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Introduction

With the improvement of oil exploration and development technology, the

proportion of tight reservoirs in new reserves is getting higher and higher. As an

important part of tight reservoirs, thin interbedded tight reservoirs account for more

and more. According to investigation and evaluation, about 30% of the oil and gas in

the world are stored in thin interbeds of sand and mudstone. Therefore, the rational

development of such reservoirs is an important means to actively adjust the energy

structure of our country and realize energy replacement. Thin interbedded low-

permeability reservoirs of countries generally demonstrate the following geological

characteristics: deeply buried with sandstone layer and mudstone layer appearing

alternately, sand bodies scattered and developed, multiple vertical layers with small

single-layer thickness, poor reservoir physical properties with low reserves abundance,

small pores, narrow throats, and low permeability (Surdam et al., 1982; Surdam and

Crossey, 1985; Seewald, 2003; Sonnenberg et al., 2009). The development of thin

interbedded low-permeability reservoirs is facing many challenges, such as low oil

production rate, low recovery, low single-well production capacity, and great difficulty

in production stabilization (Du et al., 2014; Feng et al., 2020; Sheng et al., 2020).

Meanwhile, the fracture morphology is hard to control, and the stage number in a

horizontal staged fracturing can be very limited. The results are far from satisfying

(Zhang et al., 2014; Li et al., 2016; Tan et al., 2017; Sheng et al., 2019; Zhou et al., 2020).

Without a sufficient understanding of interlayer fracture pressure interference in a

fracturing operation, the effective development of thin interbedded low-permeability

reservoirs would be restricted (Liu et al., 2018; Lu et al., 2020; Meng et al., 2020).

Therefore, it is of crucial importance to accurately analyze and identify the interlayer

fracture pressure interference and quantitatively describe the actual fracturing effect

and fracture morphology of thin interbedded shale oil reservoirs. At present,

microseismic technology, tracer technology, and pressure monitoring technology

can all be used to analyze the pressure channeling of interlayer fractures in fracturing

construction. However, the results obtained by single application of one of the three
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methods are not accurate. By analyzing the advantages and

limitations of the three methods, a comprehensive application

of the three methods can better describe the actual fracturing

operation effect and fracture morphology.

Geologic features

The No. 58 platform studied in this paper is a typical thin

interbedded shale oil reservoir. The “Sweet Spot” can be

divided into seven sub-layers from top to bottom, and the

oil layers are mainly distributed in the first, second, and third

sub-layers. The average effective porosity of the oil layer is

8.36%, and the average permeability is 0.0047mD. The

platform has a total of eight wells in the well area, and the

three-dimensional development deployment mode is adopted.

The well spacing is 200 m, and each well has undergone

fracturing operations. The average fracturing process has

40 stages, the average cluster spacing is 5.8 m, and the

average interval is 46 m. In this paper, pressure interference

analysis was carried out on thin interbedded shale oil

fracturing fractures in platform No. 58.

Longitudinal interference analysis
and identification with different
fracture monitoring methods

Microseismic technology

Microseismic monitoring technology can inversely locate

the focal position through the study of the focal mechanism in

the process of monitoring the fracture propagation behavior of

reservoir fracturing, and determine the formation process,

fracture orientation, length, and other information of

fractures (Chunyan et al., 2018; Salishchev et al., 2020).

Well 5 and Well 3 were selected for research. The vertical

microseismic monitoring data of Well 5 shows that the upper

fracture height is 20 m and the lower fracture height is 24 m.

The vertical microseismic monitoring data of Well 3 shows

that the upper fracture height is 18 m and the lower fracture

height is 24 m. Well 5 and Well 3 are in the second sub-layer

with an average layer thickness of 10.4 m. The thickness of the

upper adjacent layer, the first sub-layer, is 5.9 m, and the

thickness of the lower adjacent layer, the third sub-layer, is

8.6 m. By comparing the vertical thickness of the second

layer and its adjacent layers, it is easy to conclude that the

fracture pressures of Well 5 and Well 3 have vertically

interfered with the first, second, and third sub-layers

(Wu et al., 2017; Vadim et al., 2018; Xiong et al., 2019;

Zhang et al., 2019).

