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Southwest China (SWC) is located in the eastern part of Tibetan Plateau (TP) with

large elevation differences and complex topography, which has always been a

challenge to the simulation of precipitation in climate modeling community. In

this study, the differences in the simulation of precipitation over the SWC are

evaluated using the lower and higher resolution models (LR and HR) from the

High–Resolution Model Intercomparison Project (HighResMIP) protocol in

Coupled Model Intercomparison Project Phase 6 (CMIP6). Our results

indicate that the spatial patterns of annual precipitation over the SWC for

the period 1985–2014 are well reproduced in most of the HR and LR

models, with an increasing tendency from the northwest to southeast.

Compared with LR models, the wet biases over the eastern TP and the dry

biases over the Sichuan Basin are significantly reduced in HR models. The bias

for annual precipitation of the multi–model ensemble mean (MME) has been

reduced from 0.97 mm/day (LR) to 0.72 mm/day (HR). In addition, the

simulation of extreme precipitation is significantly improved in the finer

horizontal resolution models, showing effectively reduced simulation biases

in the Sichuan Basin compared with the LRmodels. The frequency and intensity

of extremes are represented by heavy precipitation days (R10 mm) and

maximum consecutive 5 days precipitation (Rx5day), which the relative

changes have been decreased from 66% (LR) to 47% (HR) in R10 mm and

decreased from 23% (LR) to 19% (HR) in Rx5day. We further examine the

possible reasons for the difference between LR and HR models in

precipitation simulation, showing that the HR models could generate

“additional” cyclonic circulation and promote more upward motion with the

water vapor convergence, thus correcting the dry biases of precipitation

simulation over the Sichuan Basin. This indicates that atmospheric

circulation and moisture conditions could be simulated more realistically in

climatemodel with a finer resolution, further improving precipitation simulation

performance.
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1 Introduction

Precipitation, as an indispensable part of climate and

hydrological cycle, has long been the hotspot of research in

meteorology and hydrology (Cheng et al., 2019; Zhao et al.,

2021; Zhao and Zhou 2021; Cao et al., 2022). Large greenhouse

gas emissions contribute to global warming, with concomitant

changes in atmospheric circulation and the water cycle, which

could affect the spatiotemporal distribution of precipitation.

Heterogeneity of precipitation could bring about a massive

drought and flood under the warming scenario, which in turn,

affect regional, and global climate (IPCC 2021). Accordingly, for

the perspectives of water resources management, hydrological

disaster protection and agricultural production, it is worthwhile

to identify the variations of precipitation (Ge et al., 2019, 2021;

Zhao et al., 2022).

Southwest China (SWC) is adjacent to the Tibetan Plateau

(TP), considered as one of the most complex terrains over China,

with plenty of mountains, basins, hills and other landforms

(Figure 1). With fragile ecosystems and drastically varying

elevation, the frequent occurrence of precipitation extremes in

the SWC can not only directly induce flooding, but also can cause

secondary disasters, for instance, landslides and debris flows,

resulting in enormous loss of human lives and economic damage

(Zhang et al., 2012; Jiang et al., 2014; Liu et al., 2015; Wang et al.,

2017). Hydrological cycle over the SWC is critical to utilization of

water resources throughout the middle and lower reaches in East

and Southeast Asia (Zhang et al., 2013a; Yan et al., 2018; Miao

et al., 2019). Meanwhile, the variability of the spatiotemporal

distribution of precipitation has been regarded by some studies as

one of the major factors dominating the hydrological cycle and

ecology over the SWC (Gao et al., 2020; Nie and Sun, 2020;

Zhang, 2020). Consequently, precipitation remains a key and

valuable predictive variable from natural hazard prevention and

socioeconomic perspectives.

Observations have recorded, in recent decades, an increasing

trend of annual precipitation at high–elevation areas over the

western part of the SWC, such as the TP and the Hengduan

Mountains, but a decreasing trend over the Sichuan Basin (Chen

and Xie, 2012; Qin et al., 2015; He and Zhai, 2018; Tang et al.,

2018). Previous studies have also shown that precipitation

extremes become more dominant as the frequency and

intensity tend to increase over the SWC (Ma et al., 2013;

Naveendrakumar et al., 2019; Zhang and Zhou, 2020). It

indicates that under the rapid global warming, intensified

precipitation extremes would induce more frequent floods and

droughts, and increase the risk of severe secondary disasters over

the SWC (Zhang et al., 2013b; Tang et al., 2016;Wang et al., 2017;

Deng et al., 2018). Hence, it is necessary to assess precipitation

variations in the SWC to identify current climate change and

make robust predictions. Although there have been lots of

improvements on the simulation of precipitation over the

SWC, it is still challenging to accurately reproduce the

atmospheric general circulation and moisture conditions due

to the deficiency of model resolution and the complex

topography.

