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The major sedimentary basins in China contain abundant shale gas resources to be
explored, and the exploration of shale gas has received more attention in recent years.
Shale gas exists mainly in two states, i.e., free and adsorbed. The latter mainly exists on the
surface of media, including organic matter and clay minerals, etc., but its adsorption state
remains unknown. In this paper, we take the Longmaxi Formation marine shale in the
southern Sichuan Basin of southern China as the research object. The state of methane
molecule adsorption on different media in marine shales is analyzed by conducting mineral
composition analysis, TOC content analysis, isothermal adsorption experiments, FIB-SEM,
and FIB-HIM experiments on the core samples referring to previous research. The
conclusions are as follows: the adsorbed gas mainly exists in the organic-matter pores,
which feature excellent roundness and connectivity with a large number of small pores inside
like a hive. The surface of the organicmatter containsmany adsorption sites, featuring strong
adsorption capacity and making methane molecules continuously distributed on the internal
surface of the organic-matter pores. The organicmatter has a large specific surface area and
is lipophilic, which offers an ideal condition for the adsorption of methane molecules. Part of
the adsorbed gas exists in the pores of clay minerals, which are lamellar and triangular. The
surface of clay minerals contains fewer adsorption sites, featuring poorer adsorption
capacity and making methane molecules discontinuously distributed on the surface of
the clay minerals. The clay minerals have a smaller specific surface area than the organic
matter, thus featuring a smaller space for adsorption. The clay minerals are hydrophilic. In
addition tomethanemolecules, mixed-layer illite/smectite (I/S) and chlorite also adsorbwater
molecules. The illite surface adsorbsmainly watermolecules and, to a lesser extent, methane
molecules. Finally, the adsorption state patterns of methane molecules on organic matter
and clay minerals were summarized.
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1 INTRODUCTION

In recent years, with the improvement in geological ideas as well as
the advancement of good horizontal drilling and hydraulic
fracturing technologies, the target of oil and gas exploration has
changed from conventional clastic and carbonate reservoirs to
unconventional shale ones, and great success in shale gas
exploration has been achieved in North America (Curtis, 2002).
Similar to North America, China contains abundant shale gas
resources, and shale formations are widely distributed in the major
basins of China (Guo, 2016; Zou et al., 2017; Guo, 2021). In the
Sichuan Basin and its periphery in southern China, based on the
exploration for marine shales of the Lower Silurian Longmaxi
Formation, a series of shale gas fields such asWeiyuan, Changning,
Weirong, Fushun, Yongchuan, Zhaotong, and Jiushiba have been
successively established by CNPC and Sinopec and provided high
production of shale gas (Zou et al., 2015; Guo et al., 2016; Guo et al.,
2017; Guo et al., 2020). Based on the existence state, shale gas can
be categorized into free and adsorbed types: the former exists in the
shale reservoir space, while the latter on the surface of organic
matter and clay minerals. The adsorbed gas can be converted into
free gas under certain temperature and pressure conditions (Zou
et al., 2017; Zou et al., 2019; Zou et al., 2020).

A series of studies have been conducted previously on the factors
controlling the adsorption capacity of marine shales. Li et al. (2017)
concluded from a study on the shales of the Lower Cambrian
Niutitang Formation in the Fenggang Block, northern Guizhou,
southern China, that the methane adsorption quantity of shales is
related to organic carbon content, clay minerals, organic matter
pore morphology, pressure, temperature and water saturation (Li
et al., 2017). Gao et al. (2018) concluded that adsorbed gas is an

important state of shale gas, mainly existing on the surface or inside
the pores of clay minerals and organic matter particles and that the
adsorption characteristics of shale play a crucial role in gas content.
The adsorption capacity is controlled by a combination of factors
such as organic matter content, degree of thermal evolution, pore
structures, and clay mineral content (Gao et al., 2018). Ma et al.
(2018) concluded that organic matter characteristics, nanopore
structures, inorganic mineral composition, temperature, pressure,
and water content, etc., all influence the methane adsorption
capacity of shales to some extent (Ma et al., 2018).

