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Freeze–thaw damage of rock mass poses a great threat to the safety of rock

engineering, ground buildings, and low-temperature storage of liquefied

natural gas (LNG) in cold regions. By collecting acoustic emission (AE)

signals of sandstone during uniaxial compression failures, this paper

analyzed the critical slowdown phenomenon of different types of sandstone

during the freeze–thaw failure. According to the auto-correlation coefficients

and the variance of AE signals under different windows and steps, the

precursors were determined and a warning model of rock engineering

failure precursors based on the critical slowdown principle was proposed.

Then the Grey Wolf Optimizer (GWO) algorithm was used to optimize the

initial weights and thresholds of the back propagation (BP) neural network, and

the influence factors of rock engineering failure under different working

conditions were input as training sets to train the network. The results

showed that the correlation coefficients between the predicted value and

real value of the GWO-BP neural network reached 99.90% and 98.81%

respectively, indicating that the accuracy of the BP neural network

prediction was improved. This study provides a new method for rock

engineering failure early warning, and has great theoretical and guiding

significance for enriching and improving the rock mass AE monitoring

technology.
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1 Introduction

Globally, more than 25% of the land area is covered by

permafrost, while the distribution of cold regions is more

extensive. Under the condition of freezing and thawing, the

corresponding damage of rocks in cold regions will lead to a

series of engineering problems, such as the frost heaving,

cracking of oil pipelines and tunnel surrounding rocks,

instability and failure of the supporting structure, erosion and

weathering of slope engineering, instability of the high-risk rock

mass, storage of liquid resources, and weathering of rock cultural

relics (Liu et al., 2018). The freeze–thaw damage of rocks is

mainly caused by the volume expansion of 9% frozen water in

pores (pores or cracks) and the thermal stress at low temperature

conditions (B et al., 2018, Girard et al., 2013). Under such

conditions, the frost heaving force in the saturated pores

caused by water/ice phase transition can cause cracks and

defects, further leading to the destruction of rock engineering

in cold regions (Kock et al., 2015; Park et al., 2015; Tan et al.,

2018; Kong et al., 2020). Zhao et al. studied the creep failure

mechanism of rock cracks under hydraulic pressure and derived

the compression-shear fracture criterion of rock under hydro-

mechanical coupling (Liu et al., 2022; Zhao et al., 2019).

Therefore, to develop an early warning model of rock

engineering failure is of great significance for engineering

safety evaluation.

The energy theory research shows that the fundamental roles

of rock deformation and failure are the dissipation and release of

energy. The instability and failure of rocks are the result of the

sudden release of internal energy, the main forms of which are

the kinetic energy and acoustic emission (Zhao et al., 2019).

Therefore, the theory based on the view of energy can well

describe the deformation and failure of rocks. AE is a non-

destructive monitoring method which can identify the crack

propagation and the failure mechanism of materials and

structures, and it is widely used in civil engineering due to its

high sensitivity and accurate evaluation. AE parameters as

another characterization of waveform are widely used in the

study of the critical slowdown phenomenon. When the complex

dynamic system approaches the critical point before mutation,

there is a phenomenon called critical slowdown, which is

manifested by the increase of precursor variance and auto-

correlation coefficients (Leemput et al., 2013; Maturana et al.,

2020). Critical slowdown phenomenon has great potential in

revealing whether complex dynamic systems are prone to

catastrophic mutations. Lei et al. (2004) pointed out that AE

signals of the sandstone failure have obvious stage characteristics,

the cumulative AE count has a good correspondence with the

sandstone damage, and the sudden large-scale increase of self-

correlation coefficients and the variance of AE count can be

employed as precursors of the sandstone engineering failure.

When the rock is close to collapse, there will be a series of key

deceleration characteristics, including the significant increase of

the AE count and density value per unit time (Lei et al., 2004;

Huang et al., 2016), indicating that the AE signals generated in

the process of rock failure make a critical change (Xia et al.,

2022), Kong et al. (2015) believed that under the triaxial

compression conditions of different confining and pore

pressures, the AE characteristics of coal and rock samples

underwent a critical deceleration process. The variance and

auto-correlation coefficients of AE count and time series

increased before the failure of coal and rock. Therefore, the

variance and auto-correlation coefficients could be used as the

precursors of coal failure. Compared with the AE cumulative

signals as the mutation points of precursors, the time delay

between precursors and mutation points was shortened within

a reasonable range, accounting for 2%–10% of the total loading

time (Kong et al., 2015).

