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The rapid increase in atmospheric CO2 concentration has caused a climate

disaster (CO2 disaster). This study expands the theory for reducing this disaster

by analyzing the possibility of reinforcing soil CO2 uptake (Fx) in arid regions

using partial least-squares regression (PLSR) andmachine learningmodels such

as artificial neural networks. The results of this study demonstrated that

groundwater level is a leading contributor to the regulation of the dynamics

of themain drivers of Fx–air temperature at 10 cmabove the soil surface, the soil

volumetric water content at 0–5 cm (R2=0.76, RMSE=0.435), and soil

pH (R2=0.978, RMSE=0.028) in arid regions. Fx can be reinforced through

groundwater source management which influences the groundwater level

(R2=0.692, RMSE=0.03). This study also presents and discusses some basic

hypotheses and evidence for quantitively reinforcing Fx.
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1 Introduction

The Earth is a complicated system with considerable uncertainties regarding the

biotic/abiotic processes in many ecosystems (Caers, 2011). The Earth’s surface

temperature is widely recognized to be heavily influenced by greenhouse gases,

among which CO2 is the major contributor (Joos et al., 1999). The rapid increase of

atmospheric CO2 concentration and the resulting climate disaster (the CO2 disaster) have

attracted attention (Mercer, 1978). With the intensification of the CO2 disaster, arid

regions are getting more arid and, hence, are facing more serious threats (Huang et al.,

2017). The warming trends in arid and semi-arid regions are significantly higher than

those in non-arid regions (Schlaepfer et al., 2017). Moreover, the CO2 disaster may reduce
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the extent of temperate drylands and intensify drought in deep

soils, such that approximately 15%–30% of the temperate dry

area might be transformed into arid areas by the late 21st century

(Schlaepfer et al., 2017). Global warming accelerates not only

dryland expansion but also soil CO2 release in some regions

(Jenkinson et al., 1991; Huang et al., 2016). Therefore, any

possible technologies for reducing the CO2 disaster are worthy

of investigation (Murata and Cheolsong, 2008; Edmonds and

Smith, 2011).

Since 2006, a series of studies have demonstrated soil CO2

uptake in arid regions (Wang et al., 2015a; Wang et al., 2016a). In

the traditional ecological paradigm, soils can only release CO2

(Baldocchi et al., 2001; Wang et al., 2015a). Soil CO2 release was

defined as the sum of two organic components: plant root

respiration (autotrophic respiration) and soil organic carbon

decomposition by soil fauna and soil microbes (Falge et al.,

2001; Farifteh et al., 2007; Baldocchi et al., 2015). Many

observations of soil CO2 fluxes with both chambers and open-

or closed-path eddy systems have highlighted anonymous CO2

uptake (Hastings et al., 2005; Jasoni et al., 2005; Mielnick et al.,

2005; Reichstein et al., 2005; Chapin et al., 2006). The

components of soil CO2 fluxes are the sum of its inorganic

(soil inorganic respiration) and organic (soil organic respiration)

components, respectively (Wohlfahrt et al., 2008). Moreover, soil

inorganic respiration temporally dominates the net ecosystem

exchange of CO2 (Schlesinger, 2001; Kowalski et al., 2008;

Inglima et al., 2009; Sanchez-Cañete et al., 2011; Chen et al.,

2013). Hence, we are motivated to investigate the possibility of

reinforcing soil CO2 uptake to reduce the CO2 disaster. The

environmental contributions to the main drivers of soil CO2

uptake and whether such contributions can be reinforced

through human activities remain unknown (Chen et al.,

2013). However, if possible, soil CO2 uptake not only

indicates a hidden carbon cycle loop potentially contributing

to the long-sought “missing sink” (Stone, 2008; Xie et al., 2008;

Serrano-Ortiz et al., 2010; Ma et al., 2013; Chen et al., 2014;Wang

et al., 2015b; Wang et al., 2016b) but also promises an emerging

technology to reduce the CO2 disaster (Wang et al., 2016a; Wang

et al., 2016b).

