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Numerical simulation of three-dimensional (3D) seismic wavefields forms the

basis of the research on the migration methods of 3D seismic data based on

wave equations. Because the simulation precision of wavefield extrapolation

determines the imaging accuracy to a certain extent, it is very important to study

how to enhance the forwardmodeling precision of 3D seismic wavefields. Thus,

we build on an optimized 3D staggered-grid finite-difference (SFD) method

with high simulation precision based on two-dimensional (2D) seismic

modeling. Since it generates the corresponding difference coefficients by

utilizing the least square (LS) method to minimize the objective function

constructed by the time-space domain dispersion relation of the 3D

acoustic wave equation, our optimized time-space domain LS-based 3D

SFD method can effectively enhance the modeling precision of the 3D

seismic wavefields in theory compared with the 3D SFD methods based on

the Taylor-series expansion (TE), especially for the large wavenumber range.

Examining the numerical dispersion, algorithm stability and computational cost,

we compare our optimized time-space domain LS-based 3D SFD method with

three conventional TE-based and LS-based 3D SFD methods to illustrate and

demonstrate its effectiveness and feasibility. The numerical examples from

different 3D models suggest that our optimized time-space domain LS-

based 3D SFD method can generate less numerical dispersion and higher

simulation accuracy for 3D seismic wavefields than three other conventional

3D SFDmethods, but its stability condition is stricter and its computational cost

is slightly higher.
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Introduction

In recent years, the 3D seismic exploration has become one of

the main methods to improve the recognition capacity for

underground complex geological structures. As the key

procedure of 3D seismic data processing, the numerical

modeling of 3D seismic wavefields is the basis of the research

on the migration methods based on two-way wave equations,

because the wavefield extrapolation, which is essentially

wavefield numerical modeling, is the core algorithm of this

kind of imaging methods. At present, three different

approaches are frequently used to solve the different wave

equations to model the response characteristics of seismic

wave in different media, such as pseudospectral methods

(Fornberg, 1987; Huang et al., 2010; Alkhalifah, 2013), finite-

element methods (Teng and Dai, 1989; Sotelo et al., 2021), and

finite-difference (FD) methods (Bartolo et al., 2012; Fan et al.,

2017; Wang et al., 2019a; Wang et al., 2019b; Wang et al., 2021).

Among above three approaches, the FD methods are extensively

used in the process of seismic modeling compared with the other

two methods because of its simple principle, high

implementation efficiency and low computational cost. Over

the last few decades, the FD methods have been extensively

investigated in different aspects, especially the 2D FD methods.

For 3D FD methods, the existing conventional FD methods

usually cannot meet the requirements of fast and high

precision imaging, and therefore it is important to explore

how to effectively enhance the precision of 3D seismic

modeling for the 3D migration methods based on wave

equations.

A focal point of the study of FD methods is to improve the

numerical simulation precision, and there are many strategies to

achieve this goal. For example, the SFD methods (Virieux, 1984;

Virieux, 1986; Robertsson, 1996; Yang et al., 2017; Liang et al.,

2018) have a higher modeling precision compared to the

conventional FD methods, and therefore the SFD methods are

more commonly used than the FD methods for improving the

numerical simulation accuracy of seismic wavefields. There is

another strategy to achieve this goal effectively: high-order FD or

SFD schemes and its corresponding optimal difference

coefficients. For this reason, the FD and SFD methods have

been deeply explored to obtain high-order simulation precision

for temporal and spatial partial derivatives in recent years (Ren

and Li, 2019). Correspondingly, the calculation approaches of its

difference coefficients have also been systematically discussed in

the past few decades, and there are two frequently-used strategies:

one is to optimize the objective functions constructed by the

space domain dispersion relations (Dablain, 1986; Liu, 2014) and

the other is to optimize the objective functions constructed by the

time-space domain dispersion relations (Liu and Sen, 2009a; Liu

and Sen, 2011a; Liu and Sen, 2011b, Liu and Sen, 2013; Wang

et al., 2014; Cai et al., 2015; Ren and Liu, 2015; Xu and Liu, 2018).

Using different optimization algorithms to deal with the objective

functions of two dispersion relations, such as the TE method (Liu

and Sen, 2009b; Liu and Sen, 2011a; Ren and Li, 2017) or LS

method (Liu, 2013; Liu, 2014; Ren and Liu, 2015; Xu et al., 2019;

Liu et al., 2021), a variety of difference coefficients can be

correspondingly generated to simulate seismic wavefields at

different times with different simulation accuracy, and

therefore they can be called as the different FD or SFD

methods. For example, there is a common naming strategy

that have been extensively discussed in different publications,

including the space domain or time-space domain TE-based

methods (Liu and Sen, 2009a; Liu and Sen, 2011a) and the space

domain or time-space domain LS-based methods (Liu, 2013; Liu,

2014; Ren and Liu, 2015). In the above four methods, the time-

space domain methods usually have higher simulation accuracy

than the space domain methods and the LS-based methods

usually have higher simulation accuracy than the TE-based

methods, which has been fully verified in 2D seismic modeling.