With the development of digital signal technology, the neural

network as an intelligent algorithm has excellent nonlinear

adaptive characteristics and is suitable for parallel processing

and hardware implementation (Rumelhart et al., 1986). Due to

the improper parameter selection into local minimum in some

cases, the algorithm converges to the mean square error gradient

descent direction, meanwhile its convergence speed is slow, thus

the back propagation (BP) neural network is very sensitive to the

initial weight threshold. Chai et al. optimized the BP neural

network through the wavelet analysis, removed the noise of the

initial data by the wavelet function, and employed the BP neural

network and the gradient descent method to train and adjust the

neural network parameters. Although the accuracy of the

prediction results has been improved, the convergence speed

has been reduced (Chai et al., 2016). Xie et al. proposed a new

damage constitutive model related to Weibull distribution and

statistical damage theory. (Xie et al., 2020). The finite element

method of seepage-damage coupling was carried out in

FORTRAN in Zhao Yanlin’s study (Zhao et al., 2021). Grey

Wolf Optimizer (GWO) algorithm was proposed by Mirjalili

et al. (2014) by simulating the social class and predatory strategy

of Grey Wolf. Since this algorithm has the characteristics of

strong global search ability, fast convergence speed, and simple

implementation, it can make up for the deficiency of BP neural

network algorithm and has been widely used (Zhang and Zhou,

2015).

In summary, previous studies on the critical slowing of rock

failure have made a lot of achievements, but there are few reports

on establishing an early warning model of rock failure in cold

regions based on neural networks through the critical slowing

characteristics of rock failure. Therefore, this paper intends to

carry out uniaxial compression experiments of sandstone with

different saturations, and explore the critical slowing down

phenomenon of acoustic emission signals in the process of

rock uniaxial compression experiments. According to the

critical slowing down phenomenon of sandstone compression

failure, a precursory signal model for rock engineering failure is

proposed based on GWO-BP algorithm.
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2 Uniaxial compression experiment of
sandstone under freeze–thaw
conditions

The equipment used in the uniaxial compression test is

the WDW-300E microcomputer controlled electronic

universal testing machine made in China. The maximum

test force is 300 kN, the effective measurement range is

0.4%–100% of the maximum test force, and the

measurement accuracy is less than or equal to ±1%. The

axial range of deformation is 0–5 mm, the radial range is

0–3 mm, and the measurement accuracy is less than or equal

to ±1%. The DS5-8B AE instrument used in the AE signal

acquisition test in the uniaxial compression process has two

to eight channels. The continuous data pass rate of DS5-8B

acoustic emission instrument is 65.5 MB/S, the pass rate of

waveform data is 48 MB/S, interface form is USB3.0, data

acquisition method is multi-channel synchronous

acquisition, software operating environment for win7/8/

10 operating system, the storage method is full waveform

acquisition, and all channels can continuously store

waveform data for several hours to ensure that no doubtful

data is lost during acquisition, the sampling rate is 10 M per

channel when using 2 channels, 5 M or 6 M per channel when

using 4 channels, and 3 M or 2.5 M per channel when using

8 channels. External parameter sampling frequency is 30 KHz

and 25 KHz, external parameter conversion accuracy is 16bit,

external parameter input range is±5 V or ±10 V. The loading

device and data acquisition system are shown in Figure 1.

All the test rock blocks were taken from the fresh sandstone

of a rock slope in the transition section between Sichuan Basin

and Qinghai Tibet Plateau of the Sichuan-Tibet railway. The

surface water and rivers in the study area have obvious erosion

and cutting effects on the mountain and subgrade. Both

groundwater and water-bearing rocks receive atmospheric

precipitation in summer, and supplied by melting ice in

winter, The annual average temperature is 7.1°C, the extreme

maximum temperature is 23.4°C, and the extreme minimum

temperature is −19.1°C, The external forces are mainly hydraulic

erosion and freezing and thawing, which are typical plateau

landforms. All test samples were derived from the same non-

jointed rock core. The rock samples had high homogeneity,

small discreteness and relatively large porosity, so they can

ensure different gradient water content (Zhang et al., 2019).