The risk of soil salinization in arid regions is increasing due to

the combined effects of global warming, drought intensification,

and population growth (Utset and Borroto, 2001). Many studies

have demonstrated the high sensitivity of arid regions to the CO2

disaster (Gök et al., 2000; Rey et al., 2012; Rey, 2014; Li et al.,

2015). However, few studies have addressed the feasibility of

reinforcing soil CO2 uptake in these regions (Wang et al., 2015a;

Wang et al., 2016a). The utilization of CO2 uptake as a practical

technology for reducing the CO2 disaster requires the reliable

quantification of environmental influences on themain drivers of

soil CO2 uptake and the assessment of the possibility of

reinforcing these influences (Wang et al., 2016b). Until now,

considerable uncertainties remain regarding the underlining

mechanisms of soil CO2 uptake (Wang et al., 2015b; Wang

et al., 2016b). Nevertheless, a global model of soil CO2 uptake

has been established (Chen et al., 2014), which can be used to

expand the theory for reducing the CO2 disaster by analyzing the

main drivers involved in the model. The main challenges are as

follows. First, since the mechanisms of such CO2 uptake remain

undetermined, any possible environmental contributors to these

main drivers must be comprehensively considered. Second, since

the influencing modes of most environmental controls are not

fully understood, their possible interactions cannot be ignored.

These two challenges have not been explicitly tackled in previous

studies. Addressing these challenges and clarifying the

environmental contributors of the main drivers could allow an

assessment of the feasibility of artificially enhancing CO2 uptake

and the limits of such enhancement. Scientists could then

determine whether such enhancements could provide a new

method to replace reduced industrial emissions and,

ultimately, reduce the CO2 disaster.

Therefore, the objectives of the present study were to 1)

examine the leading environmental contributors to the main

drivers for soil CO2 uptake in arid regions, 2) evaluate the

most interpretable proportion of all considered contributors

and determine the need to introduce other environmental

contributors, and 3) discuss the feasibility of reinforcing soil

CO2 uptake in arid regions by human activities. The

organization of this article is as follows. Section 2

illustrates the methods for computing soil CO2 uptake,

along with the subsequent regression and machine learning

theory. Partial least-squares regression (PLSR) is used to

exclude interactions among the considered environmental

contributors. A machine learning model (ANN) is used for

cross-validation by excluding the secondary contributors.

Hypotheses are developed from the PLSR-ANN and

discussed in Section 3. We also assess the largest

proportions of these contributors in explaining soil CO2

uptake and further clarify their leading roles. In addition,

we evaluate the most interpretable proportion of all the

contributors considered in the present study and determine

whether other contributors need to be involved in subsequent

studies. Based on the results from the PLSR-ANN calibrations,

Section 4 establishes and discusses the theory of a conceptual

framework to reinforce soil CO2 uptake through effective

activities in the background of global warming. The

conclusions and some outstanding remarks are presented in

Section 5.

2 Theory and methodology

2.1 Computation of soil CO2 uptake

Soil CO2 uptake involves not only fluxes of CO2 over the

soil surface but also beneath the soil. To compute CO2 fluxes

over the soil surface, a PVC column is set to measure CO2
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concentration above the soil in a closed chamber. As shown in

Eqs 1, 2 in Wang et al. (2016c), the net soil CO2 release (Fc) can

be computed by

Fc � dC(t)
dt

� k(t)ρVpvc

Spvc
p
ΔCO2

Δt
� k(t)ρrh

r + 2h
p
ΔCO2

Δt
(1)

where r, h, Vpvc, and Spvc are the height, radius volume, and

surface area of the PVC column, respectively; ρ is the CO2 density

under the standard state; and k is a dynamic transform

coefficient.

A temperature-dependent Q10 model has been widely

utilized, in which Q10 is the derivative of the exponential

chemical reaction-temperature equation originally developed

by Van’t Hoff (1898). With Tas defined as the air temperature

at 10 cm above the soil surface, θs the soil volumetric water

content at 0–5 cm, and R10 the referred Fc at 10°C, then Q10 is the

factor by which Fc is multiplied when T increases by 10°C.

According to Eqs 1–3 described by Wang et al. (2015b), the

part of Fc unexplained by the Q10 model is attributed to the

inorganic component of Fc. Alternatively, the soil CO2 uptake

(Fx) can be computed by

Fo � R10Q
(Tas−10)/10
10 (2)

Fi � Fc − Fo (3)
F+
i � (Fi + |Fi|)/2, F−

i � (Fi − |Fi|)/2 (4)
Fx � F−

i (5)
Fx � f(pH) + g(Tas, θs) (6)

where Fo and Fi are the organic and inorganic components of Fc,

respectively.