For the numerical simulation of 3D seismic wavefields,

different scholars have also done a lot of work in the above

different aspects according to 2D FD and SFD methods

(Yomogida and Etgen, 1993; Robertsson et al., 1994; Graves,

1996; Pitarka, 1999; Etgen and O’Brien, 2007; Liu and Sen, 2011b;

Shragge, 2014; Cai et al., 2015; Wu and Alkhalifah, 2018), which

makes the FD and SFDmethods developed rapidly in the forward

modeling of 3D seismic wavefields, but they are still less than the

2D modeling methods. Like the 2D FD and SFD methods, the

research focus of 3D FD and SFD methods is still to improve its

numerical simulation accuracy, and the huge computational cost

which is a serious factor restricting its development should not be

ignored. Considering the modeling accuracy based on different

dispersion relations, there are three conventional 3D SFD

methods which correspond to the 2D case, including the

space domain TE-based 3D SFD methods, the time-space

domain TE-based 3D SFD methods and the space domain LS-

based 3D SFDmethods (Appendix A). According to the previous

studies, the second 3D SFD method has higher modeling

accuracy than the first 3D SFD method, because it uses the

time-space domain dispersion relation to estimate its

corresponding difference coefficients; the third 3D SFD

method can more effectively suppress the numerical

dispersion in the large wavenumber range than the first two

3D SFD methods, because it uses the LS method to optimize the

space domain dispersion relation to estimate its corresponding

difference coefficients. However, the simulation accuracy of the

above three 3D SFDmethods are still not high enough, especially

for complex velocity models, and therefore it is urgent to study a

new 3D SFD method with high modeling accuracy based on the

time-space domain dispersion relation and the LS method.

On the basis of previous studies, combining the 3D variable

density acoustic wave equation, we build on an optimized time-space

domain LS-based 3D SFD method to effectively implement 3D

seismic modeling based on 2D seismic modeling, which can more

effectively improve the accuracy of 3D seismic modeling. Firstly, the
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high-order SFD schemes of our method are derived for the 3D

variable density acoustic wave equation. Secondly, our optimized 3D

SFD method utilizes the LS method to minimize the objective

function constructed by the 3D time-space domain dispersion

relation to obtain its corresponding optimal difference

coefficients, and therefore it can result in lesser numerical

dispersion and higher numerical modeling precision for 3D

seismic wavefields in theory. To test the effectiveness, feasibility

and superiority of our optimized time-space domain LS-based 3D

SFD method, we finally compare and analyze the numerical

dispersion, algorithm stability and computational cost between it

and three conventional 3D SFD methods (Appendix A). The

numerical examples of different 3D models suggest that our

optimized time-space domain LS-based 3D SFD method has

higher numerical modeling precision, stricter stability condition

and greater computational cost and can effectively reduce the

computing time of 3D wavefield modeling by reducing the

difference operator length under the same modeling accuracy

requirements compared to three conventional 3D SFD methods,

which implies that it can be well applied to the migration method

based on wave equations to improve imaging accuracy and reduce

computational cost.

Principle and methods

3D SFD methods

To obtain high precision seismic wavefields for forward

modeling, Ren and Liu (2015) propose an optimal SFD method

by jointly utilizing the time-space domain dispersion equations and

the LS method for 2D seismic modeling. On this basis, we build on

an optimized time-space domain LS-based 3D SFD method to

effectively strengthen the modeling precision for 3D seismic

modeling, which can be nicely applied in 3D reverse time

migration (RTM).

Different from the 3D constant density acoustic equation

applied to homogeneous media, we use the 3D variable

density acoustic wave equation to simulate the

propagation characteristics of seismic waves in

inhomogeneous media in this paper, which can be

described as (Liu and Sen, 2011a)

z

zx
(1
ρ

zP

zx
) + z

zy
(1
ρ

zP

zy
) + z

zz
(1
ρ

zP

zz
) � 1

ρv2
z2P

zt2
(1)

where P represents the seismic wavefields of 3D forward

modeling, v represents the velocity, ρ represents the density,

and t represents the travel time of seismic wave. Comparing this

expression with the first-order velocity-stress equations, the 3D

variable density acoustic equation shown in Eq. 1 only contains

the acoustic pressure component, so its discrete difference

schemes do not need to consider the stress components,

which can effectively decrease the memory usage for 3D

wavefield simulation and further cut down the storage

requirements of 3D RTM.

By solving Eq. 1 discretely, we can simulate the seismic

wavefields at different times for different 3D models. To

improve its modeling accuracy, we use the high-order SFD

schemes in this paper. When the SFD methods are used to

solve Eq. 1, the difference schemes of its temporal and spatial

partial derivatives can be discretely written as (Ren and Liu, 2015)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z2P

zt2
� 1

Δt2 (Pn+1
i,j,s − 2Pn

i,j,s + Pn−1
i,j,s)

zP

zx
� 1
h
∑M
m�1

cm(Pn
i+m−1/2,j,s − Pn

i−m+1/2,j,s)
zP

zy
� 1
h
∑M
m�1

cm(Pn
i,j+m−1/2,s − Pn

i,j−m+1/2,s)
zP

zz
� 1
h
∑M
m�1

cm(Pn
i,j,s+m−1/2 − Pn

i,j,s−m+1/2)
(2)

where Δt represents the time grid step, h represents the space grid

step, cm represents the difference coefficients, M represents the

difference operator length, n represent the index of time grids,

(x, y, z) represent the x axis, y axis and z axis of 3D coordinate

system, and (i, j, s) represent the index of space grids along the x
axis, y axis and z axis.