According to the International Society for Rock Mechanics

(ISRM) test procedure, the experimental rock samples were

processed, and the size of the specimens was specified as

V50 mm×100 mm. The accuracy of the rock sample

processing meets that the non-parallelism error of the two

ends shall not be greater than 0.05 mm, and the end surface

roughness error is not greater than 0.02 mm. Then, the

ultrasonic detector was used to test the sound velocity of the

specimens with uniform texture and complete appearance. After

the test, the rock samples with large dispersion were removed,

then the rock samples with similar quality were selected as the

test rock sample. The initial dry density of the rock sample is

2.33 g/cm3 , the saturated density is 2.52 g/cm3 , and the porosity

is 9.32%. Firstly, the specimens were dried at 105°C for 48 h to a

constant weight (the mass change was not more than 0.1%

within 12 h), and then the mass of each rock sample was

weighed and recorded. Rock samples with different

saturations (0%, 30%, 60%, 75%, 85%, 95%, and 100%) were

prepared by using chemical thermodynamic methods.When the

humidity was close to that of the saturated salt solution, the

humidity environment was basically stable. When the mass

change of rock samples before and after the measurement

was not more than 0.1%, it was considered that the system

reached equilibrium and the rock sample lost water to the target

saturation. The changes of pore structure in sandstone with

different saturations were observed by JSM-7500F scanning

electron microscope. 1) In the dry state, the internal

structure integrity of the sample is good, the particles are

arranged closely, the cracks are angular, the grain lines are

clear, the particle surface is smooth, and there is no softening

damage phenomenon and no obvious debris. 2) When the

saturation is between 30% and 85%, the internal structure of

sandstone is gradually destroyed, the structure is obviously

loose, the surface texture is deepened, the particles begin to

soften and decompose, the softening and crushing degree of

sandstone particles are intensified, and the pores between

particles and within particles are gradually developed. 3)

When the saturation reaches 85%–100%, the edges and

corners of the crack boundary tend to be smooth, the local

damage of the internal structure is intensified, the integrity is

poor, and the cementation of the connecting parts between

particles is weakened. With the increase of saturation, there are

obvious brittle cracks betweenmineral particles, and the original

internal voids begin to expand and gradually connect. Different

saturation samples were put into freeze–thaw box for

experimenting. The freezing and melting temperatures were

set to –20°C and 20°C respectively. The cooling and freezing time

lasted for 2 h and 10 h respectively. The time period of the

raising and constant melting temperatures was 1 h and 11 h

respectively. Each freeze–thaw cycle lasted for 24 h and was

performed 5 times. The WDW-300E microcomputer controlled

electronic universal testing machine was used for the uniaxial

compression test of specimens after the freeze–thaw treatment.

The displacement loading method was used in the loading

process with the loading rate of 0.12 mm/min. During the

experiment, the DS5 full information AE measurement

system and 8-channel transient recorder were used to study

the mechanical properties and damage evolution of the

specimen. Each sample was arranged with 8 acoustic

emission probes, which were symmetrically arranged on the

sample. The acoustic emission signal threshold was set to 40 dB

and the sampling frequency was 5 MHz.
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3 Critical slowdown of sandstone
failure under freeze–thaw cycles

3.1 AE signals of sandstone during the
uniaxial compression

Crack initiation and propagation of rock materials are

often accompanied by the release of elastic waves, which can

be recorded as AE signals through the AE monitoring system

(Dai et al., 2019). Kong et al. (2017) divided the failure stage

into the quiet, linear increase, rapid increase, and saturation

stages according to the AE cumulative count curve (Kong

et al., 2017). Yang et al. (2018) divided the failure stage of

sandstone into three stages according to the AE signals: initial

compaction, slow growth, and rapid growth stages. Based on

the previous studies and the change of ringing count in the

process of rock failure, the rock failure stage can be divided

into four stages: initial compaction (OA stage), slow growth

(AB stage), rapid growth (BC stage) and failure (CE stage).

