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The extended Finite Element Method (XFEM) is derived from the traditional finite element
method for discontinuous problems. It can simulate the behavior of cracks, which
significantly improves the ability of finite element methods to simulate geotechnical and
geological disaster problems. The integration of discontinuous enrichment functions in
weak form and the ill-conditioning of the system equations are two major challenges in
employing the XFEM in engineering applications. A mixed integration scheme is proposed
in this paper to solve these problems. This integration scheme has a simple form and
exhibits both the accuracy of the subcell integration method and the well-conditioning of a
smeared integration method. The correctness and effectiveness of the proposed scheme
were verified through a series of element analyses and two typical examples. For XFEM
numerical simulations with unstructured meshes and arbitrary cracks/interfaces, this
method guarantees the convergence of nonlinear iterations and yields correct results.
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INTRODUCTION

The extended Finite Element Method (XFEM) is an excellent numerical method that can visually
simulate discontinuous cracks/interfaces and their evolution without mesh regeneration. By
introducing enrichment functions with special local properties into the partition of unit method
(PUM) framework, this method can enable construction of discontinuous fields within local
elements (Belytschko and Black, 1999; Moës et al., 1999; Belytschko et al., 2001). As it offers
several advantages, XFEM has been applied to failure problems in many different fields, including
geotechnical and geological engineering (Abdelaziz and Hamounie, 2008; Belytschko et al., 2009;
Fries and Belytschko, 2010; Gracie and Graig, 2010; Salimzadeh and Khalili, 2015; Matthew and
Caglar, 2016; Li et al., 2018; Wang et al., 2018; Cruz et al., 2019). It can be predicted that XFEM will
play a more important role in the modeling, assessing, and preventing of geotechnical and geological
disasters. However, the wider application of XFEM is limited by several drawbacks. One of these
drawbacks is that with the introduction of discontinuous functions, standard Gaussian integration
cannot be applied directly to XFEM-enriched elements, and splitting of elements into subcells is
often necessary. XFEM converts the complexity of mesh regeneration into the complexity of the
discontinuous function integration within the element (Chin et al., 2017). Another drawback is that
due to the same interpolation basis functions used, the enriched degrees of freedom (DOFs) of a node
may become almost linearly dependent on the regular DOFs of the node, leading to ill-conditioned
system equations. The nearly linear dependency and ill-conditioning are especially apparent for
discontinuous enrichment functions when the interface approaches an element node and crack tip
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singular enrichment functions at a certain distance from the
singular point (Sukumar et al., 2015; Ventura and Tessei, 2016;
Agathos et al., 2019).

Generally, integrating the weak form within an element with
discontinuous interfaces requires element splitting. This
approach has strong adaptability and has been widely used in
previous studies (Moës et al., 1999; Belytschko et al., 2001;
Belytschko et al., 2009; Fries and Belytschko, 2010; Li et al.,
2018). However, implementation of the element-splitting
algorithm is complicated and not uniform. Additionally, it
presents challenges concerning the integration point mapping
in nonlinear constitutive models. Studies have been devoted to
the integration of non-polynomial enrichment functions
(discontinuous functions or singular functions) without
element splitting. The representative methods include the
equivalent polynomial integration method (Ventura 2006;
Ventura and Benvenuti, 2015), the arbitrary polygon
integration method (Natarajan et al., 2009; Natarajan et al.,
2010), the arbitrary domain integration method (Joulaian
et al., 2016), and the Legendre polynomial equivalent
integration method (Abedian and Düster, 2019), et al. At
present, these methods are usually limited to two-dimensional
(2-D) conditions; three-dimensional (3-D) implementations
remain a challenge. In addition, these methods cannot address
curved or kinked cracks/interfaces within an element. Song et al.
(2006) used a partition ratio-weighted single-point reduced
integration to integrate the weak form of quadrilateral
elements with discontinuous enrichment functions, thereby
avoiding element splitting and historical variable mapping.
However, single-point reduced integration is equivalent to
assuming that the element is constantly strained, which results
in poor solution accuracy (Wang et al., 2021).

For unstructured meshes and arbitrary non-planar cracks/
interfaces, cases with cracks/interfaces close to element nodes are
inevitable, which lead to ill-conditioned system equations.
Previous approaches for solving this problem include directly
removing the enrichment of nodes whose enrichment functions
have only small supports in the cut element (Daux et al., 2000;
Bordas et al., 2007), and adjusting the node coordinates such that
the partition ratio is not unreasonably small (Choi et al., 2012).
However, the former approach introduces interpolation errors,
while the latter is not a generalizable method, especially for 3-D
problems. Reusken (2008) proposed a method to impose
constraints on the enriched DOFs with a small partition ratio,
limiting its value to zero; this is essentially the same as removing
the enrichment. Ventura and Tesei (2016) proposed a stabilized
method that imposes constraints on the enriched DOFs through a
penalty method, reducing the additional error caused by the
constraints. Other studies have adopted the approach of
preconditioning the ill-conditioned system equations to
improve convergence. For example, Sauerland and Fries (2013)
studied the Jacobi preconditioner, and Béchet et al. (2005)
developed a preconditioner based on Cholesky decomposition.
However, this approach becomes cumbersome for nonlinear
problems and crack evolution problems because the Jacobian
matrix must be re-preconditioned after each update, which
significantly increases the amount of calculation.

