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In this study, a foundation bearing capacity limit analysis upper-bound solution (FLU) was
proposed under the theoretical framework of limit analysis. To be more specific, an
optimized mathematical model based on a rigid block discrete system was first
established, with the minimum bearing capacity as the objective function, block
velocity as the main variable, and the satisfaction of velocity compatibility, associated
flow rule, and functional equilibrium equations of adjacent blocks as main constraints.
Then, using an optimization approach, the upper-bound value of the foundation’s bearing
capacity was obtained. On this basis, the principle of establishing the value interval of the
most dangerous slip depth of the two-layer clay foundation was developed by investigating
the effects of varying depths on the bearing capacity of the two-layer clay foundation.
Meanwhile, an approach for calculating the bearing capacity of the two-layer clay
foundation was proposed to achieve the goal of reaching the foundation’s minimum
bearing capacity. Furthermore, using a mathematical example, the proposed approach
was proven to be rational.

Keywords: bearing capacity of foundation, limit analysis, upper bound solution, optimizedmathematicalmodel, two-
layer clay foundation

1 INTRODUCTION

In the field of geotechnical engineering, calculating the ultimate bearing capacity of foundations has
always been a great concern (Terzaghi and Peck 1967; Davis and Booker 1974; Chen 1975; Griffiths
1982; Michalowski and Lei 1996), with significant implications for underground space and
engineering safety. Upper-bound limit analysis based on plastic mechanics is a powerful
approach for calculating the ultimate bearing capacity of foundations (Lyamin and Sloan 2002;
Huang and Qin 2009; Osman 2019; Shamloo and Imani 2020). It is primarily composed of the limit
analysis finite element and the limit analysis approach based on discretization of a rigid block in
terms of various discretization approaches used in the calculation model. This method does not need
to introduce too many assumptions, has a strict theoretical basis, and has advantages in the
calculation of foundation bearing capacity.

Recently, many researchers have proposed the limit analysis finite element upper-bound
solution approach of foundation bearing capacity by combining the plastic mechanics of limit
analysis theory and finite element (Alkhafaji et al., 2020; Pham et al., 2020; Shamloo and Imani
2020). The approach based on the upper-bound theorem of plastic mechanics can compensate for
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the traditional limit equilibrium approach’s imprecise
theoretical foundation. However, it can lead to heavy
workload and low calculation efficiency since the finite
element discretization must be conducted on the research
object, and the velocity of each element node is considered
an unknown quantity. Furthermore, a large number of unknown
quantities and a high degree of freedom make the calculation
process difficult. Overall, its widespread adoption and
application in complex practical engineering will be
challenging (Wang et al., 2019; Wang et al., 2020).

In the foundation bearing capacity limit analysis approach based
on the discretization of rigid blocks, on the premise that the velocity
of adjacent block meets the velocity compatibility and the interface
velocity satisfies the relation equation of the associated flow
principle, the velocity field of the sliding body is first obtained by
recursing the velocity field of the slip mass in recurrence, and then
the ultimate load is solved in accordance with the functional
equilibrium equation that the internal energy dissipation is equal
to the external work. The approach also implies the assumption of
tangential relative velocity direction, and it can deal with the problem
of introducing a significant number of assumptions in the traditional
limit equilibrium approach.

In this study, an optimized mathematical model for the
foundation bearing capacity was directly established in
accordance with the upper-bound theorem instead of
adopting the thought of introducing a significant number of
assumptions in the traditional limit equilibrium approach. In
this way, the foundation bearing capacity problem can be
transformed into an optimization solution problem. Based
on this, a foundation bearing capacity limit analysis
upper-bound solution (FLU) was proposed to solve the
foundation bearing capacity using a nonlinear mathematical
programming solver. Meanwhile, the principle of
determining the value interval of the most dangerous slip
depth of the two-layer clay foundation was proposed by
studying the effects of various depths on the bearing
capacity of the two-layer clay foundation. Similarly, the
calculation approach of iterative optimization using the
dichotomy was proposed for the bearing capacity of the
two-layer clay foundation in order to achieve the goal of
reaching the minimum foundation bearing capacity.
Furthermore, the proposed method was proven to be
rational using a mathematical example.

