al., 2021).

The latest palynological research in the Carnian amber-bearing
section of the Dolomite Alps in Italy sheds light on the primary
criteria for identifying the CPE. The coexistence of Majonicaceae
(Lueckisporites), Voltziaceae (Triadispora), Araucariaceae
(Araucariacites), and Pinaceae (Abietineaepollenites) pollen may
provide a mark of the CPE (Roghi et al., 2022). In this study,
Lueckisporites in the Yunmeng profile were only found in sample
STYM-04 and Araucariacites only in sample STYM-12; moreover,
they did not coexist. This might indicate that sample STYM-04 was
not the last observation of Lueckisporites. Meanwhile, the possibility of
pioneering Araucariacites cannot be avoided (Tokunaga et al., 1977).
If we consider Abietineaepollenites for calibration, the lowest record of
the genus was in the Erqiao Formation in Guizhou Province, China,
which is younger than the Carnian Neogondolella polygnathiformis
zone (Yang et al., 1995; Shang, 2011); however, theAraucariaciteswere

neither recorded there nor in the younger Late Triassic horizons. As
the uppermost Falang Formation is aged early Carnian due to the N.
polygnathiformis zone (Yang et al., 1995), the overlying Erqiao and
Banan formations are most probably late Julian–Tuvalian in age (Tong
et al., 2019). Therefore, the coexistence of Dictyophyllidites,
Lueckisporites, and Abietineaepollenites might be regarded as an
indicator of the CPE. Furthermore, Classopollis in the Erqiao
Formation may be another reference for the event. Therefore, it is
reasonable to regard the existence of Classopollis and Dictyophyllidites
as indications of the CPE. Thus, the CPE on the Yunmeng profile in
the Ordos Basin can be roughly located in the CG-1 sub-zone
(Figure 8). The humid pulse can be recognized by the humidity
index of the lowland plants, which is directly related to the fine
organic-rich deposit of deep and semi-deep lacustrine
environments. At least three humid pulses can be observed on the
Yunmeng profile, including two in the early Carnian CG-1 sub-zone
(marked by green dashed lines in Figure 8).

6 Conclusion

Detailed palynological investigation of the Yunmeng profile in the
Ordos Basin, China, was performed to determine the age and reconstruct
its vegetation and climate. The result revealed: 1) two palynological
assemblages for the YC8-1 and YC7-3 sub-members, L. watangensis–T.
combinatus and L. communis–D. granulus, respectively; 2) correlation of
the GSSP of the Carnian and the Late Triassic floras in South China with
marine conodont fossils allowing the assignment of the two assemblages to
the latest Ladinian and early Carnian ages, respectively; 3) the coexistence
of Cyathidites minor (Couper, 1953), Dictyophyllidites harrisii (Couper,
1958), Apiculatisporis bulliensis (Helby ex De Jersey 1971), Aratrisporites
xiangxiensis (Li and Shang, 1980), Piceaepollenites omoriciformis (Bolkh.)
(Xu and Zhang, 1980), Podocarpidites ornatus (Pocock, 1962),Discisporites
granulus (Zhang, 1984), and Classopollis (Pflug, 1953) is proposed as an
indicator of the Carnian age in the North China palynofloral realm; 4)
vegetation changes are obvious, especially in the boundary between the
Ladinian and Carnian, in which 70% of ferns and >30% of gymnosperm
species were lost; the vegetation changes suggest a strong seasonal arid
climate, as indicated by the emergence of Cheirolepidiaceae and
Pinuspollenites; 5) the climate during latest Ladinian and early Carnian
was “hot house,”with evergreen shrubs, bushes, and arbor trees flourishing
in the tropical Ordos Basin, which was isolated by the Qinling–Dabie
orogenic belt mountains from the Tethys to the south; 6) the warm
seasonal arid climate might have been interrupted by a monsoonal pluvial
pulse, and three strong pulses are signaled in the latest Ladinian and early
Carnian based on the humidity index of lowland plants.
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