Figure 2 describes the load–displacement curves and the

ringing counts of seven rocks with different saturations.

As a kind of porous medium material, sandstone contains

many primary cracks and fissures. In the initial compaction stage

(OA), the unclosed cracks and pores in the original interior of the

rock sample were closed due to compression, the force on the

rock sample failed to form a linear relationship with the

displacement, and the load-displacement curve tended to be

concave. At this time, the ringing count generally had a short-

term mutation. This is because during the initial contact process,

due to the inertia effect, the instantaneous stress would be too

large, resulting in a sudden increase in the ringing count at the

initial stage. With the increase of saturation, the OA stage

obviously prolonged under a certain axial pressure, that is, (g)

in Figure 2 corresponded to the longest OA stage. This is due to

the increase of water molecular content, a part of hydraulic

pressure offset the axial pressure, which prolonged the closure

time of initial microcracks and pores.

With the progress of loading, the initial pores and cracks of

the rock samples had been closed. This stage was the slow growth

stage (AB). The load increased linearly with the displacement.

The rock samples showed elastic deformation under uniaxial

pressure. The acoustic emission events were relatively few, and

the acoustic emission activity remained basically in a stable state

during the whole process.

During the rapid growth stage (BC), the load-displacement

curve of this stage showed a convex trend, which was an obvious

nonlinear growth stage. Cracks began to form inside the rock

sample and developed cumulatively. The propagation of cracks

continuously demanded for energy. Externally, the AE activity

was relatively quiet, and the ringing count fluctuation was small.

However, there were many sudden changes during this stage as

polymerization appeared in the rock sample in the loading

process of microcracks, resulting in large fluctuations of the

ringing count. Therefore, in the monitoring and early warning of

rock mass engineering in cold regions, it was necessary to pay

attention to these fluctuations to avoid misjudgment in

monitoring and early warning.

With the increase of axial pressure, the internal energy of the

rock sample continued to accumulate. When the internal

structure of the rock sample reached the bearing limit, the

penetrating cracks appeared and the sample was destroyed. At

this time, the acoustic emission activity became extremely active.

The rock sample entered the failure stage (CE), and the ringing

count suddenly increased obviously. After the peak stress, the

microcracks and pores in the sandstone continued to expand.

Even at a small stress level, the acoustic emission count was still at

a high level.

3.2 Critical slowdown principle

Critical slowdown refers to the dispersion and fluctuation

phenomenon conducive to the formation of new phases in the

dynamic system near the critical point before it changes from one

phase state to another (Scheffer, 2009). During the failure process

of rock samples, the change of crack motion form during the

initiation and propagation of cracks to the failure process of crack

instability can be regarded as the transformation process from

one phase to another, which is accompanied by the surge of

ringing count. This change trend is not only manifested as an

increase of the signal amplitude, but also accompanied by a slow

recovery rate and the weakening ability to recover to the old

phase (Nes and Scheffer, 2007; Scheffer et al., 2009).

According to the critical moderation principle, the

variance is a characteristic quantity that describes the

extent to which the data in the sample deviates from the

mean �x , denoted as s2:

FIGURE 1
The loading device and data acquisition system.
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FIGURE 2
The acoustic emission (AE) signal of loading process: (A) 0%, (B) 30%, (C) 60%, (D) 75%, (E) 85%, (F) 95%, (G) 100%.
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s2 � 1
n
∑n
i�1
(xi − x

−)2 (1)

where xi represents the ith data, and n is the number of data in

the sample.

The auto-correlation coefficient is a statistic that describes

the correlation between different moments of the same variable.

The auto-correlation coefficient of the variable xwith a lag length

of j is denoted by α(j):

α(j) � ∑n−j
i�1
(xi − x

−

s
)(xi+j − x

−

s
) (2)

Assume that the stage variable has a forced disturbance with

the period Δt, in the process of disturbance, the equilibrium

regression is in an approximate exponential relationship with the

recovery speed λ. The model can be expressed as:

xn+1 � eλΔtxn + sϵn (3)

where xn is the deviation from the system stage variable to the

equilibrium stage, ϵn is a random quantity with normal

distribution, s is the mean square error, if λ and Δt do not

depend on xn , Eq. 3 can be simplified as:

xn+1 � αxn + sϵn (4)

where α � eλΔt is the auto-correlation coefficient.