2 FOUNDATION BEARING CAPACITY LIMIT
ANALYSIS UPPER-BOUND
SOLUTION (FLU)
2.1 Discretization of Rigid Block
As shown in Figure 1, this study proposes an improved rigid
block discrete approach that can automatically generate a
block division model based on geological conditions and
failure mode of the actual foundation. Through the
interface segment or block set that constitutes the block
division system, the block division system model can be
defined as the following:

{ V � L1 L2 . . . Lj . . . Lhl−1Lhl

V � B0B1 B2 . . .Bk . . .Bhb−1Bhb
(1)

where j is the index number of the interface segments in the block
division system; hl is the total number of interface segments in the
block division system; hl′ is the total number of all interface
segments, excluding the ground surface; k is the index number
of the blocks in the block division system; hb is the total number of
blocks contained in the slip mass; B1 Ħ Bhb are the failure
mechanisms; and B0 indicates the soil without plastic failure.

The normal vector in the interface segment is defined
as facilitating the establishment of an optimized mathematical
model of the limit analysis upper-bound solution in the block
division system. In addition, the inner normal vector’s calculation
approach is briefly introduced below.

Any block Bk in the block division system can be formed by a
series of nodes or interface segments arranged in sequence, as
demonstrated below in Eq. 2

{ BK � a1k, a
2
k . . . a

i
k . . . a

h1−1
k , ah1k

BK � a1ka
2
k . . . a

i
ka

i+1
k . . . ah1−1k ah1k

(2)

where aik are the vertices that compose the polygon BK and
arranged clockwise, and the last point of the polygon BK coincides
with the first point, or ah1k � a1k , ensuring the polygon’s closure; i

FIGURE 1 | Improved rigid block division model.

FIGURE 2 | Definition of the normal vector in the interface segment.
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is the index number of the vertex; h1 is the total number of
vertices; and aika

i+1
k is the interface segment.

The internal normal vector of the aika
i+1
k interface line segment

is obtained using Eq. 3i.

mi
k � (ai+1k − aik) × (aik − ai−1k ) × (ai+1k − aik)/∣∣∣∣mi

k

∣∣∣∣ (3i)
where mi

k is the aika
i+1
k internal normal vector of the interface

segment in the block BK. The normal vector calculated using the
above equation in the boundary segment always points to the
inner part of the polygon, irrespective of the vertex’s rotation
direction, and is unique in geometric space. Furthermore, as
shown in Figure 2, the internal normal vectors of the interface
shared by two adjacent blocks are equal in magnitude and
opposite in direction.

2.2 Variable System
Variables involved in the optimization model of the foundation
bearing capacity upper-bound solution consist of the ultimate
bearing capacity (P), the velocity VBk(VBxk, VByk) of each
block in the block division system, and the intermediate
variable of the relative velocity Vj(VTj, VNj) of the interface
segment introduced for simplifying the optimization solution.
To describe the directional characteristics of the interface force,
a local coordinate system is established on all interfaces, with the
direction of the segment as the positive axis and the direction
vector as tj. As shown in Figure 3, the N axis is perpendicular to
the boundary segment, with the direction vector of nj � lz × tj,
where lz � (0, 0, 1). Then, the relative velocity of the interface
can be expressed using Eq. 3ii:

{ VTj � VTj p tj
VNj � VN j p nj

(3ii)

In the block, the direction of the local coordinate system in Bk

should be determined using the internal normal vector of the
interface segment Lj, as shown in Eq. 4:

⎧⎨⎩ VTi
k � VTj p tj p (nj ·mi

k)
VNi

k � VNj p nj p (nj ·mi
k) (4)

When nj andmi
k are in the same direction, then nj ·mi

k � 1.
When nj and mi

k are in the opposite direction, then
nj ·mi

k � −1. According to this definition, the local
coordinate direction vectors established on the common
interface l12 are opposite to each other for two adjacent
blocks (such as B6 and B8 in Figure 3). In that case, only
a set of variables V12(VT12, VN12) on the common interface
l12 are required for describing the characteristics of acting
force between blocks equal in magnitude and opposite in
direction.