Based on the research of Song et al. (2006), the partition ratio-
weighted integration method was improved in this study and is
referred to as “smeared” integration method. It was observed that
this method could significantly alleviate the ill-conditioning
caused by the nearly linear dependence of DOFs enriched by
the discontinuous functions. Furthermore, this method (for the
integration of the Jacobian matrix) was combined with the subcell
(element splitting) integration method (for the integration of
residuals) to produce a mixed integration scheme, which not only
resulted in well-conditioned system equations but also ensured a
high solution accuracy.

The remainder of this paper is structured as follows: Firstly,
the XFEM formulation is sketched out, and the weak form of the
equilibrium equation is presented, including the interface
contact relationship and the integral form of the Jacobian
matrix. Secondly, the smeared integration method is
presented, and its performance is demonstrated through a
series of element analyses. Then, the mixed integration
scheme is proposed and verification is made in the next
section through two benchmark examples. Finally, the main
conclusions of this study are summarized in the last section of
this paper.

XFEM FORMULATION

Strong and Weak Form of Boundary Value
Problem
A quasi-static boundary value problem with internal interfaces
was assumed, as shown in Figure 1. In the solution domain Ω,
there exists a strong discontinuous interface Γd, the two sides of
which are denoted as Γ+d and Γ−d ; the corresponding normal
vectors are n+ and n−, respectively. b is the body force in the
domain; Γt is the force boundary, and Γu is the displacement
boundary.

The force equilibrium conditions must be satisfied in the
continuum, and the corresponding Dirichlet or Neumann
boundary conditions must be satisfied at the boundaries. Thus,
the governing equations of the boundary value problem are

FIGURE 1 | Diagram of boundary value problem with crack.
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∇ · σ + b � 0 inΩ
u � �u on Γu (1)

σ · n � �t on Γt

Contact forces t+ and t− are defined on the internal interfaces
Γ+d and Γ−d , respectively. They satisfy the equilibrium condition
and can be expressed as a unified variable:

t � t+ � −t− on Γd (2)

u+ � u|Γ+d and u− � u|Γ−d correspond to the displacement
vectors on the two sides of the internal interface; the relative
displacement on the interface is defined as

w � u+ − u− (3)

The kinematics admissible (trial) space and the weighting
(test) space of the displacement are defined as

U � {u ∈ H1(Ω\Γd): u|Γu � �u, u discontinuous on Γd} (4)

U0 � {δu ∈ H1(Ω\Γd): δu|Γu � 0, δu discontinuous on Γd} (5)

For u(x) ∈ U and any δu(x) ∈ U0, the equivalent integral weak
form of the governing equations can be expressed as

δWint + δWc � δWext (6)

where δWint, δWext, and δWc are the work of the internal force,
external force, and interface contact force, respectively, and are
expressed as

δWint � ∫
Ω

sδu: σ dΩ

δWext � ∫
Ω

δu · b dΩ + ∫
Γt

δu · �t dΓ

δWc � ∫
Γ−
d

δu− · t− dΓ + ∫
Γ+
d

δu+ · t+ dΓ

(7)

where s is the symmetric gradient operator.
According to the definitions of t (Eq. 2) and w (Eq. 3), the

expression of δWc in Eq. 7 can be simplified as

δWc � ∫
Γd

δw · t dΓ (8)

The constitutive relationship of the continuum is expressed as

σ � D: su (9)

where D is the constitutive tensor. The traction-displacement
relationship of the interface can also be expressed in a constitutive
form as

t � QTDΓQ · w (10)

where DΓ is the interface constitutive tensor, implemented by
imposing constraints on the interface in practice;Q is the transfer
matrix from local coordinates to global coordinates.

Discretization and Jacobian Matrix
For simplicity, only a case with elements completely separated
by the interface was considered, and only the Heaviside
enrichment function was used in this study. Nevertheless, the
conclusions of this study also hold for a case that the end of the
interface stays inside the element, for which treatments have
been provided by Zi and Belytschko (2003), Kumar and
Bhardwaj (2018).

The displacement approximation in a shifted form is
expressed as

uh(x) � ∑
i∈I

Ni(x)ui + ∑
i∈Ip

Ni(x)(H(f(x)) −H(f(xi)))qi (11)

where the first summation term represents the standard FE
approximation, and the second summation term represents the
XFEM-enriched discontinuous approximation; I is the set of all
nodes in the discrete domain; I*∈I is the set of enriched nodes;Ni

is the regular finite element basis function of node i; ui and qi are
the regular DOF vector and the enriched DOF vector of node i,
respectively; and H is the Heaviside enrichment function, which
is expressed as

H(f(x)) � { 1 f(x)> 0
0 f(x)≤ 0 (12)

where f(x) is a signed distance function depending on the
definition of the positive normal of the discontinuous
interface, as shown in Figure 1.