Taking Eq. 2 into Eq. 1 and using the chain rule for

derivatives outside brackets, the 3D SFD scheme for Eq. 1 can

be written as

Pn+1
i,j,s � 2Pn

i,j,s − Pn−1
i,j,s

+ ρi,j,sr
2
i,j,s∑M

l�1
∑M
m�1

clcm

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(Pn
i+m+l−1,j,s − Pn

i−m+l,j,s)
ρi+l−1/2,j,s

− (Pn
i+m−l,j,s − Pn

i−m−l+1,j,s)
ρi−l+1/2,j,s

+(Pn
i,j+m+l−1,s − Pn

i,j−m+l,s)
ρi,j+l−1/2,s

− (Pn
i,j+m−l,s − Pn

i,j−m−l+1,s)
ρi,j−l+1/2,s

+(Pn
i,j,s+m+l−1 − Pn

i,j,s−m+l)
ρi,j,s+l−1/2

− (Pn
i,j,s+m−l − Pn

i,j,s−m−l+1)
ρi,j,s−l+1/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3)

where r � vΔt/h, and it is usually called as courant number.

Equation 3 is an equivalent SFD scheme of 3D variable density

acoustic equation, it has the same modeling precision and

algorithm stability as that of the 3D first-order velocity-stress

equations under the same conditions. Furthermore, because this

equivalent SFD scheme does not contain the SFD schemes of stress

components, it can effectively decrease the memory usage of 3D

forward modeling, which is very important for the forward

modeling of 3D wave equation. Therefore, the 3D seismic

wavefields of a given model at different times can be simulated

by utilizing Eq. 3. At present, there are three frequently-used ways

to estimate the SFD coefficients for 3D seismic simulation and they

are widely discussed by different scholars over the past years

(Appendix A). Hence, we only introduce how to calculate the

difference coefficients of our optimized time-space domain LS-

based 3D SFD method in the section.
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Compared with the space domain dispersion equations, the

time-space domain dispersion equations are more complex and

can be obtained by using the plane wave propagation theory. For

the completeness of this paper, we briefly introduce its

derivation, and its details can be seen in Appendix B.

According to the plane wave propagation theory, the pressure

value of 3D seismic wavefields can be written as (Liu and Sen,

2009a; 2011a; 2011b; Cai et al., 2015)

Pn
i,j,s � P0e

i(ikxh+jkyh+skzh−nωΔt), (i � ���−1√ ) (4)
and

kx � k cos θ cosφ, ky � k cos θ sinφ, kz � k sin θ (5)

where P0 represents the initial 3D seismic wavefields, k

represents the wavenumber, ω represents the angular

frequency, θ represents the propagation angle of seismic wave

in vertical z axis, and φ represents the azimuth angle of seismic

wave propagation direction in the xoy coordinate plane.

Substituting Eq. 4 into Eq. 3 and simplifying it, the

corresponding time-space domain dispersion equations

(Appendix B) can be expressed as

A + B + C ≈ r−2sin 2(0.5βr) (6)
and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A � ⎧⎨⎩∑M
m�1

cm sin[(m − 0.5)β cos θ cosφ]⎫⎬⎭2

B � ⎧⎨⎩∑M
m�1

cm sin[(m − 0.5)β cos θ sinφ]⎫⎬⎭2

C � ⎧⎨⎩∑M
m�1

cm sin[(m − 0.5)β sin θ]⎫⎬⎭2

(7)

where β � kh. According to Eqs. 6, 7, the actual difference

coefficients cm can be estimated by using a series of complex

mathematical calculations to solve Eq. 6. However, this process is

extremely complicated, so we take another strategy.

Expanding the squared terms A, B and C in Eq. 7 and then

substituting the results into Eq. 6, it can be rewritten as

∑M
l�1
∑M
m�l

clcmΦlm(β, θ,φ) ≈ 1 (8)

where

Φlm(β, θ,φ) � qlm
Ψl(β, θ,φ)Ψm(β, θ, φ) + Γl(β, θ,φ)Γm(β, θ,φ) + ϒl(β, θ,φ)ϒm(β, θ,φ)

r−2sin2(0.5βr)
(9)⎧⎪⎨⎪⎩ Ψm(β, θ,φ) � sin[(m − 0.5)β cos θ cosφ]

Γm(β, θ,φ) � sin[(m − 0.5)β cos θ sinφ]
ϒm(β, θ,φ) � sin[(m − 0.5)β sin θ] (10)

and

qlm � { 1, l � m
2, l ≠ m

(11)

Equation 8 is another mathematical expression of the time-

space domain dispersion equations shown in Eq. 6, and it can be

used to calculate the optimal SFD coefficients cm. By analyzing

Eq. 8, it is a highly nonlinear equation with regard to the SFD

coefficients cm, and therefore it is quite difficult to obtain its

global optimal solution by directly optimizing the multi-extreme

value function. To deal with such problems effectively, Ren and

Liu (2015) use a variable substitution strategy to linearize the

similar nonlinear function in 2D case, and therefore we extend

this linearization substitution method to 3D case to effectively

optimize Eq. 8. For the 3D forward modeling based on our

optimized method, the substitution variable can also be

presented as (Ren and Liu, 2015)

bo � clcm, o � (2M + 2 − l)(l − 1)
2

+ (m + 1 − l), l
� 1, 2, · · ·,M,m � l, l + 1, · · ·M (12)