Nowadays, benefiting from the Coupled Model

Intercomparison Project (CMIP) established and promoted by

the World Climate Research Program (WCRP), global climate

models (GCMs) have become available tools for understanding

current and future climate change variations (Li et al., 2013;

Sillmann et al., 2013; Stanfield et al., 2016; Sun et al., 2022).

FIGURE 1
Geographic location, topography (surface elevation; shaded; unit: m) of the study domain (on the left), (A), and the area covered by purple
shadow is SWC (20–35°N, 96–111°E), which includes Chongqing, Sichuan, Yunnan, and Guizhou (zoomed and shown on the right), (B).
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Previous studies have shown that the models commonly

overestimate precipitation in mountainous areas relative to

observed data, especially in the eastern of the TP (Su et al.,

2013; Lin et al., 2018; Luo et al., 2022). Also, the precipitation

intensity is generally underestimated in the Sichuan Basin (He

et al., 2017; Tao et al., 2020; Hu and Yuan, 2021). This

indicates that the uncertainty of simulated precipitation is

still relatively large over the SWC. In addition, the model

resolution is considered as the one of primary elements

influencing the performance in simulating precipitation

(Sun and Ao, 2013; Kim et al., 2019; Xie and Wang, 2021).

The resolution is too coarse to reproduce the important

processes and features within the regional scale (Xu et al.,

2017; Bonekamp et al., 2018), and precipitation events related

to complex terrain could not be captured (Ménégoz et al.,

2013; Liu et al., 2018; Schneider et al., 2018; Duan et al., 2019).

Some studies also report that the simulation performance on

regional precipitation characteristics can be improved with

increasing resolution, but the improvement depends on the

precipitation properties and the complexity of terrain

(Mahoney et al., 2013; Feng et al., 2018; Vanden Broucke

et al., 2019). Therefore, further studies ought to be intended to

investigate whether the uncertainty in simulating

precipitation over the SWC can be reduced by using the

finer resolution models.

As one of the CMIP6–Endorsed Model Intercomparison

Projects (MIPs), the High–Resolution Model Intercomparison

Project (HighResMIP) is launched for the first time, providing a

timely research platform to determine the improvement in

simulation performance resulting from the increase in

horizontal resolution of the models (Eyring et al., 2016).

Detailed model assessment is performed by designing

high–resolution climate simulations with the same

requirements, including the specific effects of improved

resolution on model dynamics and physical processes

(Haarsma et al., 2016). Simulations involving the finer

resolution model of HighResMIP may shed more lights on

climate change. Recently, related works based on HighResMIP

models have reported that the enhancement of horizontal

resolution can significantly improve the performance of

models for the diurnal variation of tropical cyclones and the

resulting precipitation (Bao et al., 2020; Zhang et al., 2021).

However, there is a lack of studies on evaluation of precipitation

simulation over the complex terrain by using

CMIP6 HighResMIP models. This study is aim to evaluate

the performance in precipitation simulation of

CMIP6 HighResMIP models over the SWC, and to address

the following questions: 1) How do the CMIP6 HighResMIP

models perform in simulating precipitation and precipitation

extremes over the SWC? 2) To what extent the models differ in

simulating precipitation at higher and lower spatial resolutions

over this complex terrain?

2 Data and methods

2.1 CMIP6 HighResMIP model data

The HighResSST–present experiments (Tier 1) in

HighResMIP protocol are the forced–atmosphere runs

historically covered the period of 1950–2014. We select this

historical simulation outputs in this study, including daily

precipitation, monthly horizontal wind, vertical velocity and

specific humidity. Six modelling groups from different

institutions, each of the group which contains model of

different horizontal resolutions (at least with a higher and a

lower resolution version), 12 models in total are adopted in this

study (Table 1). To ensure the evaluating consistency the models

with different horizontal resolutions, the outputs from models

are converted to a common grid of 0.5° longitude by 0.5° latitude

before analyses and focused on the period of 1985–2014, which is

consistent with the precipitation observations and reanalysis

datasets described in next section.

