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In the direct current (DC) exploration method, topographic relief distorts

the apparent resistivity curve. To eliminate effects of terrain fluctuations,

two undulating terrains comprising valleys and ridges were investigated in

the present study. An unstructured triangular mesh method in which the

wave number k and its coefficient g were obtained using the integral

method and the point and line source surveys were conducted using

comsol multiphysics. Current sources were evaluated using two-

dimensional (2-D) finite element forward modeling, whereas terrain

correction was performed using both the comparison and conformal

transformation methods. The results reveal comparable theoretical

curves for the line and point sources, but quantitative characteristics of

the curves differ. The comparison method is suitable for both curves,

whereas the conformal transformation method is only applicable to the

line source. Even though electric fields associated with the line and point

sources differ, the comparison method that is based on the electrical cross-

section curve of the line source and the electric profile curve of the point

source remains effective.
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1 Introduction

The direct current (DC) method is an electrical method that has been employed

for diverse applications in many fields including hydrology, engineering,

environmental science, and mineral exploration (Zhou et al., 2013; Cheng et al.,

2014; Jin et al., 2014; Song et al., 2016; Afanasenkov et al., 2018; Cui et al., 2021; Li

et al., 2022). In a complex terrain, fluctuations associated with the variation of features

distort the resistivity curve (Zhang et al., 2013; Ji et al., 2016). Therefore, clarification

of the influence of terrain on the resistivity anomaly curve from an electrical profiling
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survey is critical. Effective correction of terrain effects and

adequate preprocessing of measured data are important before

the interpretation of electrical exploration data (Lu et al.,

2014; Sola et al., 2016; Xue et al., 2016; Ren et al., 2018; Li et al.,

2021; Li 2022).

Regarding the influence of terrain on DC measurement data,

some results have been obtained in numerical simulation. Yang

and Li (1999), for example, utilized a ridge and valley undulating

terrain model and the two-dimensional (2D) finite element

approach to highlight and correct the influence of topography

on electric fields of the line and point source methods. Xu et al.

(1987) then improved the 2D resistivity topographic boundary

element correction algorithm by simplifying the associated

calculation. A ratio method was subsequently used to correct

for terrain effects in a symmetrical four-level profile curve.

Further, He et al. (1975) used 2D forward modeling to

simulate impacts of the valley topography on the line source

method, and low resistance values were corrected using the

coordinate network conversion method. Kumar et al. (2018)

also conducted a 3D investigation of effects of topography using a

hill model, and proposed an impedance tensor correction

algorithm for the reduction of such effects on magnetotelluric

data. During geoelectric exploration in a complex environment,

to eliminate the influence of terrain fluctuations on

measurements, terrain corrections can be conducted using

diverse numerical simulation methods (Wang et al., 2015;

McCubbine et al., 2017; Rimary et al., 2019; Saber et al., 2020;

Li et al., 2021; Li 2022). Numerical simulation methods for

solving DC exploration problems include the following:

boundary element, finite difference, and finite element (Ma

et al., 2019; Zhu et al., 2020; Zhang et al., 2021; Zhang et al.,

2021). The finite element method exhibits advantages relative to

other numerical simulation methods. Its suitability for areas with

a complex distribution of physical properties makes it preferable

for an undulating terrain (Chen et al., 1987; Peng et al., 2014; Ma

et al., 2018; Kaznacheev et al., 2020).

According to previous studies, the finite element forward

modeling can be easily adapted to deal with a complex

distribution of physical properties (Tania et al., 2004; Tang

et al., 2010; Zhang et al., 2016; Xie et al., 2019; Xue et al.,

2021). However, in the application of the comparison and

conformal transformation methods to achieve terrain

correction, no comparison of the 2D line and 3D point

sources is available.

In a recent study, Zhu J. (2022) used the tetrahedral grid

spectral element forward simulation method to verify the

effectiveness of terrain correction, which can improve the

accuracy of numerical simulation, but is vulnerable to the

limitation of computational amount and affects the

computational efficiency.

In the present study, the finite element method was utilized to

conduct 2D forward modeling of the valley and ridge topography

based on the point and line source survey methods. Terrain

correction was performed using both the comparison and

conformal transformation methods.

The main contributions of this study are as follows:

The applicability of comparative method and conformal

variation method for terrain correction of 2D line power field

and 3D point power field is clarified; the point source and line

source terrain correction is achieved.

The rest of this article is organized as follows Section 2 and

Section 3 introduce the principles of point source and line source

modeling. In Section 4, the point source and line source are

simulated to verify the rationality of grid segmentation and

parameter selection. Section 5 conducts forward simulation

based on the geological model and analyzes the topographic

correction effect of the two methods in detail. Finally, the

conclusions are presented in Section 6.