Comparing with Eqs. 3, 12, the substitution variable bo can be

regarded as the product of two difference coefficients (cm and cl)

shown in Eq. 3 and therefore it can be regarded as the equivalent

difference coefficients. That is to say, if we use Eq. 3 to model the

3D seismic wavefields for a given 3D model, we only need to

estimate the equivalent difference coefficients bo instead of the

actual SFD coefficients cm, which can greatly simplify the solving

process of the time-space domain difference coefficients. Based

on this reason, Eq. 8 can be correspondingly adjusted as

∑M
l�1
∑M
m�l

boΦlm(β, θ,φ) ≈ 1 (13)

Equation 13 is the final expression of the time-space domain

dispersion relation in this paper, and it can be used to establish

the objective function to estimate the optimal time-space domain

difference coefficients bo. Using different optimization methods

to solve Eq. 13, such as the TE method or LS method, we can

obtain its corresponding equivalent difference coefficients bo
which have different numerical simulation accuracy. To

effectively suppress the numerical dispersion of 3D seismic

simulation, we calculate the equivalent difference coefficients

bo according to the LS theory in this paper, and therefore the

corresponding objective function can be written as

E(bo) � ∫bmax

0
∫π

0
∫2π

0

⎛⎝∑M
l�1
∑M
m�l

boΦlm(β, θ,φ) − 1⎞⎠2

dβdθdφ

(14)
where bmax represents the maximum value of the parameter

β � kh. Note that Eq. 14 is a very complex triple integral, and its

integral upper limit bmax determines whether the integral results

are correct or not. To solve Eq. 14 correctly, the following

inequality can be used to estimate the value of parameter bmax

Frontiers in Earth Science frontiersin.org04

Liu et al. 10.3389/feart.2022.1004422

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1004422


max
β∈[0,bmax],θ∈[0,π],φ∈[0,2π]

∣∣∣∣∣∣∣∣∣∑Ml�1∑Mm�l
clcmΦlm(β, θ,φ) − 1

∣∣∣∣∣∣∣∣∣< η (15)

where η represents the upper limit of the given error.

Next, we can minimize Eq. 14 to obtain its corresponding

time-space domain equivalent SFD coefficients bo by using the LS

method. Taking partial derivatives of bo for the left and right sides

of Eq. 14 respectively, we can obtain

zE

zbo
� 2∫bmax

0
∫π

0
∫2π

0

⎛⎝∑M
l�1
∑M
m�l

boΦlm(β, θ,φ) − 1⎞⎠
· Φl1m1(β, θ,φ)dβdθdφ

� 0 (16)

Simplifying Eq. 16, it can be rewritten as

∑M
l�1
∑M
m�l

(∫bmax

0
∫π

0
∫2π

0
Φlm(β, θ,φ)Φl1m1(β, θ,φ)dβdθdφ)bo

� ∫b

0
∫π

0
∫2π

0
Φl1m1(β, θ,φ)dβdθdφ,

l � 1, 2, · · ·,M,m � l, l + 1, · · ·,M; l1 � 1, 2, · · ·,M,m1 � l1, l1 + 1, · · ·,M
(17)

Finally, the equivalent SFD coefficients bo of our

optimized time-space domain LS-based 3D SFD method

can be calculated by using the linear equations shown in

Eq. 17. Note that Eq. 17 is a complex linear matrix equations

with M(M + 1)/2 unknowns, and the column vector

composed of these unknowns is the equivalent SFD

coefficients bo. In other words, the number of independent

equations of Eq. 17 is M(M + 1)/2, so it has a unique

solution. However, because Eq. 17 is very complicated, its

analytical solution cannot be directly obtained, and therefore

we can obtain the numerical solution by using some effective

numerical algorithms. For example, Gauss-Seidel iterative

method is used in this paper. For a given 3D model, its

equivalent SFD coefficients bo should be first calculated and

stored by using Eq. 17, which can reduce the computational

cost of the subsequent 3D wavefield modeling, and then the

3D seismic wavefields with high modeling precision can be

simulated by jointly using Eq. 3 and this equivalent SFD

coefficients bo. The above contents are the key theory of our

optimized time-space domain LS-based 3D SFD method,

which focuses on how to use the time-space domain

dispersion relation and the LS method to obtain the

equivalent time-space domain difference coefficients bo for

a given 3D model.

Numerical dispersion and stability
conditions

The evaluation of different 3D SFD methods is also an

important work, and the numerical dispersion and algorithm

stability are usually two key indicators. Thus, we compare our

optimized time-space domain LS-based 3D SFD method with

three conventional 3D SFD methods (Appendix A) in the above

two aspects to highlight its effectiveness and superiority in this

paper.