Equation 6 can be further reconciled as

Fx � Fxnp(EVnp) + Fxlp(EVlp) (7)

where Fxnp and Fxlp are the linear and nonlinear components

of Fx, respectively. EVnp and EVlp are the sets of

environmental variables for the linear and nonlinear

components, respectively.

As seen in Chen et al. (2014), the main drivers for Fx are pH,

Tas, θs; thus,

Fxnp(EVnp) � f(pH) � r7q
pH−7
7 , Fxlp(EVlp) � g(T, θs)

� λT + μθs + e (8)

where the pH belongs to EVnp and Tas and θs belong to EVlp.

For computation, the empirical coefficients from Chen et al.

(2014) and Wang et al. (2015b) can be directly used. That is,

Fxnp(EVnp) � 3.0191 × 0.7625pH−7 (9)
Fxlp(EVlp)Fxlp(EVlp) � 0.0059Tas + 0.0003θs − 2.5081 (10)

where Fx is hypothetically attributed as pH-driven, Tas-driven,

and θs-driven CO2 uptake by soils.

2.2 PLSR and machine learning theory

Two adaptive methods—partial least-squares regression

(PLSR) and a machine learning model (ANN)—were used to

examine the environmental contributors of pH, Tas, and θs.
Backpropagation was utilized in the machine learning

processes with ANN. The performance statistics of the ANN

calibration were explicitly displayed and the environmental

contributors with relatively small contributions (<5%) were

excluded from the ANN model performance. The PLSR

model was performed on a random partition of the dataset

(70% for training, 30% for testing) and ANN models were

assessed against the whole data set. The major steps of the

PLSR calibration are shown in Figure 1 (Zhou et al., 2021).

Six calibration processes were performed during PLSR. The

first was the standardization, which was done before Step 1. The

second process was to find the correlation coefficient matrix,

where X and Y were put into an augmented matrix that was

included in Steps 2 and 3. The third process was to find the pair of

principal components. This process was included in Step 4,

where the Lagrange multiplier method was utilized. The

fourth subsequent process involved the calculation of the

contribution rate table, in which the contributions of each

environmental contributor were determined individually. The

fifth process was to select k principal component pairs according

to the contribution rate table, which was used in the sixth and

seventh processes to carry out the final regressions between

environmental contributors and the main drivers for soil CO2

uptake. The eighth process performed cross-validation with the

above PLSR components.

However, PLSR also has some limits. PLSR is a linear model,

which is advantageous for determining the contributions of

individual environmental variables. However, the best model

might be nonlinear. Meanwhile, ANN cross-validation is also

required to ensure that the selected determining factors from

PLSR remain dominant in nonlinear models. The ANN aims to

imitate the working mechanisms of the human brain. Neurons

are connected to form each layer of the neural network. Each

layer transmits information through a function operation

running on the connection between each layer. By adjusting

the connected weights between each layer, the neural network

can output the desired target. This goal needs to be achieved

through the training of the neural network, which is within the

allowable range of error. The basic information transfer function

for the connection between each connection layer is xw + b,

where x is the information passed from the previous layer, w is

the weight reflecting the relevance, and b is the deviation. As the

brain sometimes needs to choose to transmit or ignore received

information, neural networks filter information through an

activation function. The major steps in ANN for updating

parameters are shown in Figure 2 (Zhou et al., 2021; Zhuang

et al., 2021).
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Environmental data-driven PLSR-ANNs were collected

from a series of previous studies (Chen et al., 2014; Zhou

et al., 2021; Zhuang et al., 2021). The present study further

hypothesized that the precipitation amounts (Pa) and

groundwater level (GL) were another two elements in EVnp.

Based on the results of PLSR and machine learning, the other

environmental variables; namely, air humidity (AH), air

pressure (AP), soil temperature (Ts), soil salinity (SS), and

wind speed (WS) and direction (WD) were included in EVlp.

Evidence for the above two hypotheses is presented in Sections

3 and 4. The calibration errors were quantified using R2 and

RMSE, as described by Farifteh et al. (2007) and Zhou et al.

(2021).