In recent years, the large-scale exploration of shales has provided
a lot more data for the analysis on the state of methane molecule
adsorption in differentmedia of highly-evolvedmarine shales. In this
study, the adsorption states of methane on different media of highly-
evolved marine shales were identified via mineral composition
analysis, TOC content analysis experiments, isothermal
adsorption experiments, and direct observation with an SEM by
using the shale gas well XNY-1 lately drilled in the southern Sichuan
Basin, of which the location is shown in Figure 1.

2 GEOLOGICAL SETTINGS

2.1 Sedimentary and Stratum
Characteristics
According to previous studies (Li et al., 1995; Li et al., 2002; Mei
et al., 2012; Wang et al., 2015; Mou et al., 2016; Zhang et al.,
2019a; Zhang et al., 2020a), in the Upper Ordovician-Lower
Silurian, the Upper Yangtze area became the interior Cratonic
sagging basin after the Cathaysian Plate extruded it. In the Upper
Yangtze region, the sedimentary strata of the Upper Ordovician

FIGURE 1 | Location of the southern Sichuan Basin in southern China and the distribution of XNY-1 well. Modified from references (Mei et al., 2012; Wang et al.,
2015; Mou et al., 2016; Zhang et al., 2019a; Zhang et al., 2020a).
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are called the Wufeng Formation, while the sedimentary strata of
the Lower Silurian are called the Longmaxi formation. The
Longmaxi Formation can be divided as Member I, II, and III
from the bottom to the top. The target layer of this study is
Member I, of which the shale lithology is bipartite: the lower part
of Member I of the Longmaxi Formation is mainly black siliceous
organic-rich shales, while the upper part is a combination of dark
grey shales, siltstone shales, and siltstone.

2.2 Tectonic Characteristics
Previous studies (Wang and Li, 2003; Chalmers and Bustin, 2008;
Ji et al., 2014; Ji et al., 2015; Ji et al., 2016; Zhang et al., 2017) show
that, large-scale sea erosion of the Yangtse plate in the Early
Cambrian.resulted in the sedimentation of a set of organic-rich
shales that almost covered the entire plate. Thereafter, the water
body became shallower, while fine and silty shales gradually
changed into coarse clasolite, such as siltstone and sandstone,

etc. Due to the extrusion and collision from the Cathysian plate in
the Ordovician, the water body continuously became even
shallower, and the sedimentary system of clasolite changed
into the sedimentary system of carbonite. A large-scale
transgression that occurred in the Upper Ordovician-Lower
Silurian changed it back to the sedimentary system of clasolite,
leaving the sedimentation of a set of organic-rich shales in the
deep-water shelf surrounded by the ancient land.

3 SAMPLES, EXPERIMENTS, AND SOURCE
OF DATA

In this study, 12 pieces of core samples were taken from the shales
of Member I of the Longmaxi Formation in the XNY-1 well at the
depths shown in Table 1. For the six pieces of the core samples
taken from the same depth, whole-rock mineral analysis and clay

TABLE 1 | Core sampling layer and depth.

No. Well Fm. Depth (m) No. Well Fm. Depth (m)

1 XNY-1 Longmaxi 4,024.29 7 XNY-1 Longmaxi 4,085.46
2 XNY-1 Longmaxi 4,041.66 8 XNY-1 Longmaxi 4,087.84
3 XNY-1 Longmaxi 4,053.95 9 XNY-1 Longmaxi 4,089.63
4 XNY-1 Longmaxi 4,062.35 10 XNY-1 Longmaxi 4,091.7
5 XNY-1 Longmaxi 4,072.92 11 XNY-1 Longmaxi 4,092.91
6 XNY-1 Longmaxi 4,080.01 12 XNY-1 Longmaxi 4,094.68

TABLE 2 | Results of mineral composition analysis of core samples.