2.2 Observation and reanalysis data

A daily precipitation gridded dataset, called CN05.1, is used

in this study. As the reference for precipitation, it is generated by

the National Climate Center (NCC) of China Meteorological

Administration (CMA) from more than 2,400 national

observation stations through optimal interpolation approach

based upon the climate background field (Wu and Gao, 2013).

It can remarkably reduce the analysis errors due to precipitation

heterogeneity (Wu et al., 2017; Yang et al., 2017). At present, this

dataset has been extensively adopted in the evaluation of climate

models in China (Lun et al., 2021; Veiga and Yuan, 2021; Guo

et al., 2022). Moreover, the ERA5 reanalysis dataset from the

European Center for Medium–Range Weather Forecasts

(ECMWF), is also adopted as the reference for upper

atmosphere variables, including the monthly vertical velocity,

horizontal wind and specific humidity, with 17 vertical pressure

levels from 1,000 hPa to 100 hPa (Hersbach et al., 2020).

2.3 Extreme precipitation indices

To evaluate the performance of models in simulating

precipitation extremes over the SWC, six extreme

precipitation indices recommended by the ETCCDI (Expert

Team on Climate Change Detection and Indices) are used in

this study (details listed in Table 2), which are as follows:

Consecutive dry days (CDD), Consecutive wet days (CWD),

Heavy precipitation days (R10mm), Very wet days precipitation

(R95p), Maximum consecutive 5 days precipitation (Rx5day),

Simple daily intensity (SDII). Detailed introduction about
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ETCCDI and climate indices could be found on the website of the

ETCCDI: http://etccdi.pacificclimate.org.

2.4 Evaluation metrics

In this study, Taylor diagram and Taylor Skill Scores (TS) are

used to quantitatively evaluate the ability of models in simulating

precipitation and precipitation extremes over the SWC (Taylor,

2001). The Taylor diagram could illustrate the statistics of spatial

correlation coefficient (SCC), the ratio of spatial standard

deviation (RSD), and centered root–mean–square error

(RMSE). The TS is calculated as follows:

TS � 4(1 + R)2
(σsoσsm

+ σsm
σso
)
2(1 + R0)2

where R is the SCC between the simulation and observation; R0 is

the maximum value available for the correlation coefficient

(usually used as 0.999); and σsm and σso represent the spatial

standard deviations (SDs) of the simulation and observation,

respectively. The TS close to one indicates that the simulation is

more consistent with the observation and the model has a relative

superior simulation performance, while the TS close to

0 indicates the opposite performance between the simulation

and the observation and represents a relative inferior simulation

performance.

3 Result

3.1 Precipitation climatology

The spatial distributions of climatological precipitation over

the SWC from CMIP6 HighResMIP simulations and

CN05.1 observations are shown in Figure 2. The observed

climatological precipitation is spatially inhomogeneous over

the SWC, showing an increasing tendency from northwest to

southeast. Overall, the CMIP6 HighResMIP models captured the

characteristics of the climatological precipitation well during the

period of 1985–2014. Compared with observation, the

precipitation is generally overestimated in the LR models over

the eastern part of TP and the Hengduan Mountain (Figures

2A–H). The locations of heavy rainfall belts simulated in

TABLE 1 The basic information of 12 CMIP6 HighResMIP models used in this study.

Model Institute,
country or union

Resolution (latitude × longitude,
level)

Reference

CNRM–CM6–1–HR Centre National de Recherches Meteorologiques, France 0.50° × 0.50°, L91 Voldoire et al.(2019)

CNRM–CM6–1 1.41° × 1.41°, L91

ECMWF–IFS–HR European Centre for Medium–Range Weather Forecasts, United Kingdom 0.50° × 0.50°, L91 Roberts et al. (2018)

ECMWF–IFS–LR 1.00° × 1.00°, L91

HadGEM3–GC31–HM Met Office Hadley Centre, United Kingdom 0.23° × 0.35°, L85 Roberts et al. (2019)