To numerically assess the numerical dispersion of

conventional 3D SFD methods, the following two parameters

can be defined as respectively⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
δ(β, θ,φ,M) � vSFD

v
� 2
rβ

arcsin(r ���������
A + B + C

√ )
ε(β, θ,φ,M) � h

v
(δ−1(β, θ,φ,M) − 1) (18)

where vSFD denotes the phase velocity by using 3D SFD

methods, δ(β, θ, ϕ, M) denotes the ratio of the phase and

true velocities, and ε(β, θ,ϕ, M) denotes the propagation

time error in a space grid. According to Eqs. 7, 18, we

have to first estimate the actual SFD coefficients cm to

calculate these two dispersion parameters, and therefore

Eq. 18 is not applicable to our optimized time-space

domain LS-based 3D SFD method. To solve this

incompatibility, according to Eqs. 6, 8, Eq. 18 can be

correspondingly adjusted as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
δ(β, θ,φ,M) � vSFD

v
� 2
rβ

arcsin⎛⎜⎜⎜⎜⎜⎜⎝ �������������������������∑M
l�1
∑M
m�l

boΦlm(β, θ,φ)sin 2(0.5βr)√√ ⎞⎟⎟⎟⎟⎟⎟⎠
ε(β, θ,φ,M) � h

v
(δ−1(β, θ,φ,M) − 1) (19)

By analyzing Eqs. 18, 19, if δ is closer to one and ε is closer to

0, the numerical dispersion of 3D SFD methods is weaker and

their simulation accuracy is higher. Conversely, if δ is farther

away from one and ε is farther away from 0, the numerical

dispersion of 3D SFD methods is stronger and their simulation

accuracy is lower. Furthermore, these two error parameters are

affected by wavenumber, propagation angle, propagation

azimuth and difference operator length for the same 3D SFD

method.

For the 3D SFD methods based on Eq. 1, their stability

conditions can be described as (Liu and Sen, 2011a)

r2(A + B + C)≤ 1 (20)

Equation 20 is not intuitive enough to describe algorithm

stability, so we need to expand and adjust it. To numerically

evaluate the algorithm stabilities of conventional 3D SFD

methods, their stability conditions can be rewritten as (Liu

and Sen, 2011a)

r≤ ζ , ζ � 1�
3

√ ⎛⎝∑M
m�1

|cm|⎞⎠−1

(21)

where ζ can be regarded as the stability factor. Similarly, Eq. 21

cannot be directly applied to our optimized time-space domain

LS-based 3D SFD method. Expanding Eq. 20 and rearranging it,
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the stability condition of our optimized method can be

expressed as

r≤ ζ , ζ � 1�
3

√ ⎛⎜⎜⎜⎜⎜⎜⎝ ����������∑M
l�1
∑M
m�l

∣∣∣∣qlmbo∣∣∣∣√√ ⎞⎟⎟⎟⎟⎟⎟⎠−1

(22)

Using Eqs. 21, 22, we can analyze the algorithm stabilities of

different 3D SFD methods to ensure that the numerical

simulation process of 3D seismic wavefields is stable. If ζ

gradually approaches 1, the algorithm stability becomes better,

but if ζ is gradually away from 1, the algorithm stability becomes

worse.

Numerical examples

To test and verify the effectiveness, feasibility and

superiority of this optimized time-space domain LS-based

3D SFD method, we compare it with three conventional 3D

SFD methods in the following aspects by establishing

different 3D models, including numerical dispersion

analysis, algorithm stability analysis and forward modeling

examples.

Numerical dispersion and algorithm
stability analysis

We first design a simple 3D homogeneous acoustic model

(Model A) to compare and analyze the numerical dispersion of

different 3D SFD methods. For this model, we define its model

parameters are: v � 1500 m/s, ρ � 2.0 g/cm3, h � 20 m, and

Δt � 1 ms, respectively. Figure 1 exhibits the variation curves

of numerical dispersion (ε) with the difference operator length

(M) changing for the simple 3D homogeneous acoustic model, in

which the subgraphs indicate the different 3D SFD methods

listed in each subgraph respectively. As can be seen from Figure 1,

the numerical dispersion of 3D SFD methods correspondingly

decrease when the difference operator length gradually increases,

and the numerical dispersion of our optimized time-space

domain LS-based 3D SFD method is obviously weaker than

that of three conventional 3D SFD methods in large

wavenumber range when the difference operator lengths are

equal. Figure 2 exhibits the variation curves of numerical

dispersion (ε) with the propagation angle (θ) and azimuth

angle (φ) changing for the simple 3D homogeneous acoustic

model (M � 5). By comparing and analyzing Figure 2, we can

find that the numerical dispersion of 3D SFD methods are

FIGURE 1
Variation curves of numerical dispersion (ε) with the difference operator length (M) changing for the simple 3D homogeneous acoustic model
(Model A). These subgraphs (A–D) indicate different 3D SFD methods listed in themselves.
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relevant to the propagation angles and azimuth angles of seismic

wave. Besides, when the propagation angles and azimuth angles

are the same, our optimized time-space domain LS-based 3D

SFD method can generate smaller numerical dispersion in large

wavenumber range for 3D simulated seismic wavefields than

three conventional 3D SFD methods. In a words, our optimized

time-space domain LS-based 3D SFD method can obtain higher

numerical modeling precision under the same conditions, and

the difference between its solution and the ideal solution

gradually decreases with the difference operator length

increasing, especially in the large wavenumber range.