3 Hypotheses and evidence

3.1 Reinforcement of Tas-driven CO2
uptake

According to Eq. 10, soil CO2 uptake can be reinforced by

reducing Tas. The reinforcement degree is −0.0059 μmol m−2 s−1

when Tas decreases by 1°C. We hypothesized that Tas was a

function of other environmental variables; that is,

Tas � Tasf(AH,AP, Ts, SS,WS,WD, pH,GL, θs, Pa) (11)

The hypothetical mechanisms in the function Tf are as

follows. Ts can affect Tas because Ts is a direct reflection of

the surface heat condition. Since the volume heat capacity of

water is much larger than that of air, AH, GL,WD,WS, Pa, and θs
can affect Tas. Decreases in AP indicate that the air above the soil

is expanding and Tas is increasing. Since soil water and salt

transport can be aggravated by higher Tas, SS and pH are also

potential indicators for local Tas. Under these hypotheses, the

reinforcement of Tas-driven CO2 uptake is possible if one of the

environmental variables AH, AP, Ts, SS, WS, WD, pH, GL, θs,
and Pa can be changed through human activities.

The results of the PLSR-ANN analyses present some basic

evidence for Eq. 11. As shown in Figure 3, the PLSR results

demonstrated the very accurate prediction of Tas by a linear

combination of other environmental variables (R2=0.894 and

RMSE=2.975 on the training data set, R2=0.939 and

RMSE=2.507 on the testing data set). These results were

further demonstrated by the ANN (R2=0.924 and

FIGURE 1
Major steps of PLSR calibration. Note: X and Y are the data on environmental variables and soil CO2 uptake respectively. The corresponding
matrices of X and Y areM andN, respectively. The corresponding eigenvectors of M andN are δ and σ, respectively. To calculate the coefficients α and
β in the principal components from PLSR, we extract as much variation information as possible from each variable group. This is a conditional
extremum problem, which is solved using the Lagrange multiplier method.
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RMSE=2.495 before excluding the secondary contributors,

R2=0.887 and RMSE=2.966 after excluding the secondary

contributors).

From the PLSR results, the function Tasf can be

approximated by

Tas � c0 + c1AH + c2AP + c3Ts + c4SS + c5WS + c6WD + c7pH

+ c8GL + c9θs + c10Pa

(12)
where the contributions of AH, AP, Ts, SS, WS, WD, pH, GL, θs,
and Pa to Tas can be calculated from the coefficients c1, c2, . . ., c10,

in which c0 is the residual.

The computed coefficients for Eq. 12 were c1=−2.0413,

c2=−1.4424, c3=2.3231, c4=−1.3964, c5=0.3635, c6=−0.1313,

c7=1.6382, c8=−1.9786, c9=0.6742, c10=0. Hence, the leading

environmental contributors to Tas were Ts, AH, GL, pH, AP,

SS and θs, with contributions to Tas of 19.4%, 17%, 16.5%, 13.7%,

12%, 11.6%, and 5.6%, respectively. Among these leading

environmental contributors, GL was significantly affected by

human activities and can also influence pH, SS, and θs.
Therefore, we can try to reinforce Tas-driven soil CO2 uptake

in arid regions through groundwater management, which is

associated not only with irrigation decisions but also with

living plans and industrial water use. A decrease in GL by 1 m

means a Tas reduction of 1.9786°C and a reinforcement of Fx
by −0.0117 μmol m−2 s−1 according to Eqs 10, 12.

3.2 Reinforcement of θs-driven CO2
uptake

According to Eq.10, soil CO2 uptake can be reinforced by

reducing θs. The reinforcement degree is −0.0003 μmol m−2 s−1

when θs decreases by 1%. We hypothesized that θs was a function
of other environmental variables; that is,

θs � θsf(AH,AP, Ts, SS,WS,WD, pH,GL, Tas, Pa) (13)

The hypothetical mechanisms in the function θsf are as

follows. Precipitation and evaporation are the two most

important factors influencing θs. Therefore, Pa affects θs. Since
Ts and Tas can directly reflect the surface heat conditions, the θs
values under different temperatures can vary. Except for

precipitation and evaporation, atmospheric environments, soil

properties, and surface vegetation also affect θs. Hence, AP, AH,

WD, WS, SS, and pH can potentially affect θs. The influence of
GL on θs is easily understood. In arid regions, soil water is mainly

supplied by groundwater. A decrease in GL can directly induce

the decrease of θs. Under these hypotheses, θs-driven CO2 uptake

can be reinforced if one of these environmental variables can be

changed through human activities.