Equation 4 is analyzed by the variance:

Var(xn+1) � E(x2
n) + (E(x2

n))2 � s2

1 − α2
(5)

When the dynamic system approaches the critical point, the

recovery rate of small amplitude disturbance will be slower and

slower, and the recovery rate λ, the auto-correlation coefficient α,
and the variance will be close to 0, 1, and infinity respectively.

Therefore, the increase of auto-correlation coefficient and

variance can be used as precursors for the system to approach

the critical point.

3.3 Effects of different windows and lag
steps

The AE signals collected by sandstone in the process of

uniaxial compression were used to investigate the variation law of

the critical slowdown in different windows and lag steps. Due to

the similar law obtained by different saturations, the critical

slowdown in the process of sandstone compression under

saturation is listed here.

In the process of studying the auto-correlation coefficient

and variance of critical slowdown characteristics in dynamic

systems, there were advantages and disadvantages in parameter

data (Dakos et al., 2012). Firstly, the meanings of the window

length and lag step length were defined. Here the window length

referred to the basic unit for sequence calculation, the lag step

length to the lag sequence length from the sequence of the

selected window length to another new sequence, the variance

to that of the new sequence obtained by the selected window

length and the lag fixed step length, and the auto-correlation

coefficient to the correlation between the sequence of selected

window length and the new sequence obtained by the lag fixed

step length. The parameter amount of the data representing

system was particularly important: the larger the amount of data

selected was, the more reliable the early warning signal in the

system was (Carpenter et al., 2011). At the same time, as a non-

destructive monitoring technology, the AE technology has been

widely used in geotechnical engineering monitoring. Therefore,

the AE signal was selected to study the influence of different

window lengths and lag steps on the critical slowdown

phenomenon.

By using the AE signals collected in the uniaxial compression

process of sandstone, the changing rule of critical slowdown with

different window and lag step lengths was found. Different

window lengths and lag steps have an impact on the stability

of the auto-correlation coefficient and variance. According to

Figure 3, the influence of different window lengths on variance

and auto-correlation coefficient was studied when the window

lengths were 1,000, 1,500 and 2000 with the same lag

step. According to Figure 4, the influence of different lag steps

on variance and auto-correlation coefficient was studied when

the lag steps were 100, 200 and 300 with the same window length.

From Figures 3A,B,E, it can be seen that when the lag step is

constant, the auto-correlation coefficient curves corresponding

to the window lengths of 1,000, 1,500 and 2000 are almost

coincident, and the fluctuation trend is consistent. With the

increase of window length, the fluctuation shows a gradually

stable trend.With the increase of lag step, the fluctuation range of

auto-correlation coefficient curve also increases. For the variance

curve, the variances under the same lag step and different

window lengths are no longer coincident, and the variation

ranges are slightly different. The fluctuation range decreases

with the increase of the window length, but the mutation

point is slightly advanced with the increase of the window

length. The variance curves of different lag steps are basically

coincident under the same window length—The variance curve

does not change with the lag step length. It can be seen from

Figure 4 that under the same window length, the auto-correlation

coefficient curves corresponding to different lag steps are chaotic

and do not show certain rules, but most of the variance curves

corresponding to different lag steps overlap. When the lag step is

100, the variance of the precursor signal is the largest. When the

lag step is 200 and 300, the variance of the precursor signal

decreases in turn. And with the increase of lag step, the variance

curve mutation point corresponding to the smaller displacement.

Comparing Figures 4B,D,F, with the increase of the window

length, the amplification of the inflection point of the variance
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FIGURE 3
The self-correlation coefficient and variance variation characteristics of different window lengths (A,B):lag step length 100, (C,D):lag step length
200, (E,F):lag step length 300).
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FIGURE 4
The self-correlation coefficient and variance variation characteristics of different lag steps (A,B):window length 2000, (C,D):window length
1,500, (E,F):window length 1,000).
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curve corresponding to the same lag step decreases, consistent

with the conclusion of Li et al. (2021), Wei et al. (2018).