Considering the variation in the discrete approximation of the
displacement field given by Eq. 11, the testing field can be
obtained:

δu � ∑
i∈I

Ni(x)δui + ∑
i∈Ip

Ni(x)(H(f(x)) −H(f(xi)))δqi (13)

According to the definition of the interface relative
displacement w given by Eq. 3, the continuous term of the
displacement field has no contribution to w; instead, w is
determined by the discontinuous term, as follows:

w � (H|Γ+
d
−H|Γ−

d
)∑

i∈Ip
Niqi � ∑

i∈Ip
Niqi (14)

Its variational form is expressed as

δw � ∑
i∈Ip

Niδqi (15)

By substituting the testing fields expressed in Eqs 13, 15
into the equivalent integral weak form of Eq. 6, and
considering the arbitrary nature of these fields, the
following discrete form of the equilibrium equations can be
obtained:

f intu − f extu � 0

f intq + f c − f extq � 0 (16)

where f intu and f extu are the nodal internal force vector and nodal
external force vector, respectively, corresponding to the regular
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DOFs; f intq and f extq are the nodal internal force vector and nodal
external force vector, respectively, corresponding to the enriched
DOFs; and f c is the nodal interface contact force vector. All these
vectors are integrated from the nodal force vectors of related
elements, and their specific expressions are presented in Eq. 17:

f intu � ∑
e

∫
Ωe

BTσ dΩ

f extu � ∑
e

⎛⎜⎜⎜⎝∫
Ωe

NTb dΩ + ∫
Γt

NT�t dΓ⎞⎟⎟⎟⎠
f intq � ∑

e

∫
Ωe

(H −HI)TBσ dΩ

f extq � ∑
e

⎛⎜⎜⎜⎝∫
Ωe

(H −HI)TNTb dΩ + ∫
Ωe

(H −HI)TNT�t dΓ⎞⎟⎟⎟⎠
f c � ∑

e

∫
Γd

NTt dΓ

(17)

where B is the discrete strain–displacement operator, and H and
HI are the matrix forms of the Heaviside function and its nodal
values, respectively.

Taking the derivative of Eq. 16 with respect to the
displacement fields and considering Eq. 17, the Jacobian
(stiffness) matrix of the finite element discretization equations
can be obtained as

K � [Kuu Kuq

Kqu Kqq + KΓd
qq
] (18)

where

Kuu � ∑
e

∫
Ωe

BTDBdΩ

Kqu � KT
uq � ∑

e

∫
Ωe

(H −HI)TBTDBdΩ

Kqq � ∑
e

∫
Ω

(H −HI)TBTDB(H −HJ)dΩ
KΓd

qq � ∑
e

∫
Γd

NTQTDΓQN dΓd (19)

When the same basis function is used, the Jacobian matrix
expressed as Eq. 18 may have a large condition number,
especially when the interface is close to the enriched nodes.
Thus, the enriched DOFs and the standard DOFs are almost
linearly dependent, and the matrix tends to be severely ill-
conditioned.

SMEARED INTEGRATION METHOD AND
MIXED INTEGRATION SCHEME

Smeared Integration Method
Based on Eqs 12, 19 and considering H2 � H, the numerical
integration of the discontinuous part (multiplied with the

Heaviside function) for each term in the stiffness matrix can
be generalized in the following form:

Idisc � ∫
Ωe

H(x) p(x)dΩ (20)

where p(x) is an arbitrary polynomial function. Evidently, the
discontinuity in the integrand arises from the discontinuity
in H(x).

As shown in Figure 2, a directional interface cut the element
into two subdomains ΩA and ΩB, denoting the positive and
negative parts of the signed distance function, respectively. The
integration of the discontinuous function over the entire element
is converted to a summation of continuous function integrations
over the two subdomains [H(x) is constant on each side]:

∫
Ωe

H(x) p(x)dΩ � ∫
ΩA

H(x)p(x)dΩ + ∫
ΩB

H(x)p(x)dΩ (21)

Noted thatH(x) equals to unit onΩA and vanishes onΩB, Eq. 20
can be simplified as

Idisc � ∫
ΩA

p(x)dΩ (22)

As the subdomains can be arbitrary polygons, the calculation
of Eq. 22 often requires further division of the subdomains into
triangular subcells, as illustrated in Figure 3, which brings much
burden for calculation.

To avoid element decomposition, Song et al. (2006) integrated
Eq. 20 over the entire element domain via single-point reduced
integration with hourglass control. Their starting point was the
assumption that all elements are constant-strain elements [p(x) �
C]; thus, the integration over the subdomain could be replaced
with integration over the entire element domain with a coefficient
representing the subdomain contribution:

∫
Ωe

H(x)C dΩ � ∫
ΩA

C dΩ � R ∫
Ωe

C dΩ (23)

where R is the partition ratio of the element cut by the interface
and is defined as

R � area or volume(ΩA)
area or volume(Ωe) (24)

Clearly, R is related to the location and configuration of the
interface; thus, it can reflect the distribution characteristics of the
discontinuous function defined on the element to some extent.
The rightmost integral in Eq. 23 is performed over the entire
element domain; thus, standard Gaussian integration can be
performed directly. However, the assumption of constant-
strain elements reduces the integration accuracy and prevents
an accurate reflection of the constitutive behaviors of nonlinear
materials.