The results of the PLSR-ANN analyses present some basic

evidence for Eq. 13. As shown in Figure 4, the PLSR results

suggest that the best linear combination of other environmental

variables can only explain about half of the variations in θs
(R2=0.552 and RMSE=0.577 on the training data set, R2=0.51 and

RMSE=0.663 on the testing data set). However, we cannot

conclude that the function θsf in Eq. 13 does not exist. The

ANN results suggest that θs can be correctly predicted by a

nonlinear combination of the considered environmental

variables (R2=0.9 and RMSE=0.274 before excluding the

secondary contributors, R2=0.904 and RMSE=0.283 after

excluding the secondary contributors).

From the PLSR results, the function θsf cannot be

approximated by

θs � c0 + c1AH + c2AP + c3Ts + c4SS + c5WS + c6WD + c7pH

+ c8GL + c9Tas + c10Pa

(14)
where the computed coefficients from PLSR are c1=−0.1691,

c2=−0.0238, c3=0.2133, c4=0.3858, c5=0.0326, c6=−0.102,

c7=−0.0202, c8=−0.219, c9=0.1813, c10=0.

These computed coefficients further reveal that the PLSR

results are not convincing. Thus, the leading contributors are SS,

GL, Ts, Tas, AH, and WD, with contributions to θs of 28.6%,

16.3%, 15.8%, 13.5%, 12.6%, and 7.6%, respectively. While the

results are wrong to exclude Pa, we can obtain significant

information from the two subfigures in Figures 4C,D. No

significant differences in ANN performance were observed

before and after excluding the secondary contributors. They

were both very robust. Since Eq. 14 excluded WS, AP, pH,

FIGURE 2
Major steps in machine learning processes with ANN. Note:
After obtaining a training set, the ANN can extract the features of
each part of the observed object by learning. If the training effect is
not satisfied, error data will be generated and back-
propagated and relevant parameters will be adjusted according to
the error value tominimize the target. The parameter adjustment is
mainly based on the prediction results of the errors in each layer.
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and Pa as the second contributors to θs, there must be another

important contributor among Ts, Tas, GL, WD, SS, and AH.

Although the ANN results present a very accurate prediction

of θs by a nonlinear combination of the considered

environmental variables, we cannot determine the best θsf
from ANN. Consequently, we are motivated to choose the

most important contributor to θs among Ts, Tas, GL, WD, SS,

and AH. Since GL can be influenced by human activities and the

management of groundwater sources has attracted attention

(Daliakopoulos et al., 2005; Wang et al., 2016d; Cruz-Paredes

et al., 2021), we prefer to choose GL. As shown in Figure 5, θs
fluctuates when GL varies from 65 to 90 m in irrigation seasons.

GL is also a well-known factor associated with θs (Buttle,
1989). Irrigation decisions can significantly affect θs and other

soil properties (Rawls et al., 1982). In Section 3.1, GL is a suitable

controller to reinforce Tas-driven soil CO2 uptake. Benefitting

from a suitable plan on water use for living and industry, we can

effectively control GL that can, in turn, affect θs. In particular, we

can try to reinforce θs-driven soil CO2 uptake in arid regions

through proper irrigation decisions and groundwater use plans.

Considering Figure 5 as an example, it is easy to see that the

relationships between GL and θs are complicated. When GL

increased from 68 to 78 m, θs decreased from 15.88% to 13.70%.

Thus, an increase in GL at this stage led to a 2.18% decrease in θs,
which reinforced Fx by −0.001 μmol m−2 s−1 according to Eqs

10, 13.

3.3 Reinforcement of pH-driven CO2
uptake

According to Eq. 9, soil CO2 uptake can be reinforced by

increasing soil pH. Both Tas and θs belong to EVlp, while

pH belongs to EVnp. Since Fx(EVnp) is an exponential

function, the reinforcement degree of Fx can differ when

the pH is increased from different starting points. For

example, Fx can be reinforced by −0.7170 μmol m−2 s−1

with a pH increase from 7 to 8. However, when the pH is

increased from 8 to 9, the Fx is reinforced by

only −0.5467 μmol m−2 s−1.