Next, this above simple 3D homogeneous acoustic model

(Model A) is again employed to analyze the algorithm stabilities

of different 3D SFD methods. Figure 3 depicts the variation

curves of stability factors (ζ) of different 3D SFD methods for the

simple 3D homogeneous acoustic model. From Figure 3, the

stability of time-space domain TE-based 3D SFD method is

better than that of space domain TE-based 3D SFD method

and the difference between their stabilities is very small, the

stability of space domain LS-based 3D SFD method is slightly

worse compared with the previous two TE-based 3D SFD

methods, and the stability of our optimized time-space

FIGURE 2
Variation curves of numerical dispersion (ε) with the propagation angle (θ) and azimuth angle (φ) changing for the simple 3D homogeneous
acoustic model (Model A). These subgraphs (A–D) indicate different 3D SFD methods listed in themselves.
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domain LS-based 3D SFD method is worst, which suggests that

our method has the strictest stability requirements at the same

difference operator lengths (M) in these four 3D SFD methods

mentioned in this paper. Moreover, the stability factors of these

3D SFD methods gradually decreases with the difference

operator length increasing, which indicates that their stability

conditions are gradually stricter with the difference operator

length increasing. According to the stability conditions of

different 3D SFD methods, this above conclusion means that

the upper limit of courant number gradually decreases with the

difference operator length increasing. For a given 3D model,

under the condition of stable wavefield modeling, the increase of

difference operator length means the decrease of courant

number, and further means the decrease of time grid step or

the increase of space grid step and these two changes are

respectively adverse to reduce the computational cost and

improve the modeling precision. For our optimized time-

space domain LS-based 3D SFD method, the phenomenon is

more serious thanks to its strictest stability condition, and

therefore we need to pay more attention to coordinate the

relationship among the difference operator length, space grid

step and time grid step in its application.

Forward modeling examples

To further test and verify the superiority of our optimized

time-space domain LS-based 3D SFDmethod, we use twomodels

to compare and analyze the modeling precision of different 3D

SFD methods, including a 3D homogenous acoustic model

(Model B) and a complex 3D salt model. The model

parameters of the former are:

x × y × z � 4 km × 4 km × 4 km, v � 3000 m/s, ρ � 2.0 g/cm3,

h � 20 m, and Δt � 1 ms, respectively. During the 3D

wavefield modeling of this model, we define the source signal

as the Ricker wavelet with fcenter � 30 Hz and Tduration � 3 s

which are respectively the central frequency and the total time

of the seismic wavelet, and the source position is

(x, y, z) � (2 km, 2 km, 2 km). Figure 4 shows some 3D

FIGURE 3
Variation curves of stability factors (ζ) of different 3D SFD
methods for the simple 3D homogeneous acoustic model
(Model A).

FIGURE 4
3D snapshots at 0.6 and 1.4 s for the simple 3D
homogeneous acoustic model (Model B). These subgraphs (A–E)
indicate different 3D SFD methods with different difference
operator lengths (M � 3 and M � 5) listed in themselves.
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snapshots (t � 0.6 s and t � 1.4 s) generated by different 3D SFD

methods with different difference operator lengths (M � 3 and

M � 5) for this 3D homogenous acoustic model. Figure 5

displays its corresponding 2D slices of these 3D snapshots

shown in Figure 4 at different positions and different times.

As can be seen from Figure 4, these four different 3D SFD

methods can effectively simulate the propagation features of

seismic wave in 3D acoustic model, but the simulation

accuracy of different 3D SFD methods are different.

According to Figures 4, 5, the snapshots of two TE-based 3D

SFD methods contain obvious numerical dispersion indicated by

these purple arrows which will seriously interfere with the useful

seismic information when the difference operator length is equal

to five (M � 5). Although the space domain LS-based 3D SFD

method can weaken this phenomenon to a certain extent, the

numerical dispersion indicated by these purple arrows is still

visible in its snapshots when the difference operator length is

equal to five (M � 5). When utilizing our optimized time-space

domain LS-based 3D SFD method to modeling 3D seismic

wavefields, the numerical dispersion indicated by these purple

arrows is greatly suppressed and even almost invisible in its

snapshots when the difference operator length is equal to three or

five (M � 3 orM � 5), which suggests that our method can use a

smaller difference operator length to effectively ensure higher

simulation accuracy and reduce computing time compared with

the other three conventional 3D SFD methods. In general, by

comparing and analyzing the numerical dispersion of four

different 3D SFD methods shown in Figures 4, 5, our

optimized time-space domain LS-based 3D SFD method has

the best modeling wavefields compared with the three

conventional 3D SFD methods, because its snapshots do not

contain obvious numerical dispersion indicated by these purple

arrows and the waveforms in its snapshots are clearest. To

compare the numerical dispersion of different 3D SFD

methods more clearly, we draw the waveform curves of the

2D snapshots (M � 5) shown in Figure 5 along different

directions shown in Figure 6, and Figure 7 depicts these

waveform curves. As can be seen from Figure 7, for the same

FIGURE 5
2D slices of the 3D snapshots shown in Figure 4. The subgraphs (A,B) indicate different times, different positions and different 3D SFDmethods
with different difference operator lengths (M � 3 and M � 5) listed in themselves.

FIGURE 6
Different directions of waveform curves for the 2D slices
shown in Figure 5.
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3D SFD method, the numerical dispersion in the vertical and

horizontal directions (defined as Ⅰ and Ⅱ) is strong, while the

numerical dispersion in the two diagonal directions (defined asⅢ
and Ⅳ) is weak. When the wavefront passes, there are strong

interference fluctuations in the snapshots for the two TE-based

3D SFD methods, these interference fluctuations are effectively

weakened to a certain extent using the conventional space

domain LS-based 3D SFD method, and our optimized time-

space domain LS-based 3D SFD method can attenuate these

interference fluctuations more effectively. Figure 8 shows the

vibration curves simulated by different 3D SFDmethods (M � 5)

for this 3D homogenous acoustic model at particle

(x, y, z) � (1.0 km, 1.0 km, 2.0 km). From Figure 8, the

vibration amplitude of our optimized time-space domain LS-

based 3D SFD method is the smallest after the wavefront passing

through this particle in these four different 3D SFD methods,

which further indicates that our optimized method can suppress

numerical dispersion more effectively. One conclusion can be

naturally generalized according to these analysis results: our

optimized time-space domain LS-based 3D SFD method can

obtain higher precision and higher quality 3D simulated

wavefields than three conventional 3D SFD methods.