Based on the method of Song et al. (2006), single-point
reduced integration was replaced with quadratic Gaussian
integration in this study, as shown in Figure 2B. This
alteration obviated the constant-strain assumption and the
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need for hourglass control. The integral domain remained
unchanged, and the influence of H(x) was reflected
approximately by R:

∫
Ωe

H(x)p(x)dΩ ≈ R ∫
Ωe

p(x)dΩ (25)

This integration method is simple and can be easily
implemented. The integration points remain consistent before
and after the discontinuity interface is introduced; thus, no
historical variable mapping is required. However, this method
ignores the shape information of the real integration domain and
introduces information from the integrand function outside the
domain. This approach is similar to a smearing/homogenizing
operation; it can be referred to as “smeared” integration and is
expressed as

Isme � R ∫
Ωe

p(x)dΩ (26)

Although this method suffers from certain approximation
errors, it offers several advantages: (i) Compared with subcell
integration, the smeared integration method avoids element
splitting and significantly reduces the number of required
integration points. (ii) In each element, the Gaussian
integration of BTDB needs to be performed only once. Only
Kuu in Eq. 19must be integrated; while the integration ofKuq and
Kqq can be achieved by multiplying Kuu with corresponding
coefficients related to the partition ratio R, which further reduces
the calculation complexity. The detailed relations between these
matrixes are derived in the Supplementary Appendix. (iii) The
stiffness matrix conditions are improved, and the nonlinear
iteration stability is enhanced. These features are demonstrated
in detail in the following sections.

Error Analysis of Smeared Integration
If the continuous integrand p(x) is a constant, the smeared
integration is accurate, as expressed in Eq. 23. If p(x) is a linear
or higher-order polynomial, the smeared integration has a certain
approximation error that is, directly related to the order of p(x)
and the location of the discontinuous interface relative to the
element (represented by the partition ratio R).

Defining the approximation error of the smeared integration
(Eq. 25) by comparing with the exact discontinuous function
integration (Eq. 21):

Err � Isme − Idisc � R ∫
ΩB

p(x)dΩ + (R − 1) ∫
ΩA

p(x)dΩ (27)

For low-order continuous integrand p(x), there exists a point xi

in the domain ΩA, satisfying:

∫
ΩA

p(x)dΩ � SA · p(xi) (28)

FIGURE 2 |Diagram of integration of element cut by a discontinuous interface (with a 2-D quadrilateral element as an example). (A) Integrationmethod proposed by
Song et al. (2006). (B) Smeared integration method.

FIGURE 3 | Diagram of subcell integration of element cut by
discontinuous interface (with a 2-D quadrilateral element as an example).
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Similarly, there exists a point xj in the domain ΩB, satisfying:

∫
ΩB

p(x)dΩ � SB · p(xj) (29)

Where SA and SB are the areas of ΩA and ΩB, respectively.
Noted that, SA � RpS, SB � (1-R)*S, where S is the area of the

intact element Ω, Eq. 27 can be rewritten as:

Err � R(1 − R)Spp(xj) + (R − 1)RSpp(xi)
� R(1 − R)Sp(p(xj) − p(xi)) (30)

Several conclusions can be drawn from this expression:

(i) For a fixed partition ratio R, a higher order of p(x) produces a
greater difference between p(xi) and p(xj), thus greater
approximation error in the smeared integration. Order of
p(x) decides the upper bound of the error. For the bilinear/
trilinear elements used in this study, the errors were limited and
were influenced more strongly by the location of the interface.

(ii) R behaves as a scale factor of the error. When R → 0 or
R → 1, the error approaches zero with the same order with R
or 1-R. Actually, these two conditions are equivalent as they
are interconvertible by changing the definition of the
interface direction in Figure 2.

(iii) When R → 0.5, the smeared integration has a relatively large
error because the shape information of the real integration
domain is ignored. For the three cases illustrated in Figure 4,
the same stiffness matrix is calculated from the smeared
integration; thus, smeared integration is not recommended
in this condition.

Influence of Smeared Integration on
Element Stiffness Condition
To understand the effects of partition ratio R and the
configuration of the discontinuous interface on the efficacy of

smeared integration, element tests for four typical cases, as shown
in Figure 51, were performed. The element stiffness matrices were
calculated via subcell integration and smeared integration. The
square element has a side length of a � 1 and an elastic modulus of
E � 1.0. Only four integration points are required for each cracked
element by the smeared integration while the subcell integration
involved the third-order Hammer integration with four
integration points in each triangle subcell.

Interface contact was fixed in a bonded state, and the penalty
method was employed to impose a spring-like constraint on the
interface. The penalty parameter k was assigned a value ten
times of the elastic modulus. The integration of tractions on the
interface was unified as two-point Gaussian integration. On
each element node, there were two regular DOFs and two
enriched DOFs. The element stiffness matrix was formed
into a 16 × 16 square matrix. Three rigid-body displacement
DOFs need to be removed when calculating the condition
number.