HadGEM3–GC31–LM 1.25° × 1.88°, L85

IPSL–CM6A–ATM–HR Institute Pierre Simon Laplace, France 0.50° × 0.70°, L79 Boucher et al. (2019)

IPSL–CM6A–LR 1.26° × 2.50°, L79

MPI–ESM1–2–XR Max Planck Institute for Meteorology, Germany 0.47° × 0.47°, L95 Gutjahr et al. (2019)

MPI–ESM1–2–HR 0.94° × 0.94°, L95

MRI–AGCM3–2–S Meteorological Research Institute, Japan 0.19° × 0.19°, L64 Mizuta et al. (2012)

MRI–AGCM3–2–H 0.56° × 0.56°, L64

TABLE 2 List of the extreme precipitation indices used in the study.

Index Description Definition Units

CDD Consecutive dry days Maximum number of consecutive days when precipitation <1 mm day

CWD Consecutive wet days Maximum number of consecutive days when precipitation ≥1 mm day

R10mm Heavy precipitation days Annual count of days when precipitation ≥10 mm day

R95p Very wet days precipitation Annual total precipitation from days >95th percentile mm

Rx5day Maximum consecutive 5 days precipitation Annual maximum consecutive 5–days precipitation mm

SDII Simple daily intensity Total wet days precipitation divided by the number of wet days mm/day
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CNRM–CM6–1, MPI–ESM1–2–HR, and IPSL–CM6A–LR are

generally shifted northward compared with the observed data.

The HadGEM3–GC31–LM performs relatively weak, with large

overestimations over the Yunnan and Guizhou. In contrast, the

HR models are substantially improved the simulations of

precipitation (Figure 2I–P), especially showing more accurate

distribution of rainfall belts associated with abruptness terrain

around 31 °N over the SWC. Additionally, the spatial distribution

of the multi–model ensemble mean (MME) precipitation in the

HR models (MME–HR, Figure 2G) is better than the MME–LR

FIGURE 2
Climatological annual precipitation over SWC for the period from 1985 to 2014 based on the observation and CMIP6 HighResMIP models
simulation (unit: mm/day), (A–F) Low–resolution models simulation, (I–N) High–resolution models simulation, which MME (G,O) and CN05.1 (H,P)
represent multi–model ensemble means and observation respectively.
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(Figure 2O), which also reveals that the reproducibility of

precipitation in HR models have been improved.

The spatial distribution of the differences between the

simulated and observed precipitation for LR and HR models

are presented in Figure 3. Models in the LR groups (Figures

3A–F) show wet biases in most plateau regions over the SWC,

while the dry biases can be found at lower elevations such as the

Sichuan Basin and the southern of the Yunnan and Guizhou. The

HR models show moderate biases (Figure 3H–M, areal–mean

absolute biases of 0.49–1.29 mm/day), which are much lower

FIGURE 3
Same as Figure 2, but for the spatial distribution of precipitation difference between eachmodel and observation. The areal–mean absolute bias
(unit: mm/day) over SWC are given on the top–right of each panel. Black dots denote the regions of precipitation differences statistical significance at
the 95% confidence level using a two–tailed Student’s t–test.
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than the LR models (areal–mean absolute biases of

0.51–1.78 mm/day). Furthermore, the ECMWF–IFS and

MPI–ESM1–2 models show lower biases, while the models

from HadGEM3–GC31 and IPSL–CM6A show relatively

higher biases. It is indicated that the modelling groups have

different parameterization schemes and adjustment methods for

climate models, which lead to some differences in precipitation

simulation. However, the HR models significantly reduce the wet

bias over the TP and the Hengduan Mountains compared to the

LR models, and the bias in MME is reduced from 0.97 mm/day

(LR) to 0.72 mm/day (HR). It exhibits that the resolution is a

factor that plays an important role in simulating precipitation.

Although the increase of model resolution reduces the bias of

precipitation simulation over the SWC, there is still uncertainty

between the eastern edge of TP and the elevation transition zone

near 31°N. This means that precipitation simulations over

complex terrain areas remain a challenge for the

CMIP6 HighResMIP model.

Figure 4A shows the Taylor diagram for the simulated spatial

distribution of climatological precipitation over the SWC. For the

simulation of precipitation, there is considerable variation in the

models of different modeling groups. ECMWF–IFS–HR,

MPI–ESM1–2–XR, HadGEM3–GC31–HM, and

ECMWF–IFS–LR with spatial correlation coefficients (SCC)

above 0.5, and the ratios of standard deviations (RSD) are mostly

close to 1, showing relatively better modeling performance.