2 2D geoelectric model of the point
source method

In a uniform isotropic conductive medium, a minor power

source A (x0,y0,z0) involving a current intensity I is assumed. To

evaluate the differential of the relationship between the potential

and current, the Diril function δ, which can be solved using the

Cartesian coordinate system, is required. This differential

equation can be expressed as follows:

z

zx
(σ zU

zx
) + z

zy
(σ zU

zy
) + z

zz
(σ zU

zz
) � −2Iδ(A) (1)

During the survey, current is supplied via a point source.

Therefore, even though the geoelectric model is two-

TABLE 1 Wavenumbers and weights in Ref.

k 0.016729827 0.111853859 0.747843096 5

g 0.034754567 0.107689042 0.954909656 5.217843965

FIGURE 1
Layer model diagram.
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dimensional, the electric field is three-dimensional; that is, the

potential is a function involving x, y, z. The electric field in the

subsurface that is established by theU (x, y, z) can thus be treated

as a stable electric field. Concurrently, Fourier transformation of

Eq. 1 can be performed in the y-axis to obtain the following

expression:

�U(x, k, z) � ∫∞

0
U(x, y, z) cos(ky)dy (2)

where k is the wave number and �U denotes a generalized

potential.

The Laplace Eq. 1 can then be transformed to a Helmholtz

equation that is expressed as follows:

σ
z2 �U

zx2
+ σ

z2 �U

zz2
− σk2 �U � −2Iδ(A) (3)

To solve Eq. 3, in the present study, the third type of

boundary condition was utilized, and this is expressed as

follows:

z �U

zn
+ kK1(k, r)

K0(k, r) cos(r, n) �U � 0 (4)

where K0 is a zero-order modified Bessel function of the second

kind, K1 denotes a first-order modified Bessel function of the

second kind, n represents the normal direction of the current

density, r is the vector from the power source to the boundary,

and cos(r, n) denotes the vector r and cosine of the direction of

the outer normal direction n.

3 2D geoelectric model of the line
source method

The extent of the local electric model is infinite, that is, the

section along the y-axis is constant, and it is supplied by an

infinite current source that is parallel to the topography. Thus,

the 3D line source field can be transformed into a 2D problem

in the Cartesian coordinate system. In the first-type boundary

condition (Dirichlet boundary condition), the basic

differential equation that is satisfied by the potential can be

expressed as follows:

∇(σ · ∇U) � −2Iδ(x − x0)δ(z − z0) (5)
where (x0, z0) is the location of the ground power.

In the present study, the first type of boundary condition that

was considered is expressed as follows:

U � u0 (6)

TABLE 2 Data showing a comparison of the analytical and numerical solutions for the two-dimensional geoelectric cross-section potential of the
point source survey.

Power
supply
distance
x/m

Uniform half space Two-layer model Three-layer model

Analytical
solution/V

Numerical
solution/V

Relative
error/%

Analytical
solution/V

Numerical
solution/V

Relative
error/%

Analytical
solution/V

Numerical
solution/V

Relative
error/%

1 0.8078 0.7958 1.49 0.9476 0.9410 0.70 1.0379 1.0369 0.10

2 0.2672 0.2653 0.71 0.5427 0.5417 0.18 0.6398 0.6366 0.50

3 0.0532 0.0531 0.19 0.4100 0.4067 0.80 0.5012 0.5002 0.20

5 0.0797 0.0796 0.13 0.2950 0.2938 0.41 0.3861 0.3833 0.73

10 0.3983 0.3979 0.10 0.1953 0.1936 0.87 0.2724 0.2702 0.81

15 0.1596 0.1592 0.25 0.1504 0.1489 1.00 0.2156 0.2132 1.11

20 0.0400 0.0398 0.50 0.1228 0.1217 0.08 0.1768 0.1756 0.68

TABLE 3 Comparison data of the analytical and numerical solutions for the uniform half-space potential of a line power source method.

x/m Analytical solution/V Numerical solution/V Relative error/%

1 8.4325 8.4134 0.23

2 7.3294 7.3116 0.24

3 6.6840 6.6663 0.26

5 5.8710 5.8533 0.32

10 4.7679 4.7502 0.37

15 4.1225 4.1049 0.43

20 3.6647 3.6470 0.48
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where u0 is the theoretically calculated value for the

subsurface.

4 Comsol multiphysics simulation

Comsol multiphysics is a simulation software that allows

users to easily solve required partial differential equations or

physics expressions in the graphical interface (Wang et al., 2011).