The contents of Table 12 and Figure 6 correspond to the
partition patterns shown in Figure 5 and present the condition
numbers of the element stiffness matrix obtained via smeared
integration and subcell integration, respectively. With the same
partition pattern, the condition numbers of the stiffness matrix
obtained through smeared integration were smaller than those
obtained through subcell integration. For partition pattern (A),
smeared integration produced the most significant reduction in
the condition number; when R was relatively small, the difference
reached several orders of magnitude. In double logarithmic
coordinates, the condition number of the stiffness matrix
exhibited a nearly linear relationship with R. The smeared
integration exhibited a slope of approximately −1.1, compared
with −1.9 for the subcell integration. This result is consistent with
the analysis in the last section; when R is relatively small, smeared
integration replaces the small quantities with larger ones, thus
alleviates the ill-conditioning of the element stiffness matrix. For
partition patterns (B), (C), and (D), the effect of smeared
integration was successively weakened. The stiffness matrix of
this bilinearly interpolated square element was integrated in the
space of span (x, y, x2, y2, xy); partition patterns (B), (C), and (D)
reduced the order of the integrand function. In partition pattern
(D), the variable x was fixed and exhibited no dependency on R;
partition patterns (B) and (C) represent the intermediate
transition states.

Analysis of Coupling With Interface Contact
For frictional contact problems with interface constraints
imposed using the penalty method, the accuracy and stability
depend on the penalty parameter k. In this study, a penalty
coefficient α was used to define the penalty parameter:

k � αpE (31)

FIGURE 4 | Diagram of case where “smeared integration”method is not
recommended.

1The red lines represent the discontinuous interfaces, and the arrows point toward
the side where H(x) > 0. Along the arrow direction, the discontinuous interfaces
gradually approach the element node, and the value of R gradually decreases to zero
2Isme denotes smeared integration; Idisc denotes subcell integration
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For the case shown in Figure 5A, some interesting phenomena
are observed when studying the condition number with different
penalty parameters. Here, three rigid-body DOFs must be

removed from the enriched DOFs to ensure that the analyzed
stiffness matrix is non-singular in the absence of interface
constraints.

FIGURE 5 |Diagram of typical partition patterns of discontinuous interface: (A) Interface cuts adjacent sides of element, cutting angle fixed at 45°; (B) Interface cuts
adjacent sides of element, intersecting with one element side fixed at midpoint; (C) Interface cuts two opposite sides of element, with distance between one intersection
point and one element node fixed at 0.01% of element side length; (D) Interface is parallel to one side of element.

TABLE 1 | Condition numbers of element stiffness matrix corresponding to four partition patterns obtained using two integration methods.

R Pattern (a) Pattern (b) Pattern (c) Pattern (d)

Isme (E) Idisc (E) Isme (E) Idisc (E) Isme (E) Idisc (E) Isme (E) Idisc (E)

0.0001 9.5 2.9 7.5 9.6 9.5 1.6 9.5 2.6
0.001 8.4 2.7 7.4 9.5 9.4 1.5 9.4 2.5
0.01 5.3 2.5 7.3 9.4 9.3 1.4 8.3 2.4
0.1 5.2 3.3 5.2 2.3 7.2 1.3 5.2 1.3
0.2 2.2 7.2 2.2 1.3 3.2 4.2 3.2 6.2

FIGURE 6 | Relationship curves of condition number with regard to partition ratio corresponding to four partition patterns (see Figure 5) obtained using two
integration methods.
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The influence of interface constraints imposed by the penalty
method on element stiffness matrix includes two aspects: 1) The
interface constraints restrict relative movements between the two

sides of the interface, hence improving the stiffness matrix’s
condition. 2) The condition number of the stiffness matrix
may increase significantly with a large penalty parameter

TABLE 2 | Condition numbers obtained using two integration methods with different penalty coefficients and partition ratios.

R Subcell integration Smeared integration

α = 0 (E) α = 10 (E) α = 100 (E) α = 1000 (E) α = 0 (E) α = 10 (E) α = 100 (E) α = 1000 (E)

0.0001 2.9 2.9 7.9 8.10 3.5 2.5 2.5 7.5
0.001 2.7 2.7 9.7 1.9 3.4 2.4 3.4 1.5
0.01 2.5 3.5 1.6 2.7 3.3 2.3 6.3 3.4
0.1 2.3 3.3 2.4 3.5 4.2 2.2 9.2 5.3

FIGURE 7 | Condition numbers obtained using two integration methods with different penalty coefficients and partition ratios. (A) Subcell integration; (B) Smeared
integration.

FIGURE 8 | Flow chart of mixed integration scheme.
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involved (usually much larger than other parameters in the
stiffness matrix).