Through the comparison between Figure 3 and Figure 4, it

can be found that the precursor points located by the auto-

correlation coefficient and variance are about 0.84 mm, and the

failure position is 0.9 mm, reaching 90% of the sandstone

strength, which can better characterize the sample entering

the dangerous fracture stage. By comparing the auto-

correlation coefficient curve and the variance curve, it is

found that the auto-correlation coefficient curve has more

peaks, that is, more spurious signals are generated in the

auto-correlation coefficient curve. Compared with the auto-

correlation coefficient, the variance trend is more intuitive, the

mutation point (precursor point) is easier to be identified, and is

less affected by the lag length selection. Therefore, in terms of

monitoring and early warning, the variance trend is more

suitable as a precursor for the failure of sandstone samples.

4 A GWO-BP neural network based
early warningmodel for rock failure in
cold regions

4.1 GWO-BP neural network

The BP neural network algorithm is a widely used neural

network, which is essentially a gradient descent method. The

objective function to be optimized is very complex, which leads to

the slow convergence of the BP neural network algorithm. The

selection of BP neural network structure lacks a unified and

complete theoretical guidance, instead it generally depends on

experience. Therefore, how to select an appropriate network

structure for application is an important issue. Aiming at

overcoming the shortcomings of BP neural network, the

GWO algorithm is employed.

GWO is a new swarm intelligence optimization algorithm

proposed by Mirjailili et al. (2014). Its core is to optimize the

dynamic process of parameters by simulating the hunting process

of grey wolves in searching, enclosing, and attacking prey. In

order to mathematically model the social hierarchy of wolves

when designing GWO, the optimal scheme is defined as α, and

the second and third best schemes are β and δ respectively. The

GWO algorithm is the process of expelling and surrounding the

optimization target by ω under the guidance of α, β, and δ wolves

(Gupta and Deep, 2019). The diagram is shown in Figure 5.

The first step is to lock the target and surround it. The

following equations are proposed:

�D �
∣∣∣∣∣∣ �C ·Xp


→(t) − �X(t)
∣∣∣∣∣∣ (6)

�X(t + 1) � Xp

→(t) − �D · A (7)

where t denotes the current iteration, �A and �C are coefficient vectors,

Xp


→

is the position vector of prey, �X is the position vector of the grey

wolf. The calculation formulas of �A and �C are as follows:

�A � 2 �a · r1→− �a (8)
�C � 2 · r2→ (9)

where �a is the convergence factor, and as the number of iterations

decreases linearly from 2 to 0, the modulus between r1
→ and r2

→ is

[0, 1].

a � 2 − 2 · t

t max
(10)

Dα

→

,Dβ

→

, and Dδ


→

corresponds to the distance between α, β, δ

and other individuals, Xα

→

, Xβ

→

, and Xδ

→

represent the current

positions of α, β, and δ, respectively, C1

→

, C2

→

, and C3

→

are the

random vector, and �X is the position of the current grey wolf.

The last step is attacking, which is to obtain the optimal

solution. The solution is mainly obtained by reducing the value of

FIGURE 5
Chart of grey wolf searching and attacking prey.
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�a, and �A varies within the interval [−2 �a, 2 �a]. When the value of A

is within the interval and |a| ≤1, the wolf can attack the prey.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
X1

→ �

∣∣∣∣∣∣Xα

→− A1 · Dα


→∣∣∣∣∣∣
X2

→ �

∣∣∣∣∣∣Xβ


→− A2 · Dβ


→∣∣∣∣∣∣
X3

→ �

∣∣∣∣∣∣Xδ

→− A3 · Dδ


→∣∣∣∣∣∣
(11)

�X(t + 1) � X1

→+ X2


→+ X3

→

3
(12)

Equation 6 defines the step length and the direction of ω

individuals in the wolves towards α, β, and δ, and Eq. 7 defines

the final position of ω.