Figure 9 shows the velocity and density of the 3D SEG/

EAGE salt model, and then we use it to test the applicability of

our optimized time-space domain LS-based 3D SFD method

for complex geological models. Other model parameters of

this model are following:

x × y × z � 6.76 km × 6.76 km × 4.2 km, h � 20 m, and

Δt � 1 ms, respectively. For its 3D wavefield modeling, the

source signal is the Ricker wavelet with fcenter � 15 Hz and

Tduration � 4 s which are respectively the central frequency

and the total time of the seismic wavelet, and the source

position is (x, y, z) � (3.38 km, 3.38 km, 0 km). Figure 10

displays the 2D slices of the 3D snapshots (t � 1.6 s)

FIGURE 7
Waveform curves of the 2D snapshots (M � 5) shown in Figure 5 for the simple 3D homogeneous acoustic model (Model B). (A) Waveform
curves of the 2D snapshots at 0.6 s. (B) Waveform curves of the 2D snapshots at 1.4 s. I, II, III and IV represent the different directions shown in
Figure 6.
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generated by different 3D SFD methods (M � 5) at the

different positions for this 3D SEG/EAGE salt model.

According to Figure 10, we can find that these 3D SFD

methods mentioned in this paper can effectively simulate

the propagation characteristics of seismic wave in 3D

complex geological models, but their numerical simulation

accuracy are also different. From Figure 10, the obvious

numerical dispersion indicated by these purple arrows

exists in these snapshots of two TE-based 3D SFD

methods, and this phenomenon is lightly weakened in

these snapshots of conventional space domain LS-based 3D

SFD method, but it is still visible indicated by these purple

arrows. However, the numerical dispersion indicated by these

purple arrows is best suppressed in these snapshots generated

FIGURE 8
Vibration curves simulated by different 3D SFD methods (M � 5) for the simple 3D homogeneous acoustic model (Model B) at particle
(x, y, z) � (1.0 km, 1.0 km, 2.0 km). (A) Full vibration curves. (B) Local magnification curves.

FIGURE 9
3D SEG/EAGE salt model. (A) Velocity. (B) Density.
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by our optimized time-space domain LS-based 3D SFD

method. Figure 11 depicts the waveform curves of the 2D

snapshots shown in Figure 10 and the positions of these

waveform curves. From Figure 11, because the source wavelet

is located on the surface of this model, there is obvious

numerical dispersion in the shallow section of 3D

snapshots for three conventional 3D SFD methods, and

these numerical dispersion decreases with the depth

increasing. Moreover, even in the shallow section, our

optimized time-space domain LS-based 3D SFD method

can suppress the numerical dispersion better compared

with three conventional 3D SFD methods. Figure 12 and

Figure 13 display the local 2D slices of the 3D seismic records

generated by different 3D SFD methods (M � 5) at the

different positions along x and y directions for this 3D

SEG/EAGE salt model, respectively. From Figure 12 and

Figure 13, we can find that these synthetic seismograms of

three conventional 3D SFD methods contain clearly visible

numerical dispersion indicated by these purple arrows, which

seriously interferes with the identification of direct waves and

reflected waves. However, our optimized time-space domain

LS-based 3D SFD method can more effectively suppress the

numerical dispersion indicated by these purple arrows and

obtain more accurate synthetic seismograms compared with

the three conventional 3D SFD methods, which further

proves that our optimized time-space domain LS-based 3D

SFD method can improve the numerical simulation precision

of 3D seismic wavefields more effectively.

Discussion

In addition to the simulation accuracy and algorithm

stability, the computational cost is also a significant evaluation

index for 3D SFD methods. By analyzing these four different 3D

SFD methods mentioned in the previous sections, we can find

that the difference of their computational cost can be mainly

reflected in the following two aspects: one is the computing time

of SFD coefficients, the other is the computing time of 3D

wavefield simulation. Because these four different 3D SFD

FIGURE 10
2D slices of the 3D snapshots (t � 1.6 s) generated by different 3D SFD methods (M � 5) at the different positions for the 3D SEG/EAGE salt
model. These subgraphs (A–C) indicate different positions and different 3D SFD methods listed in themselves.
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methods all use Eq. 3 to calculate their corresponding 3D seismic

wavefields at different times, there is a little difference between

the computing time of their wavefield simulation process under

the same conditions. We firstly discuss the difference between the

computing time for their SFD coefficients. According to the

calculation equations of different 3D SFD coefficients, the main

factor affecting the corresponding computational cost is the

difference operator length, especially for our optimized time-

space domain LS-based 3D SFD method. Generally speaking, it

will take a longer computing time with a larger difference

operator length. Hence, we mainly compare and analyze the

computational cost of different 3D SFD coefficients with different

difference operator lengths under the same other conditions, and

the results are listed in Table 1. According to Table 1, it takes little

time to estimate their corresponding SFD coefficients for three

conventional 3D SFD methods. In other words, the

computational cost of their SFD coefficients can be negligible.