Table 2; Figure 7 present comparisons of the stiffness matrix
condition numbers obtained using smeared and subcell integration
with different penalty coefficients and partition ratios. The penalty
coefficient α � 0 indicates that no penalty constraint has been
imposed. It is observed that as R approached 0, the condition
number increased in all cases in a nearly linear manner; however,
the condition number corresponding to smeared integration was
much smaller than that corresponding to subcell integration, and
the increasing slope was much smaller. For subcell integration, the
condition number showed almost no change after an interface

constraint with a penalty coefficient α � 10 was imposed; the
condition number increased significantly with further increase in α,
indicating that aspect 2) in the pre-analysis played a dominant role.
However, for smeared integration, after an interface constraint
with a penalty coefficient α � 10 was imposed, the condition
number exhibited a slight decrease; only marginal increase was
observed with further increase in α. This indicates that aspect 1) in
the pre-analysis played a dominant role. With the coupling of
interface contact and internal stiffness, the smeared integration
method exhibits a coupling effect that can maintain the stability of
the overall condition number, thereby improving the solution
stability and the convergence of nonlinear iterations.

MIXED INTEGRATION SCHEME FOR XFEM

When using Newton’s method to solve nonlinear problems, the
Jacobian matrix must be updated in each iteration step; the
condition number of the Jacobian matrix can significantly
affect the stability and convergence of the nonlinear iterations.
The iterations can hardly converge with an ill-conditioned
Jacobian matrix (Fries and Belytschko, 2010; Belytschko et al.,
2014). In practice, an approximate but well-conditioned Jacobian

FIGURE 9 | Illustration of typical benchmark example. (A) Example model; (B) Regular mesh model; (C) Irregular mesh model.

FIGURE 10 | Partition ratio distributions of cut elements in two sets of meshes. (A) Regular mesh; (B) Irregular mesh.

TABLE 3 | Condition numbers of Jacobian matrix with different penalty
parameters.

Mesh Integration scheme Penalty coefficient α

1.0 E + 03 1.0 E + 04 1.0 E + 05

Regular mesh Mixed 6.5 E + 06 1.3 E + 07 1.4 E + 07
Total subcell 2.8 E + 08 5.3 E + 08 6.0 E + 08

Irregular mesh Mixed 1.4 E + 05 1.2 E + 06 1.2 E + 07
Total subcell 2.6 E + 08 8.8 E + 08 1.6 E + 09
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matrix could be better than an accurate but ill-conditioned
Jacobian matrix for iteration stability. An approximate
Jacobian matrix is commonly employed for problems with an
asymmetric Jacobian matrix, such as non-associated elastoplastic
constitutive and frictional contact (Chen and Cheng, 2011).

Based on the element analysis of smeared integration presented
in the previous section, a mixed integration scheme for XFEM was
proposed. A critical partition ratio R* was set, and the stiffness of
the element cut by the interface was integrated with respect to the

element partition ratio R, as shown in Figure 8. When R was less
than R* or greater than 1-R* (the situations in which ill-
conditioning occurs), smeared integration was used to improve
the stiffness condition; when R was in the middle range, subcell
integration was used to obtain a higher integration accuracy. For all
residual integrations, subcell integration was used to obtain
accurate residuals and ensure accurate results. Based on
previous element analyses and the example analyses in next
section, the value of R* should be set in the range of 0.05–0.2
to achieve a suitable balance between convergence rate and
convergence stability. The partition ratio R, along with the areas
or volumes of the subcells and other crack information for a
cracked element, are computed in the crack processing procedure
once the element reaches the cracking criteria, and are stored for
reutilization thereafter. For fixed interface problems mainly
discussed in this paper, this information is computed and
stored as initial information at the very beginning of the solution.

EXAMPLE VERIFICATION

Two typical benchmark examples were used to verify the
robustness and practicability of the mixed integration scheme.

FIGURE 11 | Displacement results calculated using mixed scheme with irregular mesh (the displacement is scaled by a factor of 2, Units: m). (A) horizontal
displacement; (B) vertical displacement.

FIGURE 12 | Convergence profiles using mixed scheme and total subcell scheme. (A) Regular mesh; (B) Irregular mesh.

FIGURE 13 | Setup of 3-D beam problem. (A) xoy plane; (B) yoz plane.
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The global Newton iteration method was used, with r/r0 as the
convergence indicator for the iteration process, where r0 is
the initial residual force vector, and r is the residual
force vector of the current iteration step, and ‖ · ‖ is the
L2 norm of vectors. The iteration termination conditions
were set as

‖r‖
‖r0‖≤ 1 · E

−10 (32-1)

orNiter> 200 (32-2)

or
‖r‖
‖r0‖≥ 10 at 3 consecutive iterations (32-3)

where Niter is the total number of iterations. Condition (Eq. 32-
1) indicates that the Newton iteration converges to the given
minimum error limit; condition (Eq. 32-2) indicates that after

reaching the maximum allowed iteration number, the Newton
iteration has not converged to the minimum error limit;
condition (Eq. 32-3) indicates that the iteration is divergent.