Based on the divergence of mathematical modeling, the

global search of the GWO algorithm is realized by adjusting

the value of �A. When | �A|> 1, the grey wolf of the global search is

separated from the target, and the global search continues to find

more suitable prey. The GWO algorithm also has another

component �C to help find new solutions, Eq. 9 shows that �C

is a random value within [0, 2], C represents the random weight

of the impact of the location of the wolf on the prey, C
→>

1 indicates that the impact weight is significant, and vice

versa. This helps the GWO algorithm to perform more

randomly and support exploration, while avoiding falling into

local optimum in the optimization process. In addition, �C is non-

linearly reduced, thus from the initial iteration to the final

FIGURE 6
Comparison of the prediction results of precursors: (A) GWO-BP, (B) BP.
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iteration, it provides global search in decision space. When the

algorithm falls into local optimum and is not easy to jump out,

the randomness of �C plays a very important role in avoiding local

optimum, especially in the iteration which calls for a global

optimal solution.

BPmodel randomly allocates the weight matrix and threshold of

the hidden layer neurons between the input layer and hidden layer,

containingmany variable parameters that are difficult to control, and

the results are unstable. The GWO-BP algorithm can effectively

extract the optimal matrix connecting weights and thresholds, and

can dynamically optimize the penalty factor and kernel parameters of

the BP neural network, so as to achieve the relatively stable prediction

results. The core of the GWO-BP algorithm is to take the weights and

thresholds of the BP neural network as the position informationX(t)
of the grey wolf, and the updated position is equal to the weights and

thresholds of the BP neural network, so as to find out the global

optimal value. The specific steps are as follows:

1) Extract the feature vectors and normalize these data.

2) Initialize the deviations and weights, and set the minimum

error, maximum number of iterations, and learning rate.

3) Initialize the GWO algorithm, set the number of wolves and

the maximum number of iterations, use the initial deviations

and weights as the initial solutions to find the optimal

solution.

4) For the training of BP neural network, use the output of each

layer to calculate the training errors and adjust the deviations

and weights of each layer, repeat this operation until the

maximum number of iterations or error is less than the

threshold.

5) Test the BP neural network by using the test data to determine

whether the accuracy meets the requirements.

4.2 A GWO-BP based early warning model
of rock failure in cold regions

Freeze–thaw damage of rock mass poses a great threat to the

safety of rock engineering, stone buildings, and low-temperature

storage of liquefied natural gas (LNG) in cold regions. How to

prevent and manage freeze–thaw disasters is what this paper

considered, and what is more suitable than managing

freeze–thaw disasters is for preventing disasters. At present,

with the improvement of monitoring means, plenty of real-

time monitoring data of rock engineering can be extracted,

therefore, in this paper, the AE equipment is used as the

monitoring method to analyze the critical slowdown in the

process of rock failure, and the precursors of rock failure is

obtained, a warning model of rock failure in cold regions is

proposed through the GWO-BP neural network. The specific

steps are as follows:

1) The failure process of engineering rock samples in cold

regions under different environments was selected for AE

monitoring.

2) The critical slowdown of rock samples under various working

conditions was analyzed to obtain the failure precursors.

3) The GWO-BP neural network was constructed, and the

effective influencing factors were selected to predict the

precursors and strength. In this paper, 105 groups of

experiments under 21 working conditions of sandstone in

cold regions were carried out to establish and test the network.

4) The AE signal of rock engineering was monitored, and the

GWO-BP neural network was imported to obtain the strength

value at this time. Compared with the precursor points, the

early warning was carried out.

4.3 Verification of early warning model

BP neural network is usually composed of input layer, hidden

layer and output layer. The number of input and output neurons

is determined by the parameters needed for modeling, while the

number of nodes and layers in hidden layer is not fixed, which

will have a certain impact on the performance of BP neural

network. In the present study, as listed in Table 1, The input layer

consisted of five neurons, one for each independent variable,

which typically influenced the sandstone failure process, these

variables included saturation, density, longitudinal wave velocity,

freeze-thaw times and porosity. The output layer consisted of

only one neuron,i.e. precursory signal. Generally speaking, too

few neurons in the hidden layer will lead to a decrease in the

prediction accuracy of the network, and there will be under-

fitting. Increasing the number of neurons can improve the

accuracy of the model, but if the number of nodes is too

large, it may make the model over-fitting. Therefore, in the

construction of this model, the hidden layer selected one layer

since one hidden layer was considered sufficient for developing a

sound neural network, and the number of neurons in the hidden

layer was determined to be 10 by using the method of minimizing

network error, which had the highest accuracy. The training

algorithm used the Levenberg-Marquardt back propagation

method to minimize the mean squared error (MSE) (Low

TABLE 1 Selection of neural network parameters.