Nevertheless, the computing time of SFD coefficients for our

optimized time-space domain LS-based 3D SFD method is

relatively long and it increases rapidly with the difference

operator length increasing, because our optimized method

needs to calculate a lot of triple integrals. To effectively reduce

the application time of our optimized time-space domain LS-

based 3D SFDmethod, we should first estimate its corresponding

equivalent SFD coefficients and store them for a given 3D model,

and then we can use these stored equivalent SFD coefficients to

model the 3D seismic wavefields and even realize the 3D RTM.

To understand the computational cost of different 3D SFD

methods more intuitively, we secondly compare the computing

time of their wavefield simulation process for the 3D

homogenous acoustic model (Model B), which is the sum of

the computing time of wavefield simulation at different times.

FIGURE 11
Waveform curves of the 2D snapshots (M � 5) shown in Figure 10 and the positions of these waveform curves. (A) Waveform curves of the 2D
snapshots at x � 3380m. (B) Waveform curves of the 2D snapshots at y � 3380m. (C) Waveform curves of the 2D snapshots at z � 2100m.
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Figure 14 shows the computational cost of different 3D SFD

methods with different difference operator lengths for this model

B. As we can see in Figure 14, when the difference operator length

is equal to five (M � 5), the computing time of three

conventional 3D SFD methods are almost the same for 3D

wavefield simulation, and our optimized time-space domain

LS-based 3D SFD method needs a slightly longer computing

time compared with three conventional methods, but this time

difference of wavefield simulation for our optimized method is

tolerable. Combining with the previous forward modeling

FIGURE 12
Local 2D slices of the 3D seismic records generated by different 3D SFD methods (M � 5) along x direction for the 3D SEG/EAGE salt model.
These subgraphs (A–D) indicate different positions and different 3D SFD methods listed in themselves.
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examples, when the difference operator length is equal to three

(M � 3), our optimized time-space domain LS-based 3D SFD

method can not only simulate high precision 3D wavefields, but

also greatly reduce the computing time of wavefield simulation

compared with the other three conventional 3D SFD methods,

which indicates that our optimized method can effectively save

the computational cost of 3D wavefield simulation by reducing

the difference operator length. According to the previous

FIGURE 13
Local 2D slices of the 3D seismic records generated by different 3D SFD methods (M � 5) along y direction for the 3D SEG/EAGE salt model.
These subgraphs (A–D) indicate different positions and different 3D SFD methods listed in themselves.
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computational cost analysis, we should estimate and store the

difference coefficients of our optimized time-space domain LS-

based 3D SFD method in advance before wavefield modeling to

effectively reduce the computing time of whole forward

modeling for a given 3D model. This strategy can effectively

reduce the difficulty of applying our optimized time-space

domain LS-based 3D SFD method to 3D RTM, because it

does not cause too much unnecessary time consumption

during wavefield extrapolation.

Conclusion

A 3D numerical simulation is the core algorithm of 3D

RTM, and its simulation accuracy affects the imaging

accuracy of 3D RTM to a considerable degree. To achieve

this goal effectively, we build on an optimized 3D SFD

method using the time-space domain dispersion relation

and the LS method to model the responses of seismic wave in

3D inhomogeneous model based on 2D seismic modeling

case. Because this optimized time-space domain LS-based

3D SFD method makes full use of the advantages of the time-

space domain dispersion equations and the LS method to

estimate its corresponding SFD coefficients, it has weaker

numerical dispersion and higher modeling precision

theoretically than the conventional 3D SFD methods for

3D seismic wavefields. To compare and analyze the

numerical dispersion, simulation accuracy, algorithm

stability and computational cost for different 3D SFD

methods, we use different 3D numerical models to test

and verify the above four aspects. The numerical

examples of different 3D models illustrate that our

optimized time-space domain LS-based 3D SFD method

can produce higher precision simulated 3D wavefields

than three conventional 3D SFD methods. Moreover, the

stability condition of our optimized time-space domain LS-

based 3D SFD method becomes stricter than three

conventional 3D SFD methods and it will progressively

become worse when the difference operator length

increases gradually. Finally, the computational cost of our

optimized time-space domain LS-based 3D SFD method is

also greater than that of three conventional 3D SFD

methods, because it needs a long time to estimate its

equivalent SFD coefficients and its wavefield modeling

requires a slightly long computing time. However, our

optimized time-space domain LS-based 3D SFD method

can reduce the computational cost by reducing the

difference operator length under the same modeling

accuracy requirements.
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TABLE 1 Computational cost of four 3D SFD coefficients with different difference operator lengths.

Difference operator length Space TE-based 3D
SFD method (s)

Time-space TE-based 3D
SFD method (s)

Space LS-based 3D
SFD method (s)

Time-space LS-based 3D
SFD method (s)

M=2 0.0112 0.0133 0.0169 11.4125

M=3 0.0124 0.0139 0.0172 73.1761

M=4 0.0129 0.0143 0.0176 832.4546

M=5 0.0131 0.0145 0.0185 3008.7749

M=6 0.0136 0.0149 0.0199 5297.0304

FIGURE 14
Computational cost of wavefield simulation of different 3D
SFD methods with different difference operator lengths for the
simple 3D homogeneous acoustic model (Model B).
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