Frictional Contact Block With Inclined
Interface
This example was designed by Dolbow et al. (2001); the model is
shown in Figure 9A. It is a square with an inclined interface that
passes through the center of the square, separating it into upper
and lower parts connected by the interface contact. A
displacement load of 0.1 m is applied to the top of the square;
the vertical displacement of the bottom is constrained, but is free
to move horizontally. The horizontal displacement of the upper
right corner of the block is constrained to prevent possible
slippage of the entire upper block. The inclination angle of the

FIGURE 14 |Displacement and stress results for structured mesh. (A) x-direction displacement of R � 0.5 (Unit: m); (B) x-direction stress of R � 0.5 (Unit: MPa); (C)
x-direction displacement of R � 0.1 (Unit: m); (D) x-direction stress of R � 0.1 (Unit: MPa); (E) x-direction displacement of R � 0.01 (Unit: m); (F) x-direction stress of R �
0.01 (Unit: MPa).
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interface is set at θ � tan−1(0.2). The square has an elastic modulus
of E � 1,000 MPa, a Poisson’s ratio of ] � 0.3, and an interface
friction coefficient of μ � 0.19. The penalty coefficient is set as α �
10,000.

This example considers a regular mesh and an irregular mesh, as
shown inFigures 9B,C, respectively. The regularmesh consists of 40×
40 square elements. To prevent the interface from passing exactly
through the element nodes, the interface is shifted upward by 0.01m.
The irregular mesh consists of 1857 arbitrary quadrilateral elements.

The partition ratio distributions of all cut elements were
plotted for both sets of meshes, arranged from small to large, as
shown in Figure 10. In both meshes, there were several cut

elements with an R value tending to extreme conditions (R <
0.1 and R > 0.9), indicating poor conditions of the Jacobian
matrix.

The condition numbers of the overall Jacobian matrix for
different penalty parameters when using the mixed integration
scheme and the total subcell integration scheme are presented in
Table 3. For the mixed integration scheme, the critical partition
ratio R* is set as 0.1. The mixed integration scheme significantly
reduced the condition number in both meshes; the reductions in
the regular and irregular meshes were greater than one order and
two orders of magnitude, respectively.

A negligible difference was present between the calculation
results of the mixed integration scheme and the total subcell
integration scheme. A comparison of the calculation results for
the regular and irregular meshes also showed a negligible
difference. Thus, Figure 11 shows only the displacement
contours of the irregular mesh calculated using the mixed
integration scheme.

The convergence profiles of the two sets of meshes when using
the mixed and total subcell integration schemes are shown in
Figure 12. For the regular mesh, the total subcell scheme required
14 iteration steps, whereas the mixed scheme required 36
iteration steps to converge to the minimum error limit. This
indicates that owing to its approximate Jacobian matrix, the
mixed scheme could not reach the optimal Newton
convergence rate but can still guarantee convergence. For the
irregular mesh, the total subcell scheme could not converge
within the Newton iterations, due to the ill-conditioned
Jacobian matrix. However, the mixed scheme converged to the
minimum error limit after 148 iterations; thus, this scheme can
reduce the Jacobian matrix condition number and improve
convergence.

3-D Beam Under Uniaxial Tensile Loading
Martin et al. (2015) analyzed a layered 3-D beam under uniaxial
tensile loading using XFEM. The beam dimensions and
boundary conditions are shown in Figure 13. An interface
parallel to the xoy plane divided the beam into upper and
lower layers; the tensile stresses applied to the right end of the
upper and lower layers were Tup � 300 MPa and Tlow �
100 MPa, respectively. The material was an elastoplastic
body with linear strain hardening behavior, an elastic
modulus of E0 � 195 GPa, a Poisson’s ratio of ] � 0, a
plastic yield strength of σs � 180 MPa, and a strain-
hardening modulus (the tangent modulus of the plastic
zone) of Ep � 1.95 GPa. This setting resulted in obvious
deformation and stress discontinuity in the element cut by
the interface. The material above the interface entered the
plastic deformation stage, while that below the interface
remained elastic. No friction acted on the interface

TABLE 4 | Condition numbers of Jacobian matrix with different partition ratios.

R 0.5 0.1 0.01

Regular mesh Mixed scheme 7.28 E + 05 4.90 E + 06 1.54 E + 07
Total subcell scheme 7.91 E + 06 3.64 E + 07 2.99 E + 08

FIGURE 16 | Distribution of unstructured mesh partition ratios.

FIGURE 15 | Convergence profiles of two integration schemes with
different partition ratios (S denotes total subcell scheme and M denotes mixed
scheme).
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(i.e., the friction coefficient was μ � 0). The normal constraints
(non-penetration condition) were imposed using the penalty
method, and the penalty coefficient was set as α � 10,000.

Firstly, a structured hexahedral mesh consisting of 20 × 5 × 3 �
300 elements was used. The splitting of the hexahedral element
into tetrahedrons for subcell integration was performed based on
the method used by Martin et al. (2015).

The partition ratio of the elements cut by the interface are
related with the interface location. For the structured hexahedral
mesh, the interface was parallel to one face of the element, and the
partition patterns for all elements cut by the interface were the
same. The cases with R � 0.5, 0.1, and 0.01, i.e., the interface was
located in the middle, upper 90%, and upper 99% of the element,
respectively, were analyzed. The critical partition ratio R* of the

mixed integration scheme was set as 0.5. Therefore, the element
stiffness of the cut elements in all cases was calculated using the
smeared integration method.