Input layer neurons 5

Hidden layer 1

Implicit layer neurons 10

Output layer neurons 1

Training function Trainlm

Algorithm Levenberg–Marquardt BP algorithm

Maximum training times 15,000

Training error 0.01
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MSE indicates good performance of neural network). With the

increase of training error, the influence of the output error of the

model on the parameters will increase, and the speed of

parameter updating will be faster, but the parameters will be

disturbed by a large number of abnormal data at the same time,

and it is very easy to diverge. In this paper, the training error was

set to 0.01 of the default. The maximum number of training times

was selected to be 15,000. In the GWOmodel, the population was

20 and the maximum number of iterations was 15.

Firstly, the precursors were predicted according to the

uniaxial tests of 105 frozen–thawed sandstones. 4 groups of

parallel tests (84 in total) under each working condition are

selected for network training. One is selected for each

working condition to predict the precursor signals, and

the correlation between the predicted value and the real

value was used to determine the pros and cons of the

prediction.

Then, according to the intensity prediction of AE signals, the

number of AE ringing, energy, duration, and impact number

were extracted as characteristic parameters. A total of

84,760 groups of data were selected, and 84,700 groups of

data were randomly selected for network training. The

FIGURE 7
Comparison of the strength prediction results: (A) GWO-BP, (B) BP.
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remaining 60 groups of data were used to test the accuracy of the

network.

By comparing the results of the precursors and intensity in

GWO-BP and BP predictions (Figures 6, 7), it is found that the

correlation between the BP neural network prediction value and

the real value is 0.8514. The correlation coefficient between the

predicted value and the real value of BP neural network

optimized by GWO reaches 0.9990 and 0.9881 respectively,

which greatly improves the prediction accuracy. The predicted

value of the GWO-BP neural network is credible. The precursor

warning model provides a new guarantee for the safety of rock

engineering in cold regions.

5 Conclusion

In this paper, TAW is used to load the freeze-thaw sandstone

with different saturations, and the loading process is recorded by

acoustic emission. The critical slowing down theory is used to

analyze the acoustic emission signal during the loading process of

sandstone. Based on GWO-BP algorithm, the precursor signal

warning model of rock failure in cold region is constructed. The

conclusions are as follows.

1) During the whole loading process, the acoustic emission

ringing count corresponds well with the damage and

failure process of sandstone, showing obvious stages.

Therefore, according to the change of ringing count in the

failure process of rock samples, the damage and failure

process of sandstone is divided into initial compaction

stage, slow growth stage, rapid growth stage and failure

stage. There are many mutations in the ringing count in

the rapid growth stage, so the on-site monitoring and early

warning need to eliminate these false signals through

improved algorithms to improve prediction accuracy.

2) The window length and lag step length have little effect on the

occurrence time of the precursory characteristics of the

variance, but have a great influence on the stability of the

auto-correlation coefficient. Compared with the auto-

correlation coefficient, the variance trend is more intuitive

and the precursory points are easier to identify. Therefore, in

terms of monitoring and early warning, the variance trend is

more suitable as a precursory point for sandstone sample

failure prediction.

3) The grey wolf algorithm is introduced to optimize the

penalty factor and kernel parameters of BP neural

network. An early signal warning model is constructed

based on GWO-BP algorithm to warn the failure of rock

failure. After data comparison, the correlation coefficient

between the predicted value obtained by this model and the

real value reaches 0.999 and 0.9881, and the prediction

effect is excellent. Precursory signal warning model

provides a new guarantee for the safety of rock

engineering in cold regions.
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