Figure 4B shows the Taylor skill scores (TS) for each model, in

general, the TS of HRmodels are higher than the corresponding LR

models. The MME–HR (0.6) is also higher than MME–LR (0.4),

indicating that the increase of horizontal resolution can improve the

performance in simulating precipitation. Since the purpose of this

study is to examine the simulation differences of the high and low

horizontal resolution models over the SWC. We adopt the MME to

investigate the differences precipitation extremes simulation in the

following subsections.

3.2 Extreme precipitation

Figure 5 shows the spatial distributions of the extreme

precipitation indices from the CN05.1 observation for the

climatological period 1985–2014. Large number of consecutive

dry days (CDD) are observed over the Hengduan Mountains,

while more consecutive wet days (CWD) can be found in the

eastern of the TP (Figures 5A,B). In terms of the heavy

precipitation days (R10mm), very wet days precipitation

(R95p), maximum consecutive 5 days precipitation (Rx5day),

and simple daily intensity (SDII) show an increasing tendency

from northwest to southeast, which is similar to precipitation

climatology (Figures 5C–F). It can be seen that more

precipitation extremes mostly occur in the western and

northern of the Sichuan Basin, but with fewer sustained

rainfall days than in the highlands. This suggests that

precipitation extremes could be more frequent, shorter in

duration and higher in intensity in the steep transition regions

over the SWC.

FIGURE 4
Taylor diagram (A) and Taylor Skill Scores (B) of climatological annual precipitation simulated over SWC. Angular axes show spatial correlation
coefficients between simulated and observed pattern; radial axes show the spatial centered RMSE (normalized against the observed). Each dot
represents a model, identified by its color on the bottom.
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The differences in the spatial distribution of extreme

precipitation indices for the LR and HR models relative to

CN05.1 are shown in Figure 6. The CDD and CWD are

generally underestimated by the LR and HR models in the

eastern of TP (Figures 6A–D). However, the models exhibit

overestimation of CWD simulations mainly concentrated in

the Hengduan Mountain (Figures 6C,D). In addition, for the

simulations of R10mm, R95p, Rx5day and SDII, large wet biases

exist over the eastern TP and dry biases occur in Sichuan Basin,

which are similar to the climatological mean precipitation

simulation (Figures 6E–I). In terms of the areal–mean relative

changes (absolute bias as percentage of observation), the HR

models have lower biases compared to the LR models, decreasing

in CDD (7%), CWD (22%), R10mm (19%), R95p (7%), Rx5day

(4%), and SDII (3%), respectively. Generally, the HR models

show some advancements in simulating precipitation extremes,

with more moderate biases in extent and magnitude compared

with the LR models.

Figure 7A shows the Taylor diagram for the simulation of the

extreme precipitation indices by HR and LR models versus the

CN05.1 observation. Compared with the LR models, the HR

indicate a good performance in reproducing the precipitation

extremes, with the higher SCCs and lower centered RMSEs.

Moreover, the TS of MME increase significantly in the HR

models (Figure 7B). The TS for CDD, R10mm, R95p, Rx5day

and SDII increased by 0.23, 0.17, 0.17, 0.29, and 0.20,

respectively. However, for CWD the TS is reduced by 0.09. By

comparing the spatial distribution (Figures 6C,D), it can be

found that although the HR model greatly corrected the

overestimates of CWD in the Hengduan Mountains, the

underestimates over the eastern of TP also increased. This

indicates that improving resolution of the models could

overcorrect the CWD simulation biases while correcting the

wet biases in precipitation simulation. It is noteworthy that

the biases of the frequency and intensity of precipitation

extremes are considerably reduced in the HR models

simulations, which indicates that the finer resolution models

generally have the superiority of the simulation ability of the

precipitation extremes over the SWC.

