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1 Introduction

Hydraulic fracturing was first developed in North America, resulting in a multi-stage

horizontal well and multi-layer vertical well volume fracturing technology, and has been

commonly used in reservoir reconstruction. However, hydraulic fracturing will cause a lot

of waste of water resources, and the treatment of flowback fluids requires high cost (Wang

et al., 2012; Lu et al., 2016; Rao et al., 2021). Supercritical CO2 has attracted much

attention due to its high mobility and low intermolecular interaction. Using CO2

fracturing can effectively avoid the above problems by show more effectively increase

the reservoir pressure and reduce the damage to the reservoir (King, 1983; Bryant and

Monger, 1988; Yost et al., 1993; Xie and Hou, 2009). However, CO2 fracturing needs a

large number of supercritical CO2, which is expensive and not easily accessible.

Since the first application of CO2 fracturing technology in the United States in the

1980s, CO2 fracturing technology has entered a stage of rapid development (Gupta and

Bobier, 1998; Wei et al., 2019; Chen et al., 2020). A large number of CO2 pre-injection

experiments during hydraulic fracturing have been carried out, and field applications have

been carried out in oilfields, which have achieved good results in increasing production

(Liu et al., 2014; Zhou et al., 2019). In 1990, CO2 sand fracturing, N2 foam fracturing and

N2 fracturing were carried out in 15 gas wells in Kentucky, United States. The production

data show that the cumulative gas production of CO2 sand fracturing wells in 37months is

2 times that of N2 fracturing wells and 5 times that of N2 foam fracturing wells. In 2014, an

oil well in Oklahoma was fractured by CO2. The daily oil production after fracturing was

2.7 t, and the oil production increased to 3.3 t/d after 1 month. CO2 fracturing technology

has been applied in 25 wells of tight oil reservoir, and the average daily production of

single well is 1.7 t higher than that of adjacent wells. But up to now, there is still a lack of

discussion on the mechanisms of CO2 pre-injection to increase reservoir energy and

production. Therefore, this paper aimed at investigating the interaction between pre-

injected CO2 and the reservoir fluid/rock/energy, providing reference for further

confirming the mechanism of enhancing production and improving the fracturing effect.
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2 Effect of CO2 on rocks and fluids in
reservoirs

The study on the interaction of injected CO2 with

reservoir rocks and fluids is of great significance for

fracturing and reservoir reconstruction using CO2. The

influence of injected CO2 on reservoirs is mainly reflected

in four aspects, namely, improving physical properties of

matrix, influence on fluid, improving stimulation effect and

increasing reservoir pressure.

2.1 Effect of CO2 on reservoir rocks

The improvement of reservoir properties by CO2 is mainly

reflected in the influence of porosity and permeability of rock, the

change of reservoir wettability, plugging removal, and inhibition

of clay expansion.

2.1.1 Changes of porosity and permeability
On the one hand, when the CO2 dissolution mechanism

dominates, the porosity and permeability of rock will increase

with the injection of CO2. When rocks and reservoir water

contact with CO2, CO2 aqueous solution will produce new pores

or broaden primary pores in the dissolution of organic matter or

minerals, and the dissolution will increase with the increase of

temperature and immersion time (Ross et al., 1981; Pokrovsky et al.,

2005). Zou et al. (2021) conducted an experiment on the change of

pore structure of shale reservoirs after immersion in CO2 aqueous

solution for 24 h under simulated reservoir temperature/pressure

conditions (80°C, 20MPa), and the rock matrix sample was soaked

for 24 h. A large number of dissolved pores appeared, the porosity

FIGURE 1
Effect of CO2 injection.
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was increased by 6.9%, and the permeability was increased from

0.23 μD to 2.98 μD. Experiments have proven that CO2 can greatly

increase the porosity and permeability, which is beneficial to increase

production after fracturing.

On the other hand, when CO2 adsorption expansion is

dominant, CO2 injection will reduce rock porosity and

permeability. The interaction of CO2, brine, and rock will form

mineral crystals, which grow and precipitate in pores (Xu et al., 2005;

Lahann et al., 2013). An experimental study by Kumar et al. (2015)

showed that the adsorption of CO2 in micropores may cause

adsorption-induced swelling, thereby closing existing natural

fractures and reducing fluid flow capacity. The change of pore

structure is significantly affected by CO2, and it is necessary to

conduct targeted research on shale in practical applications.