The analysis performed using this software can be divided into

the following components: pre-processing, solution, and post-

processing. Pre-processing involves the creation of a finite

element model and application of a load, whereas the solution

is characterized by meshing and solving of a stiffness matrix, and

post-processing includes the visual display and output of the

analysis data. In the present study, the Laplace and Helmholtz

equations were defined viamathematics modules, and these were

subsequently solved using comsol multiphysics. The solution is

divided into the following steps:

1. Establish a reasonable geoelectric model;

2. The established geoelectric model is grid divided;

3. Loading the field source and the solved boundary

conditions;

4. Matrix calculation and solution;

5. The calculated results were analyzed.

FIGURE 2
Model 1 geometry for (A) valley and (B) ridge.

FIGURE 3
Point source pure terrain joint profile anomaly curves for (A) valley and (B) ridge.
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4.1 Simulation of the point source method

4.1.1 Selection of wavenumbers k and g
In the main section involving y = 0 based on Eq. 2, the inverse

Fourier transform can be expressed as follows:

U � (x, 0, z) � 2
π
∫∞

0

�U(x, k, z)dk (7)

Regarding a uniform half space,U � Iρ
2π

1����
x2+z2√ ,its substituting

in Eq. 2 produces the following expression:

�U � ∫∞

0

cos ky

2π
������
x2 + z2

√ dy � Iρ

2π
K0(kr) (8)

Relatedly, the substitution of Eq. 7 in Eq. 8 yields the

following expression:

FIGURE 4
Line source pure terrain joint profile anomaly curves for (A) valley and (B) ridge.

FIGURE 5
Point source joint profile anomaly curves for (A) valley and (B) ridge.
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1
r
� 2
π
∫∞

0
K0(kr)dk ≈ ∑N

i�1
giK0(kir) (9)

In the present study, the integral method was utilized to

obtain the interval of k as [10−3, 5]. However, trials reveal that the

k value is very small, such that the finite element equations are ill-

conditioned, and thus the k value cannot be very small.

Therefore, the last wave number was considered as ki = 5/

rmin, and this was used to obtain ki-1 = ki/e
c。, where i = 2, 3,

. . . , n-1 and c is a constant. The pole distance r was selected by

considering that rmin = 1 and rmax = 1,000,whereas the step of r is

1 and c = 1.9. Accordingly, the wave number k can be calculated,

and the least squares solution g is obtained by solving Eq. 9, and

the k and g obtained are presented in Table 1.

4.1.2 Model validation
To validate the feasibility and accuracy of the forwardmodeling,

an unstructured triangle method was used for forward calculations

in a uniform half-space for two- and three-layer models. The

resistivity of the uniform half-space was 5Ωm, and the layered

model is displayed in Figure 1. This was powered by a point source

with a current intensity of 1A, whereas kwas selected as presented in

Table 1. The solution obtained was compared to the theoretical

value, as presented in Table 2. Evidently, the relative error between

the numerical and analytical solution is small, and this validates the

feasibility and accuracy of the forwardmodeling using the associated

parameters.

4.2 Forward simulation of the line source
method

The expression for the uniform half-space associated with the

line source method is as follows:

U � −∫Edr � −Iρ
π
∫ dr

r
� Iρ

π
ln( 1

|r|) + c (10)

In this approach, the constant c depends on the position of

the zero point of the reference potential. The resistivity of the

uniform half space was assumed as 5Ωm, whereas the current

FIGURE 6
Line source joint profile anomaly curves for (A) valley and (B) ridge.

FIGURE 7
Schematic representation of the coordinate transformation.
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was 1 A, and the distance of the zero point of the potential from

the power supply was 200 m. A comparison of the numerical and

analytical solutions is presented in Table 3.

According to data in Tables 2, 3, the minimum and

maximum relative errors that were obtained using comsol

multiphysics are 0.1% and 1.49%, respectively. These results

highlight an adequate mesh, and thus, the k and g that were

selected are reasonable and reliable.

5 Forward modeling

5.1 Model

As shown in Figures 2A,B, a valley and a ridge involving 45°

angles were powered using both the point and line sources. The joint

profile method was used for measurements, where MN = 2m and

the apparent resistivity curve is associated with a depth of 10 m,

ρ1=ρ2=ρ3=100Ωm for Model 1. The pure terrain effect curves

obtained based on the point and line sources are shown in

Figures 3,4, respectively.