3.3 Simulation differences of atmospheric
circulation

Large–scale circulation and water vapor content are two

dominant elements that directly affect the precipitation

amount in SWC. To further explore the possible causes for

the improvement of precipitation simulation in different

FIGURE 5
Spatial patterns of the precipitation extreme indices, (A)CDD, (B)CWD, (C) R10mm, (D) R95p, (E) Rx5day, (F) SDII, (units: day, day, day, mm,mm,
mm/day), during 1985–2014 from the observation over the SWC.
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horizontal resolutions, we calculate the simulated differences in

atmospheric circulation and specific humidity between the

CMIP6 HighResMIP models and ERA5 reanalysis. As shown

in Figures 8A,B, the horizontal wind simulated difference from

models at low–level (850 hPa) can be clearly found in the Sichuan

Basin, where the LR models mainly show an anti–cyclone,

indicating the weakened precipitation due to the mean

divergent atmospheric flows. The horizontal winds in the HR

models are characterized by the cyclone, which favors more

precipitation around the Sichuan Basin. In addition,

differences between the HR and LR models show that the

extensive southwesterly wind over the southern SWC

(Figure 8C), which enhance the transport of abundant

moisture inland from the tropical ocean. The upper–level

circulation is shown by 500 hPa wind field, both the LR and

HR models indicate relatively similar wind shears over the SWC

(Figures 8D,E). It can be seen that the cyclone and wind

convergence occur in eastern TP and Hengduan Mountains

where overestimated precipitation exists in the LR and HR

models. However, as shown in Figure 8F, the HR models

exhibit the strong northerly wind over the transitional region

between the TP and the Sichuan Basin. And there is an

anti–cyclone over the TP. This suggests that the added value

of the HR models for suppressing the rainfall bias over steep

elevations by reducing the convergence conditions in simulation

of mean atmospheric circulation.

FIGURE 6
The spatial distribution difference of precipitation extreme indices between theMME (from LR andHRmodels) simulation and observation, (A,B)
CDD, (C,D) CWD, (E,F) R10mm, (G,H) R95p, (I,J) Rx5day, (K,L) SDII, (units: day, day, day, mm, mm, mm/day), for the period from 1985 to 2014. The
areal–mean relative changes (absolute bias as percentage of observation; unit: %) over SWC are given on the top–right of each panel. Black dots
indicate the region of indices differences statistical significance at the 95% confidence level using a two–tailed Student’s t–test.
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FIGURE 7
Same as Figure 4, but for the Taylor diagram and Taylor Skill Scores of precipitation extreme indices with the MME.

FIGURE 8
The climatological horizontal wind difference between MME and ERA5 for the period 1985–2014 over SWC (unit: m/s), (A–C) at 850 hPa, (D–F)
at 500 hPa, color–shaded areas show terrain elevation below the corresponding barometric surface (unit: m). The blue dots denote the regions of
horizontal wind speed differences statistical significance at the 95% confidence level using a two–tailed Student’s t–test.

Frontiers in Earth Science frontiersin.org10

Jin et al. 10.3389/feart.2022.1003748

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1003748


On the other hand, Figure 9 presents MME difference for the

zonal circulation and specific humidity with the ERA5 reanalysis.

The MME–LR (Figure 9A), shows strong ascending motion in

the edges of TP around 102°E, and the descending motion in

Sichuan Basin around 108°E. Meanwhile, there are significantly

negative biases of specific humidity at lower levels over plains,

indicating the weakened precipitation due to the mean flow of

moisture divergence in the LR models. The MME–HR

(Figure 9B), exhibits strong descending motion with less

moisture over the eastern TP, which indicates the wet bias

have been reduced in the HR models. The difference in the

MME between the HR and LR models (Figure 9C), presents less

specific humidity over the TP accompanied with strong

descending motion and more moisture conditions in the

Sichuan Basin and the surrounding transition zone (about

103°E) accompanied with ascending motion, suggesting that

the HR models added value to the reduction of precipitation

bias. With the increase of resolution, the HR models perform

better in simulations of atmospheric circulation and moisture

content in the complex terrain, thus reducing the biases of

precipitation over the SWC.

4 Summary and discussion

In this study, the performance of the latest multi–resolution

models from the CMIP6 HighResMIP protocol in simulating

climatological precipitation and extreme precipitation indices

have been quantitatively evaluated over the SWC. The differences

in precipitation simulations due to the models with low and high

resolution (LR and HR) are analyzed and the possible reasons for

the differences are discussed.

1) Both of the LR and HR models can reasonably simulate the

observational spatial distribution of precipitation well, which

capture characteristics that the region of more precipitation in

the area of Hengduan Mountains, with less in Sichuan Basins.