Depth (m) Quartz (%) Potash feldspar (%) Plagioclase (%) Calcite (%) Dolomite (%) Pyrite (%) Clay minerals (%)

4,024.29 31.5 0.7 7.6 0 0 3.2 57
4,041.66 33.3 0 6.2 0 0 2.7 57.8
4,053.95 35.9 0 7.1 2.9 6.4 5.1 42.6
4,062.35 29.9 0.9 3.6 5.5 12.4 3.7 44
4,072.92 42.1 0 8.4 2.5 5.2 3.1 38.7
4,080.01 44.3 0.9 6.9 3.5 3.4 4.7 36.3
4,085.46 57.5 0 3.4 6.9 9 2.6 20.6
4,087.84 64.4 1.1 3.3 3.7 4.7 3.8 19
4,089.63 42.2 0.9 4.4 4.5 9.7 7.3 31
4,091.7 51 0 1.4 4.2 21.9 3.6 17.9
4,092.91 31.7 1.1 5.1 2.9 5.7 3.8 49.7
4,094.68 18.4 1 3.8 0 2.8 8.2 65.8

TABLE 3 | Results of core sample analysis for TOC content, Langmuir Volume, Langmuir Pressure and clay mineral composition.

Depth (m) TOC (%) Langmuir volume
(m3/t)

Langmuir pressure
(MPa)

I/S mixed
layer (%)

Illite (%) Chlorite (%)

4,024.29 0.77 1.07 3.84 23.94 19.38 13.68
4,041.66 0.2 0.31 0.37 24.854 21.964 10.982
4,053.95 1.82 1.22 0.51 20.448 17.892 4.26
4,062.35 2.28 1.58 2.36 20.24 18.92 4.84
4,072.92 1.72 0.73 0.39 19.737 15.867 3.096
4,080.01 2.74 1.88 2.99 16.698 16.698 2.904
4,085.46 3.2 1.28 0.54 13.39 5.974 1.236
4,087.84 4.05 1.41 0.7 11.21 7.03 0.76
4,089.63 4.79 1.72 1.19 18.29 11.78 0.93
4,091.7 2.02 1.25 2.2 8.771 8.592 0.537
4,092.91 1.26 0.5 1.09 30.317 15.904 3.479
4,094.68 2.22 0.77 0.97 38.164 23.03 4.606
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mineral analysis were conducted with a YST-I mineral analyzer,
and isothermal adsorption experiments were conducted at 110°C
with an HPVA-200-4 isothermal adsorber. Besides, TOC analysis
was conducted with a Sievers 860 TOC content analyzer, and FIB-
SEM (Focused ion beam—FIB-SEM) was conducted with a Helios
NanoLab 660. At the same time, FIB-HIM (Focused ion
beam—Helium ion microscopy) was conducted with a Zeiss
Orion NanoFab, and part of the samples was used for organism
maturity analysis with a ZEISS Imager A2m, J&M MSP200
polarized fluorescence microscope.

4 RESULTS AND DISCUSSION

4.1 Analysis of the Ability of Organic Matter
to Adsorb Methane Molecules
The results of mineral composition analysis, TOC content
analysis, and isothermal adsorption experiments carried out on
the 12 shale core samples are shown in Tables 2, 3. Langmuir
Volume represents the maximum adsorption capacity, and its
physical meaning is the adsorbed gas content at a given
temperature when the methane adsorption of shales reaches
saturation with m3/t as the unit. Langmuir Pressure is the
pressure corresponding to half of the Langmuir volume with
MPa as the unit. According to the maturity test of the shale cores,
the average organic matter maturity of the shales of the Longmaxi
Formation from the XNY-1 well is 2.1%. Therefore, the study target is

highly evolved marine shales. This work analyzed TOC content and
LangmuirVolum, and the results are shown inFigure 2A, according to
which, the TOC content has a good positive correlation with Langmuir
Volume. This implies that the organic matter provides the main
adsorption space for methane molecules, which are adsorbed on the
inner surface of the organic matter.

4.2 Analysis of Clay Minerals’ Ability to
Adsorb Methane Molecules
Figure 2B shows the analyses results of the clay mineral content
and the Langmuir Volume. As can be observed, the clay mineral
content has a significant negative correlation with Langmuir
Volume. However, previous studies have shown that clay
minerals have a certain adsorption capacity for methane
molecules, which means that more works need to be carried

FIGURE 2 | Analysis of Langmuir Volume’s relation with TOC content
and clay mineral content. The graph shows Langmuir Volume has a positive
correlation with TOC content and a negative correlation with clay mineral
content.