Figures 3, 4, reveal that even though the 3D point source and

2D line source differ, the resistivity anomaly mainly occurs near

the apex of the angular region. The main difference is that the

terrain effect of the valley is characterized by a high-resistance

anomaly, whereas that of the ridge is a low-resistance anomaly.

The relative outlier can be defined using the following expression:

ε � |ρs−ρ0|
ρ0

, where ρ0 is the resistivity of the uniform half-space. The

relative abnormal value of the point source is 57.32%, whereas that

of the line source is 95.44%, and the terrain top effect is mainly the

low resistance abnormality. The relative abnormal value of the

point source is 75.12%, whereas that of the line source is 80.13%.

Therefore, the line source curve is characterized by a higher

variation relative to that of the point source, and this difference

is probably caused by the nature of each power supply. To further

explore the effect of topography on the resistivity curve, in Model

2, the following resistivity values were utilized: ρ1 = 10Ωm, ρ2 =

500Ωm, ρ3 = 100Ωm, Resistivity curves associated with the point

and line sources are displayed in Figures 5, 6, respectively.

Figures 5, 6 demonstrate that because of the influence of the

terrain, the low-resistance anomaly associated with the valley and

high-resistance anomaly linked to the ridge cannot be accurately

distinguished on the abnormal curve. At point O, a high-resistance

anomaly is still present for the valley, while a low-resistance anomaly

is evident for the ridge. To eliminate or minimize the influence of

terrain, the comparison and the conformal transformation methods

were employed to correct each anomaly curve.

5.1.1 Comparison method
The measured apparent resistivity ρMs was divided by the

corresponding pure terrain influence resistivity ρTs to yield a

corrected apparent resistivity ρCs , and this can be expressed as

follows:T
A
B
LE
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ρcs �
ρMs
ρTs

ρ0 (11)

where ρ0is the resistivity of surrounding rocks.

5.1.2 Coordinate network conversion method
The experimental basis was a conductive paper simulation,

whereas the theoretical basis was the conformal transformation

of a complex variable function. As shown in Figure 7, the

topographic line in the z-plane is in the top, whereas the

horizontal line in the w-plane is at the bottom. Coordinates of

the w-plane can be converted into those of the z-plane using the

Schwarz–Christopher transformation, which is expressed as follows:

dz

dw
� c(w − u1)α1 (12)

where c represents a complex constant, u1 is the abscissa of a point

on the w-plane, and α1 is a constant that is related to the topography

of the z-plane. Lines were traced upward from equidistant

measurement points on the straight side to achieve the

coordinate conversion and to change the position of the

measuring electrode to satisfy the objective of the terrain correction.

Model (1) was used for the coordinate network conversion of

the valley [Model 1 (a)]. The coordinates of the power supply

point corresponding to the valley (−5, 0) are presented in Table 4.

To illustrate the problem, the valley [Model 1 (a)] was

utilized for experiments. The valley-like resistivity curves in

Figures 5, 6 are topographically corrected curves based on the

comparison method using pure terrain curves for a valley that are

shown in Figures 3, 4. Corresponding coordinates were then

corrected using the conformal transformation method and the

corrected apparent resistivity curve is shown in Figure 8.

Evidently, the comparison method highlights adequate

topographic corrections for both the point and line sources,

whereas the conformal transformation exhibits suitable

topographic corrections for the line source only.

Figure 9 shows a pure terrain curve of the line source that was

used to correct the valley curve of the point source. Evidently, the

comparisonmethod can be exploited to use the joint profile curve of

the line source to correct the terrain profile of the point source.

6 Conclusion

DC prospecting is widely used in geophysical exploration

technology The paper selects valley and ridge, and conducts 2D

finite element numerical simulation of DC method through comsol

FIGURE 8
Terrain correction of the joint profile anomaly curve for a valley based on the (A) point and (B) line sources.

FIGURE 9
Line source joint profile anomaly curve correction for a valley.
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multiphysics and uses comparative method and conformal

transformation method for terrain correction. The main findings

of the present study are summarized subsequently.

1. Profile curves of the point and line sources exhibited similar

properties. Quantitative characteristics of these, however,

differed. The range of variations associated with the line

source was higher than that for the point source.

2. Considering that the point source involves a 3D field,

whereas the line source is associated with a 2D field, the

results showed that the former was unsuitable for terrain

correction based on the conformal transformation. The

point and line sources are both suitable for terrain

correction according to the comparison method.

3. Even though fields of the point and line sources differ, the

joint profile curve of the line source was still suitable for

correction of the joint profile curve of the point source.

The selection of wavenumbers failed to yield universality.

Therefore, further research is required on this aspect to enhance

practical application of the approach presented for terrain

corrections.
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