However, the models show the dry biases in the Sichuan

Basin, and wet biases in the eastern edges of the TP. TheMME

areal–mean absolute biases have been reduced from 0.97 mm/

day (LR) to 0.72 mm/day (HR), suggesting some

improvements of in simulation of the climatological

precipitation in the HR models over SWC.

2) The LR and HR models show underestimate the CDD and

CWD in the Hengduan Mountains and eastern TP, but

overestimate in Sichuan Basin. For the R10mm, R95p,

Rx5day and SDII, more wet biases exist over the plateau of

western SWC, while moderate dry biases occur in Sichuan

Basin. The spatial extents and magnitudes of simulation

biases are significantly reduced in the HR models. The

areal–mean relative changes decreasing in CDD (7%),

CWD (22%), R10mm (19%), R95p (7%), Rx5day (4%),

and SDII (3%), respectively, indicating that the finer,

high–resolution models have added value in simulating

extreme precipitation.

3) The dry and wet bias of the LR and HR models in simulating

precipitation in the plateau and basin over the SWC are

attributed to the simulation of atmospheric circulation and

water vapor content. Compared with the LR models, the HR

models have more reasonable moisture transport from the

tropical ocean and convergence conditions to reduce the dry

bias over the Sichuan Basin. Less water vapor content

simulation with local descending motion reduces the wet

biases over the higher altitude complex terrain. With the

improvement of horizontal resolution, models can simulate

FIGURE 9
Differences in zonal wind (vectors; units: m/s) and specific humidity (shading; units: g/kg), cross section along 31°N (A)MME–LRminus ERA5, (B)
MME–HRminus ERA5, (C)MME–HRminus MME–LR, and the green dots denote the regions of specific humidity differences statistical significance at
the 95% confidence level using a two–tailed Student’s t–test.
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more accurate atmospheric circulation pattern in complex

terrain, so as to simulate precipitation more realistically.

The HR models exhibit superiority in simulating mean

precipitation and precipitation extremes compared with the

LR models. Especially over the TP and Hengduan mountains,

the HR models substantially reduce the wet bias and the

overestimation of the intensity and frequency of precipitation

extremes. It can be responsible for the better simulation of

atmospheric circulation and topographic forcing in the

plateau and basin by the HR models, which leads to a

reasonable estimation of moisture transport and convergence

conditions. While the systematic precipitation biases that existed

in the LR models seem to persist in the HR models, further

analysis indicates that the intensity and extents covered by the

dry biases over the Sichuan Basin and wet biases over the TP have

reduced in the HR models. Moreover, the biases reduction in

lower altitude areas (below 2000 m) is not as significantly as that

in higher altitude areas (above 2000 m), indicating a certain

elevation dependency exists in this improvement. It also

indicates that the current state–of–the–art climate models may

still be inadequate for describing meso–and micro–scale complex

topography, and the considerable role of orography in water

vapor transport and condensation cannot be simulated well by

enhancing the horizontal resolution of the models (Collier and

Immerzeel, 2015; Wang et al., 2020; Chen et al., 2021; Liang et al.,

2021). By using the same parameterization, the climate models

participating in the HighResMIP protocol are only tuned for

their resolution. In order to obtain the more realistic simulation

results, it is also important to adjust the cloud physical

parameterization and aerosol emission factors of the model.

Following the development of convection–permitting model

(CPM), and regional climate model (RCM) dynamical

downscaling can be as relatively beneficial tools to simulate

the precipitation phenomenon. These models can show some

advantages in simulating precipitation in complex terrains (Zou

and Zhou, 2013; Shi et al., 2018; Li et al., 2021). Additionally,

reducing the uncertainty in precipitation simulations appears to

be achieved by the weighted average multi–model groups

approach (Abramowitz et al., 2019; Merrifield et al., 2020). At

the same time, the resolution of the weighted multi-model

ensemble for the LR and HR groups should be paid more

attention. However, considering the limitations of the models

available from the HighResMIP protocol in this study,

subsequent studies on systematic biases in precipitation

simulations over complex terrain regions should be conducted

by additional updated climate models or by the

above–mentioned tools. Thus, we can gain insight into more

dynamic and physical processes related to precipitation, identify

more critical causes of uncertainty in climate models, and

ultimately improve the confidence in projections.
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