FIGURE 3 | Analysis of Langmuir Volume’s relation with I/S mixed layer,
illite, and chlorite. It can be seen that Langmuir Volume is first negatively and
then positively correlated with I/S mixed layer content and with chlorite
content. It is negatively correlated with illite content.
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out to study the negative correlation. The clay minerals in the
highly evolved marine shales of the Langmuir Formation consist
of I/S mixed layer, illite, and chlorite. This work analyzed the
relationship between the Langmuir Volume and the contents of
I/S mixed layer, illite, and Chlorite content, as shown in Figures
3A–C. It can be seen that the illite content is negatively correlated
with Langmuir Volume, while the I/S mixed layer content and the
chlorite content are respectively first negatively and then
positively correlated with Langmuir Volume.

4.3 Analysis of the Adsorption State of
Methane Molecules in Organic Matter and
Clay Minerals
4.3.1 Distribution of “Organic Matter Surface,” “Clay
Mineral Surface,” and “Adsorption Sites”
The adsorption site distributions of methane molecules adsorbed
on organic matter surfaces and clay mineral surfaces have been

studied previously. It is believed that organic matter has a denser
distribution of adsorption sites on the surface and thus features a
higher adsorption capacity than clay minerals (Chen et al., 2017a;
Chen et al., 2018a; Wang et al., 2020a; Gao et al., 2020). The
distribution of Gas molecules is discontinuous on the surface of
clay minerals, whereas it’s continuous on the surface of organic
matter (Chen et al., 2016a; Chen et al., 2017b; Chen et al., 2019a;
Chen et al., 2019b; Gao, 2021).

4.3.2 Difference in Specific Surface Area of Organic
Matter and Clay Minerals
The specific surface area of each component in the shales
influences the adsorption capacity significantly, with their
influence ranked in descending order as organic matter >
montmorillonite > I/S mixed layer > kaolinite > chlorite >
illite > calcite > feldspar > quartz. As the specific surface area
of organic matter is obviously higher than that of clay minerals,
the adsorption capacity of organic matter is higher than that of

FIGURE 4 | FIB-SEM images (A,B,E,F), FIB-HIM images (C,D). (A,B): 4,085.46 m, XNY-1 Well, Member I of the Longmaxi Formation; (C) 4,087.84 m, XNY-1
Well, Member I of Longmaxi Formation; (D) 4,089.63 m, XNY-1 Well, Member I of Longmaxi Formation; (E) 4,062.35 m, XNY-1 Well, Member I of Longmaxi Formation;
(F) 4,072.92 m, XNY-1 Well, Member I of Longmaxi Formation.
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clay minerals under the same unit mass (Chen et al., 2018b; Yu
et al., 2022).

4.3.3 Differences in the Lipophilicity and Hydrophilicity
of Organic Matter and Clay Minerals
The water content of the formation has a strong influence on the
methane adsorption capacity of shales as adsorption sites for
methane molecules can be occupied by water molecules. The
clay minerals are hydrophilic, while the organic matter is
lipophilic. Therefore, it’s easier for methane molecules to be
adsorbed on the surface of organic matter (Chen et al., 2016b;
Wang et al., 2019). Generally, there is water in subsurface shale
reservoirs, and the methane adsorption capacity of clay minerals
is inhibited under actual subsurface reservoir conditions since
clay minerals are hydrophilic. They will show their adsorption
capacity only when their content reaches a sufficient level.
As shown in Figure 3, in addition to adsorbing water

molecules, I/S mixed layer and chlorite can also provide a
certain amount of adsorption space for methane molecules to
adsorb a considerable amount of these molecules. By contrast,
illite mainly absorbs water molecules and cannot provide space
for methane molecules adsorption.