2.1.2 Change of wettability
CO2 can change reservoir wettability (Chiquet et al., 2005;

Zhang et al., 2018). The injection of CO2 will form carbonate in

the reservoir, and the acid reacts with theminerals in the reservoir to

generate new minerals, thereby changing the wettability of the solid

wall of the liquid phase. The strong hydrophilicity of the reservoir is

conducive to improving the injectivity of subsequent water flooding,

and thus improving the recovery efficiency. Yao et al. (2017) proved

that after injection of CO2 into the reservoir, the wetting contact

angle decreased and the hydrophilicity of the reservoir increased.

2.1.3 Deblocking and inhibiting clay swelling
In shale reservoirs, the reduction of the pH value of reservoir

water can inhibit the expansion of clay. In carbonatite and

sandstone, partial plugging can be relieved to restore oil well

production. In the experiments by Zhang et al. (2020), the

aqueous solution was slightly acidic owing to CO2 dissolution,

and the formation water dissolved CO2 and interacted with the

formation matrix to relieve plugging and inhibit clay swelling.

2.2 Effect of CO2 on fluid

The influence of CO2 on fluid is mainly reflected in the

influence of extraction rate, density, expansion, gas solubility,

surface tension, and irreducible water saturation.

2.2.1 Effect on mass transfer of oil
CO2 enhances the extraction capacity of crude oil (Ding et al.,

2019). It is difficult for CO2 to get miscible with crude oil at first

contact, so pre-injection of CO2 can achieve multi-contact with oil,

and the extraction effect of CO2 on crude oil is continuously

enriched to realize the miscibility. CO2 has strong extraction

ability for C2-C5 components of crude oil, but weak extraction

ability for heavy components and methane. Liu et al. (2021)

determined the extraction rate of crude oil by CO2 at different

pressures. Results show that CO2 density was positively correlated

with pressure. When the pressure reaches 40MPa, the extraction

rate can reach 85.2%. The experiment showed that CO2 significantly

enhanced the extraction rate of crude oil, as shown in Figure 1A.

2.2.2 Effect on oil density
Dissolving CO2 in crude oil will increase the density of crude

oil. With the increase of CO2 content, more supercritical CO2

contacts with crude oil, and the density of crude oil increases with

the increase of CO2 content (Abedini and Torabi, 2014). Su et al.

(2021) injected 45% mole fraction of CO2 into crude oil in the oil

expansion experiment, and the oil density was increased by

8.78% from 0.7341 to 0.7986 g/cm3 at 20 MPa.

2.2.3 Effect on oil expansion
CO2 has a high expansion effect on crude oil. The specific

volume, reservoir volume factor and compressibility coefficient of

crude oil increase after CO2 injection, which increases the

compressibility of crude oil and further improves the productivity

of oil wells (Nobakht et al., 2008), as shown in Figure 1B. Su et al.

(2021) conducted crude oil expansion experiment, and found that

when the mole fraction of CO2 in crude oil was increased from 0 to

0.45%, the specific volume, reservoir volume factor, and

compressibility coefficient of crude oil were increased by 2.53,

30.06, and 41.54%, respectively. Zhang et al. (2020) injected CO2

into crude oil, and the expansion coefficient of crude oil increased

from 1.00 to 1.19 after adding 45%CO2. The above experiments have

demonstrated that CO2 can significantly enhance the elastic energy of

reservoir.

2.2.4 Effect on gas solubility
The injection of CO2 can effectively improve the gas

solubility of crude oil. The higher the viscosity of crude oil is,

the more obvious the viscosity reduction effect will be. Lower

viscosity can increase its mobility, which is conducive to the

production of crude oil. Shi and Zhao (2020) found that the

average dissolved gas-oil ratio of the oil samples increased from

13.5 to 18.05, an increase of 4.52, accounting for 33.41% of the

dissolved gas-oil ratio of total oil samples. The data show that

CO2 injection into crude oil can effectively enhance the gas

solubility of crude oil and improve the gas solubility of crude oil.

2.2.5 Effect on oil-water surface tension
CO2 can reduce the oil-water interfacial tension and reduce the

viscosity of crude oil. CO2 was injected into the reservoir in advance

and CO2 was contacted with crude oil many times, which improved

the physical properties of crude oil, enhanced themobility of crude oil

and finally reached the miscibility. This will greatly reduce crude oil

viscosity, improve displacement efficiency and increase production.