Obviously, the variables required by the variable system
established by this method are less than the finite element of
limit analysis. The main reasons are as follows: 1) the number of
blocks after block discretization is less than the number of finite
element elements; 2) the method in this paper is based on the
block interface, the limit analysis finite element is based on
nodes and needs to consider the situation of overlapping nodes,
and the number of block interfaces is less than the number
of nodes.

2.3 Constraint equations
According to the upper-bound theorem of limit analysis, the
constraint equations comprise associated flow rule, velocity
compatibility, and functional equilibrium equations.

FIGURE 3 | Approaches for representing the force on the interface used
by two adjacent blocks in common.

FIGURE 4 | Velocity compatibility diagram.

FIGURE 5 | Optimization model.
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FIGURE 6 | Prandtl–Reissner failure mode and rigid block discrete. (A) Prandtl–Reissner failure mode. (B) Rigid block discrete models of φ � 0° and φ � 30°

TABLE 1 | Comparisons of ultimate bearing capacity and characteristic parameters under different internal friction angles.

φ(°)

0 5 10 15 20 25 30 35

P1
cb (q � 0) ① 5.14 6.49 8.34 10.98 14.83 20.73 30.15 46.14

② 5.14 6.49 8.34 10.98 14.83 20.72 30.14 46.12
P2
cb (q � 40) ① 5.54 7.12 9.33 12.55 17.40 25.00 37.51 59.47

② 5.54 7.12 9.33 12.55 17.39 24.99 37.50 59.44

①: FLU (this study). The cup practice of calculating the foundation bearing capacity by this method is less than 1 s.
②: Prandtl–Reissner.

FIGURE 7 | Calculation model of bearing capacity of the two-layer clay foundation.

Frontiers in Earth Science | www.frontiersin.org February 2022 | Volume 9 | Article 8254834

Lin et al. Bearing Capacity Upper-Bound Limit Analysis

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


FIGURE 8 | h
b − P

c1b
. Curve. (A) c1

c2
� 1, (B) c1

c2
>1, (C) c1

c2
>1.
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2.3.1 Associated Flow Rule
The interface’s relative velocity must also conform to the
associated flow rule, or the angle between the relative
kinematic velocity and the interface should be equal to the
internal angle φj of friction:

VNj � tanφj

∣∣∣∣VTj

∣∣∣∣ (5)
To better describe the characteristics of |VTj| and reduce the

difficulty of finding the optimization solution, two intermediate
variables,VTaj andVTbj, are introduced and defined as the following:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∣∣∣∣VTj

∣∣∣∣ � VTaj + VTbj
VTj � VTaj − VTbj

VTaj > 0
VTbj > 0

VTajVTbj � 0

(6)

Equation 5 can be rewritten as the following:

VNj � tanφj(VTaj + VTbj) (7)
The upper-bound solution proposed by Chen et al. (2003), for

example, assumed that the direction ofVTjVTj on the bottom slip
surface is determined. However, the rationality of the assumption
of the VTj direction on the interface between blocks cannot be
guaranteed in some complicated engineering problems.
Furthermore, unreasonable direction assumptions can lead to
inaccurate results. The direction of VTj in the proposed
approach is determined directly through optimization rather
than making assumptions, which is theoretically more rigorous.

2.3.2 Velocity Compatibility Condition
Adjacent blocks should conform with the velocity
compatibility condition, that is, a velocity triangle is made
up by the relative velocity of the interface velocity and the
velocity of two adjacent blocks and can be expressed
mathematically as the following:

⎧⎨⎩ VNj � (V1
j − V2

j ) · nj

VTj � VTaj − VTbj � (V1
j − V2

j ) · tj (8)

where V1
j and V2

j are the blocks bounded by the
common interface segment lj. In V1

j , the internal normal
vector of the internal interface segment lj is m1

j � nj. In
V2

j , the internal normal vector of the internal interface
segment lj is m1

j � −nj. Regarding the boundary segment, V2
j �

VB0 � (0, 0, 0) on the slip surface,Vj � V1
j , as shown in Figure 4.

2.3.3 Functional Equilibrium Equation
According to the associated flow law, the internal energy
dissipation on the interface polygon Lj can be expressed as:

E1 � ∑hl′
j�1

∣∣∣∣VTj

∣∣∣∣cjlj � ∑hl′
j�1(VTaj + VTbj)cjlj (9)

where cj and lj are the cohesive force and length of the interface
segment Lj, respectively.