4.4 Spatial Characteristics of Methane
Molecules Adsorption in Organic Matter
and Clay Minerals
4.4.1 FIB-SEM Observation
The pore characteristics of the shales can be directly observed
with an SEM. As is shown in the FIB-SEM images, the largest
greyscale is the pore, while the greyscale of every material
composition in the shales becomes lower as its molecular
weight is smaller (Zhang et al., 2019b; Zhang et al., 2019c;
Wang et al., 2020b; Xia et al., 2020; Zhu et al., 2020; Huang

FIGURE 5 | Pattern of methane molecule adsorption on different media in highly evolved marine shales. (A)Methane molecules adsorbed on the internal surface of
organic matter pores; (B) methane molecules adsorbed on the internal surface of clay minerals, which are mainly montmorillonite, I/S mixed layer, and chlorite.
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et al., 2021; Wang et al., 2021), indicating that the grey scale of
organic matter in the FIB-SEM images is larger than the one of
inorganic minerals. It can be seen from the FIB-SEM images A
and B of Figure 4 that a large number of organic matter pores are
developed in the shales with excellent roundness. Additionally, it
can be seen from the FIB-SEM images Figures 4E,F that clay
mineral pores are also developed in the shale and feature-poor
roundness as they are lamellar and triangular.

4.4.2 FIB-HIM Observations
The situation inside the pores can be observed from the FIB-HIM
images, making the two-dimensional images demonstrate three-
dimensional effects. The greyscale of the FIB-HIM image is
opposite to the one of the FIB-SEM images as the greyscale of
every material composition in the shales becomes higher as its
molecular weight is larger, indicating that the greyscale of the
organic matter in the FIB-HIM image is lower than the one of the
inorganic minerals (Zuo et al., 2019; Huang et al., 2020a; Huang
et al., 2020b; Zhang et al., 2020b; Zhang et al., 2020c; Liu et al.,
2021a; Liu et al., 2021b). It can be seen from C and D of Figure 4
that the organic matter pores contain a large number of small
pores like a hive with good connectivity.

5 ADSORPTION PATTERNS OF METHANE
MOLECULES ON DIFFERENT MEDIA IN
HIGHLY MATURE MARINE SHALES
The patterns of methane molecule adsorption states on different
media in highly evolved marine shales are summarized based on
the studies hereinabove. As shown in Figure 5A, the organic
matter pores are sub-circular in shape with good connectivity
between the organic-matter pores, and their internal surface can
densely and continuously adsorb methane molecules. Besides, the
specific surface area of the organic-matter pores is large and
provides larger space for methane molecule adsorption. As shown
in Figure 5B, the clay mineral pores are lamellar in shape. The
surface of the clay mineral pores is loose, with adsorbed methane
molecules discontinuously distributed on it. Besides, the clay
mineral pores are more likely to contain water. Among the
three clay minerals present in the Longmaxi Formation shale
in the study area, I/S mixed layer has the largest specific surface
area and can provide more adsorption space for methane
molecules, followed by chlorite and finally illite. Due to the
hydrophilic nature of the clay minerals, I/S mixed layer and
chlorite adsorb water molecules in addition to methane
molecules. Illite mainly adsorbs water molecules, and a small
number of methane molecules.

6 CONCLUSION

In this paper, the shales from Member I of the Longmaxi
Formation in the southern Sichuan Basin were used as the
research object, and the state of methane molecule adsorption
on different media in marine shales was analyzed via mineral
composition analysis, TOC content analysis, isothermal

adsorption experiments, FIB-SEM experiments, and FIB-HIM
experiments by adopting core samples from the newly drilled
shale gas exploration wells. The conclusions are as follows:

1) The adsorbed gas mainly exists in organic-matter pores, which
feature excellent roundness and connectivity with a large
number of small pores inside like a hive. The surface of
organic matter contains many adsorption sites, featuring high
adsorption capacity and continuous distribution of methane
molecules on the internal surface of organic-matter pores. The
specific surface area of organic matter is large, providing large
space for methanemolecule adsorption. Organic matter exhibits
lipophilic properties, which makes it easier to adsorb methane.

2) Part of the adsorbed gas exists in clay mineral pores. I/S mixed
layer and chlorite can not only adsorp water molocule but also
provide certain space for the adsoption of methane molecule.
Illite mainly adsorbs water molecules, and it is basically unable
to provide adsorption space for methane molecules. Clay
mineral pores are lamellar and triangular with poor
roundness. Compared with organic matter, the surface of
clay minerals contains fewer adsorption sites, featuring
lower adsorption capacity and discontinuous distribution of
methane molecules on the surface of clay minerals. Clay
minerals have a smaller specific surface area, providing
smaller space for adsorption. Clay mineral pores are more
likely to contain water as clay minerals are hydrophilic.
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