The high-pressure PVT experiments conducted by Yang et al. (2009)

showed that when the oil-water mixed solution was saturated with

CO2, the interfacial tension can be reduced by about 33%. Reducing

the surface tension can reduce the adhesion work that needs to be

overcome to strip oil from the rock surface, making the oil adhered to

the rock surface and pores easier to be extracted.
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2.2.6 Effect on irreducible water saturation
Injecting CO2 increases irreducible water saturation (Liu

et al., 2020). With the injection of CO2, the dissolved gas

volume of reservoir water increase. Some of the irreducible

water that occupies the oil flow channel becomes mobile

water, which makes the oil flow out and thus improves the

recovery efficiency. Zhao et al. (2011) conducted the reservoir

water injection CO2 expansion experiment, and found that when

the injection pressure was 27 MPa, irreducible water saturation

increased from 36.3 to 41.11%.

2.3 Improving stimulated effect

Improving stimulated effect by CO2 is mainly reflected in

reducing initiation pressure and increasing fracture complexity.

2.3.1 Reducing initiation pressure
Supercritical CO2 can reduce the rupture pressure of rocks.

Since supercritical CO2 has good diffusion and permeability,

supercritical CO2 fracturing reduces the effective stress of

surrounding rock by increasing pore pressure, which makes

the initiation pressure lower than hydraulic fracturing (Tudor

et al., 1994; Ito, 2008; Zou et al., 2018; Deng et al., 2022), as shown

in Figure 1C. Ding et al. (2018) analyzed the fracturing

mechanism of supercritical CO2 fracturing based on the rock

fracture criterion of linear elastic model. The calculated data

indicated that the rupture pressure by using supercritical CO2

was reduced by 75.5%. Wang et al. (2019) experimentally

demonstrated that the initiation pressure of supercritical CO2

fracturing rock is 15% lower than that of liquid CO2 under the

same conditions, which is about half of that of hydraulic

fracturing.

2.3.2 Increasing fracture complexity
Supercritical CO2 has the effect of slippage and diffusion, which

makes its liquidity have certain nonlinear characteristics. CO2 can

enter the tiny pores and fracture tips that water and fracturing fluid

cannot enter during the propagation, promoting the opening of

natural weak surface and increasing the complexity of fractures (Zou

et al., 2018; Sheng et al., 2019; Tudor et al., 1994; Ito, 2008). Su et al.

(2019) combined with physical simulation and numerical

simulation, and found that the volume strain increment

produced by supercritical CO2 fracturing is higher than that of

hydraulic fracturing, the fracture conplexity and fracture surface

roughness after fracturing are also larger, and the fracture

morphology is more complex (Zhou et al., 2016).

2.4 Enhancing reservoir pressure

Injection of CO2 can effectively increase reservoir pressure,

which is conducive to production. CO2 has strong injection, good

diffusion, strong production-increasing effect, wide range of

pressure spread. Equal velocity injection of liquid carbon

dioxide and water, the pressure-increasing effect of CO2

injection is twice that of water injection (Singh, 2018; Xiao,

2018). Zhang et al. (2020) found that with the increase of

CO2 injection rate, the radius of miscible zone increased

gradually. Due to the rapid propagation of CO2 pressure, the

reservoir pressure increases rapidly, as shown in Figure 1D, and

the pressure can be maintained above 29 MPa in the reservoir

near the wellbore.

3 Conclusion and foresight

CO2 pre-injection during hydraulic fracturing can affect the

physical properties of the reservoir, increase the porosity and

permeability of the rock and improve the wettability of the

reservoir, which is conducive to improving the subsequent

water flooding injection capacity. CO2 injection enhances the

flow capacity of crude oil by using the effect of CO2 injection on

the fluid, making it easier for crude oil to be recovered. It also

reduces initiation pressure, increases fracture complexity and

increases formation pressure. Combined with water-based

fracturing fluid, the fractures were further propagated and

effectively supported.

At present, the mechanism of CO2 pre-injection during

hydraulic fracturing on reservoir has not been comprehensive

considered in the fracture propagation simulation and

production dynamic simulation. In the future, all of the

mechanism should be considered for the accuracy and

efficiency of experimental and theory research.
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