Figure 14 shows the calculation results for displacement and
stress using the mixed integration scheme, which were consistent
with the theoretical solution; the residual errors were less than
E-10.

Table 4 presents the condition numbers of the Jacobian matrix
with different partition ratios, as obtained using the two integration
schemes, when the upper structure entered the plastic stage. At this
point, the stiffness difference between the structures above and
below the interface was relatively large, leading to relatively large
Jacobian matrix condition numbers. The condition numbers
increased with a decrease in partition ratio R. For all cases, the
mixed integration scheme produced smaller condition numbers
than the total subcell scheme.

The convergence profiles of the two integration schemes with
different partition ratios are shown in Figure 15. Owing to
accurate integration of the Jacobian matrix, for all three
partition ratios, only three iterations were required to converge
to a residual error less than E-10 when using the total subcell
scheme. However, when using the mixed scheme, 17, 15, and 11
iterations were required to converge to the same error limit for
R � 0.5, 0.1, and 0.01, respectively. This result indicates that
although the mixed scheme could reduce the Jacobian matrix
condition number, it could not achieve the optimal convergence
rates, due to approximation of the Jacobian matrix; however, it
could guarantee convergence.

To determine the adaptability of the mixed integration scheme
to a more generalized mesh, an unstructured tetrahedral mesh
was analyzed. However, it was difficult to avoid the case with the
interface very close to some element nodes, which resulted in
larger Jacobian matrix condition numbers.

TABLE 5 | Condition numbers of Jacobian matrix obtained using two integration schemes with different critical partition ratios.

R* 0.5 0.2 0.1 0.05 0.01 0.001 0.0001

Mixed scheme 3.1 E + 7 4.3 E + 7 7.6 E + 7 2.7 E + 8 3.2 E + 9 6.6 E + 10 1.60 E + 12
Subcell scheme 8.16 E + 12

FIGURE 17 | Relationship of Jacobian condition numbers using the
mixed scheme with critical partition ratios.

FIGURE 18 | Stress and displacement results usingmixed integration schemewith unstructuredmesh. (A) x-direction displacement (Unit: m); (B) x-direction stress
(Unit: MPa).
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The mesh consisted of 3608 quadratic tetrahedral elements,
which yielded a non-constant Jacobian matrix. The vertex nodes
were enriched, whereas the edge nodes were not. The interface
was described using linearly interpolated level sets defined on the
vertex nodes.

A total of 405 elementswere cut by the interface; the partition ratio
distribution of these elements, arranged from small to large, is shown
in Figure 16. For different critical partition ratios R*, the Jacobian
matrix condition numbers under the two integration schemes are
presented in Table 5; Figure 17. A smaller R* indicates a smaller
portion of cut elements integrated by the smeared integrationmethod
in themixed scheme. In other words, the smeared integrationmethod
plays a less significant role in the mixed scheme; thus, the mixed
scheme is more similar to the total subcell scheme. With an increase
in R*, the Jacobian condition number decreases sharply at first, as
shown in Table 5; Figure 17. However, after R* reaches
approximately 0.1, the decrease becomes gentle; this indicates that
almost all the ill-conditioned elements are included in the smeared
integration portion. Thus, the mixed integration scheme can be
considered to have reached its limit in terms of the ability to
improve the condition of the matrix. Thus, R* � 0.1 was used in
the final calculation.

The calculation results for stress and displacement using the
mixed integration scheme are shown in Figure 18; these results
are consistent with the theoretical solution. The mixed scheme
converged to the given minimum error limit after 69 iterations, as
shown in Figure 19; however, the subcell scheme did not
converge within the Newton iterations due to the ill-
conditioning. These results prove that the mixed integration
scheme exhibits good convergence stability for strongly
nonlinear problems with unstructured meshes.

CONCLUSION

This study introduced a smeared integration method that can
integrate the weak form of elements with discontinuous

enrichment without element splitting. The method also
avoids variable mapping in the nonlinear constitutive
equations. Compared with conventional methods, this
method is simple in form and easy to implement, and
achieves excellent performance in terms of improving the
condition of system equations. The performance of the
method was verified through a series of element
analyses. A mixed integration scheme was developed by
leveraging the advantages of the smeared integration
method and the subcell integration method. To improve
the condition and convergence, the smeared integration
method was used for the stiffness integration of
elements with discontinuous enrichment that may be ill-
conditioned; moreover, the subcell method was used for
residual integration to ensure the accuracy of the final
solution. In the example calculations, the mixed
integration scheme significantly improved the system
Jacobian condition and provided a good balance between
convergence rates and convergence stability, especially with
an unstructured mesh.

In general, the proposed integration scheme ensures the
convergence of Newton iterations with Jacobian matrix
embedded with discontinuous functions, hence promoting the
practical application of the extended finite element method in
geotechnical and geological disaster assessment and prevention
analysis.
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