FIGURE 3
Evidence for Eq. 11 from the PLSR training stage (A), testing stage (B), and ANN analyses before excluding the secondary contributors (C) and
after excluding the secondary contributors (D). Note: Tas is the air temperature at 10 cm above the soil surface. All other environmental variables are
considered potential contributors to Tas.
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We can hypothesize that pH is a function of other

environmental variables; that is

pH � pHf(AH,AP, Ts, SS,WS,WD, θs, GL, Tas, Pa) (15)

However, as we learned in Section 3.2, the PLSR-ANN results

cannot help us directly identify the leading contributor unless the

hypothesized function can be approximated by a linear function.

Thus, pHf may be approximated by a linear function. As proper

irrigation decisions and groundwater source management have

been recommended to reinforce both Tas-driven and θs-driven
CO2 uptake, we directly hypothesize that pH is a nonlinear

function of GL; that is

pH � pHf(GL) (16)

The hypothetical mechanisms in the function pHf are as

follows. Fluctuation of GL significantly affects soil salt transport,

which in turn changes the salt composition of the soil. Since soil

pH is majorly influenced by salt composition, pH can be

approximated by a nonlinear function of GL. Eq. 16 is proved

to be robust (R2=0.978, RMSE=0.028), as shown in Figure 6.

Hence, the hypotheses with Eq. 16 are not only reasonable but are

also robust in predicting soil pH.

Under these hypotheses, pH-driven CO2 uptake can be

reinforced through human activities. Similar to the strategies

in Sections 3.1 and 3.2, only a suitable plan on water use for living

and industry is required to ensure that the GL fluctuations are

advantageous for reinforcing soil CO2 uptake. Considering

Figure 6 as an example, it is easy to see that the relationships

between GL and pH are also complicated. When GL increased

from 65 to 70 m, the pH increased from 9.40 to 10.03. Therefore,

a GL increase at this stage caused a pH increase of 0.63, leading to

a −0.2473 μmol m−2 s−1 reinforcement of Fx according to Eqs 10,

16. However, when GL increased from 70 to 90 m, the

pH increased from 10.03 to 9.40. Therefore, a GL increase at

this stage caused a decrease in pH of 0.63, which cannot

reinforce Fx.

FIGURE 4
Evidence for Eq. 13 from the PLSR training stage (A), testing stage (B), and ANN analyses before excluding the secondary contributors (C) and
after excluding the secondary contributors (D). Note: θs is the soil volumetric water content at 0–5 cm. All other environmental variables are
considered potential contributors to θs.
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4 Perspectives and discussions

The CO2 disaster has led to global warming and

environmental deterioration (Zekai, 2009; Wani et al.,

2012). This crisis can further exacerbate violent conflicts in

countries and regions over territory or water supply, which

lead to energy, ecological, food, and even economic crises

(Pimentel et al., 1973; Coyle and Simmons, 2014; Weston,

2014). Protecting the Earth (and ourselves) requires

expanding the theory for reducing the CO2 disaster. The

mechanisms of CO2 uptake by soils in arid regions are not

fully understood. This uptake might be one way for the Earth

to repair itself. The present study analyzed whether there is a

way for humans to enhance CO2 uptake. As previous studies

identified the main drivers of soil CO2 uptake, our analyses

focused on the influences of other environmental variables on

these drivers. However, precipitation in arid regions is limited

and we have not collected sufficient and continuous data to

accurately quantify the contributions of Pa to Tas, θs, and soil

pH. Both the PLSR and machine learning results in this study

suggested GL as a common controller for the main drivers of

soil CO2 uptake. Tas, θs, and soil pH may each show changes in

groundwater discharge or recharge, which will in turn

influence CO2 uptake. Therefore, groundwater source

management may be a way to reinforce CO2 uptake by

soils in arid regions. There are still considerable

uncertainties regarding the influences of Pa and GL on Fx.

Their influences on soil CO2 uptake are complicated, as shown

in Figure 7.

Besides the methodology discussed in this study, many

other methods have been proposed to regulate Tas, θs, and soil

pH. For example, increasing vegetation can shield the direct

radiation of the Sun to soil. Because the Tas-driven

reinforcement coefficient is almost 20 times that of the

θs-driven reinforcement coefficient, there is no need to

consider the increase in θs caused by the reduction of Tas.

In addition, increased θs is also conducive to the growth of

vegetation and photosynthetic CO2 absorption. Meanwhile,

the adjustment of soil pH requires a comprehensive

consideration of soil conditions. If the soil conditions are

good, then increasing vegetation can provide photosynthetic

CO2 absorption. In most situations, it is not wise to directly

increase soil pH to reinforce soil CO2 uptake. The total

reinforcement of photosynthetic CO2 absorption and soil

CO2 uptake must be comprehensively considered when

making decisions, as shown in Figure 8.