Tracer technology

The tracer enters the formation synchronously with the

fracturing fluid during the fracturing process. During backflow

after fracturing, the backflow fluid is intensively sampled at a

certain time interval to obtain the tracer backflow curve. The

purpose of fracturing effect evaluation can be achieved by

interpreting the tracer backflow curve (Ruixiang et al., 2007;

Lingtao et al., 2022). Tracers were injected into Well 3 located in

the second sub-layer, and then they were detected in Well

2 located in the first sub-layer and Well 4 located in the third

sub-layer. This indicates that the fractures have connected the

first, second, and third sub-layers. Well 5 and Well 6 are close to

Well 4 and vertically located in the same layer; tracers were also

detected in them. Meanwhile, the fracture morphology in the

fracturing stage is characterized by analyzing the tracer

breakthrough curve (BTC) of fracturing fluid recovery (Li

et al., 2016). When tracers were injected into Well 4, the

tracer production in Well 3 would decrease with time,

indicating that the vertical fractures that connect the third

and the second sub-layers might close. According to the

identification results of fracture pressure interference based on

tracer monitoring data (Lisa et al., 2019; Abdulaziz et al., 2020; Fu

et al., 2020; Zhao et al., 2020), we could conclude that the fracture

pressures of Well 3 have vertically interfered with the first,

second, and third sub-layers.

Pressure monitoring technology

In the process of fracturing construction, the initiation and

extension of hydraulic fractures in three-dimensional space are

related to construction pressure. The decline speed of the bottom

hole (wellhead) pressure after the pump is stopped can reflect the

filtration property of the formation. Therefore, the purpose of

fracturing effect evaluation can be achieved by analyzing the

change in fracturing pressure. Well 3 was selected as the

monitoring well to study the dynamic pressure changes of

adjacent wells during the fracturing operation. The results

showed that the pressures of Wells 1, 2, 4, 5, and 6 were

significantly increased. The noticeable pressure increases of

Well 1 in the upper, first sub-layer indicated that the pressure

of Well 3 had interfered with the upper oil layer. The pressure of

Wells 4, 5, and 6 located in the third sub-layer also increased

significantly, indicating that the pressure of Well 3 had interfered

with the lower, third sub-layer. In summary, the identification

results of fracture pressure interference based on pressure

interference monitoring data (Shahbazi et al., 2015; Escobar

et al., 2021; Seth et al., 2021) suggested that the fracture

pressures of Well 3 have vertically interfered with the first,

second, and third sub-layers.
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Comparative analysis of different
identification methods

TakingWells 1, 2, 3, and 4 as examples, the analysis results of

the three analysis methods of fracture pressure interference are

shown in Figure 1.

The comparison results showed that the tracer monitoring

method was the most accurate to analyze and identify fracture

pressure interference. When tracers were injected into a

certain well and could be detected in other wells, it was

clear that these wells were connected and there were inter-

well interferences. The microseismic monitoring method

could locate the approximate locations of fractures with

pressure interferences, but the predicted ranges were

generally wider than the actual ones. The pressure

monitoring technology could roughly generate the spread

ranges of fracture pressure interference based on the

dynamic pressure changes of adjacent wells, but the

generated ranges were generally broader than the ones

given by the tracer monitoring method. Though the tracer

monitoring method showed the highest accuracy, its detection

results can be sensitive to the locations of tracer injection and

detection wells; for example, for layers without detection wells,

the inter-well connectivity can be hard to identify. Therefore,

to generate a more comprehensive fracture pressure

interference report, the three methods should always be

used together. Take the tracer monitoring method as the

main body, use the microseismic monitoring method

generated specific fracture ranges as constraints, and

conduct further analysis by referring to the monitored

pressure data in actual fracturing operations. Synthetical

applications of the three methods are beneficial to the

effective analysis and identification of interlayer fracture

pressure interference. Furthermore, the fracture

morphology in thin interbedded shale oil fracturing and the

actual fracturing effect can be more accurately characterized

and evaluated.

Conclusion

(1) The tracer monitoring method was the most accurate to

analyze and identify fracture pressure interference. The

scope of the microseismic monitoring method and

pressure monitoring technology is wider than that given

by the tracer monitoring method.

(2) Synthetic applications of the three methods are beneficial to

the effective analysis and identification of interlayer fracture

pressure interference. In addition, the fracture morphology

in thin interbedded shale oil fracturing and the actual

fracturing effect can be more accurately characterized and

evaluated.
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FIGURE 1
Comparative analysis of different identification methods.
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