The methods in this study allow us to assess soil CO2 uptake

on different scales and also minimize the influences on soil

structure. If Pt is the period for measurements, the

contribution of soil CO2 uptake to reducing CO2concentration

can be inferred through Eqs 11–17, as follows:

ΔC(t)
Δt

� Fx
(r + 2h)
rhρk(t) (17)

ΔC(t) � Fx
(r + 2h)Δt
rhρk(t) (18)

C(nPt + Pt) − C(nPt) � Fx(nPt) (r + 2h)Pt

rhρk(nPt) (19)

∑N

n�1C(nPt + Pt) − C(nPt) � ∑N

n�1Fx(nPt) (r + 2h)Pt

rhρk(nPt) (20)

FIGURE 5
Evidence for groundwater level (GL) as a leading variable in
Eq. 13 showing evident fluctuations in θs whenGL varies from 65 to
90 m in irrigation seasons. Note: function h is an eight-degree
polynomial. The coefficients of the 8th, 7th, 6th, 5th, 4th, 3rd,
2nd, and 1st order terms are 3.488e−08, −2.114e−05,
0.005591, −0.8432, 79.32, −4765, 1.786e+05, and −3.815e+06,
respectively. The constant is 3.559e+07.

FIGURE 6
Evidence for Eq. 16 showing the close relationship between
pH and groundwater level (GL) when GL varies from 65 to 90 m in
irrigation seasons. Note: function h is an eighth-degree
polynomial. The coefficients of the 8th, 7th, 6th, 5th, 4th, 3rd,
2nd, and 1st order terms are −8.034e−09, −5.022e−06, 0.001371,
0.2137, −20.77, 1291, −5.005e+04, and 1.107e+06, respectively.
The constant is −1.07e+07.
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∑N

n�1C(nPt + Pt) − C(nPt) � ∑N

n�1Fxnp(nPt) (r + 2h)Pt

rhρk(nPt)
+∑N

n�1Fxlp(nPt) (r + 2h)Pt

rhρk(nPt)
(21)

∫ dC(t) � ∫Fxnp(t) (r + 2h)
rhk(t)ρ dt + ∫Fxlp(t) (r + 2h)

rhk(t)ρ dt (22)

∫∫ dC(t)dx � ∫∫Fxnp(t) (r + 2h)
rhk(t)ρ dtdx + Fxlp(t) (r + 2h)

rhk(t)ρ dtdx
(23)

FIGURE 7
Complicated influences of groundwater level (GL) and precipitation amounts (Pa) on soil CO2 uptake (Fx). Note: p is an eighth-order polynomial.
The coefficients of the 8th, 7th, 6th, 5th, 4th, 3rd, 2nd, and 1st order terms are 2.658e−09, −1.66e−06, 0.0045, 0.0705, 6.853, −425.8, 1.652e+04, and
3.655e+05, respectively. The constant is 3.535e+06.

FIGURE 8
Perspective scheme to comprehensively consider the total reinforcement of photosynthetic CO2 absorption and soil CO2 uptake.
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where dx represents the changes in soil depth and the soil CO2

uptake corresponding to the environmental changes, which can

be computed from Eqs 1–10.

The presentation of reliable decisions in Figure 8 requires

determining whether the interactions between photosynthetic

CO2 absorption and soil CO2 uptake should be involved. The

reliable partition of soil CO2 uptake requires improving the

current NEE model.

5 Conclusion

Groundwater level is a leading environmental contributor to

the main drivers for soil CO2 uptake in arid regions. The

reinforcement of soil CO2 uptake through groundwater source

management is possible. The results of the PLSR-ANN presented

evidence of the theoretical feasibility of reinforcing soil CO2

uptake in arid regions by human activities. Groundwater

discharge and recharge can regulate changes in Tas, θs, and
soil pH. However, the influences of groundwater are

complicated. Meanwhile, we must comprehensively consider

the total reinforcement of photosynthetic CO2 absorption and

soil CO2 uptake when making decisions. Further expansion of

the theory for reducing the CO2 disaster requires further

investigation of the need to consider the interactions between

photosynthetic CO2 absorption and soil CO2 uptake. Thus, these

are the next research priorities.
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