The gravity acting of the block is

E2 � ∑hb

k�1 Vk · Gdk (10)
where G is the gravity direction vector, taking (0, −9.81, 0) in
general, and dk is the density of the block, Bk.

The external work is

E3 � ∑hq

i�1 Qi · Vi (11)
where Qi is the external load that includes the unknown variables
such as foundation bearing capability (P) and overlying load q; i is
the index number of external load; hq is the total number of external
loads; and Vi is the velocity of the block where Qi is located.

On this basis, a functional equilibrium equation for the whole
slip mass can be obtained:

∑hl’

j�1(VTaj + VTbj)cjlj � ∑hb

k�1 Vk · Gdk +∑hq

i�1 Qi · Vi (12)

2.3.4 Other Constraints
To ensure that the blocks are not embedding, the relative normal
velocity must also satisfy the constraint equation of Eq. 13:

VNj ≥ 0 (13)

2.4 Optimization Model
According to the upper-bound theorem, the foundation bearing
capacity calculated by any failure mode satisfying the constraints is
greater than the real foundation bearing capacity. The smaller the
calculated foundation bearing capacity is, the closer it is to the real
solution. Therefore, the objective function of the optimization
model is to minimize the bearing capacity Eq. 14. The objective
function Eqs 5, 6, 9, 14 as standard optimization models of
constraint conditions are shown in Figure 5.

FLU � Min(P) (14)

2.5 Verification of Equation for Foundation
Bearing Capacity
For foundations with agravic medium, Prandtl–Reissner assumes
that the foundation bed is completely smoothwith the failuremode
(as shown in Figure 6A) and the calculation equation for ultimate
bearing capacity given, using the characteristic approach:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P � qNq + cNc

Nq � tan2(π
4
+ φ

2
)eπ tanφ

Nc � (Nq − 1) cotφ
(15)

whereNq is the Earth pressure coefficient for the overlying load
q;Nc is the Earth pressure coefficient; and c is the soil cohesion.

TABLE 2 | Range of slip depth.

c1
c2

� 1 c1
c2
< 1 c1

c2
> 1

H
b < 0.71

H
b > 0.71

H
b < 0.71

H
b > 0.71

h
b Slip depth h

b � 0.71 h
b � H

b
h
b � 0.71 h

b> 0.71 h
b � 0.71 or H

b < h
b
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As shown in Figure 6B, the rigid block discrete model is
generated automatically according to the geometric relationship
in the failure mode (when the friction angles in the soil mass are 0°

and 30°). Then, an optimized mathematical model is established to
obtain the ultimate bearing capacity of the foundation with an

agravic medium under various parameters (Table 1). For the
simple foundation with agravic medium, the calculation results
obtained by the FLU proposed in this study are consistent with the
theoretical solution, proving the rationality of the proposed
approach.

FIGURE 9 | Optimized calculation approach for the bearing capacity of the two-layer clay foundation. (A) Flowchart, (B) Iternative solution using the dichotomy
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3 RESEARCH ON THE VALUE RANGE OF
SLIP DEPTH OF TWO-LAYER CLAY
FOUNDATION
The bearing capacity of the two-layer clay foundation is difficult
to calculate. Many researchers have conducted analytical studies
on it. To better present the advantages of the rigid block discrete
in this study, slip modes similar to those used by
Prandtl–Reissner and Terzaghi are for the discretion of rigid
body, as shown in Figure 7. The slip depth coefficient H/b in
Figure 7 is the layer depth; h/b is the slip depth. An accurate block
discrete model can be obtained according to the characteristics of
the slip mode by determining h/b and automatically generated
using the proposed approach; c1/c2 is the ratio of cohesive forces
of the upper and lower soil; and hb is the number of blocks.

To determine the value range of slip depth for two-layer clay
foundations, the effect of slip depth h

b on foundation
bearing capacity is investigated under different combinations
of c1

c2
� 1, c1

c2
< 1(0.2, 0.25, 0.33, 0.5), c1

c2
> 1(2, 3, 4, 5), and

H
b � 0.2、0.5、1.0、1.5, as shown in Figure 8. According to
the calculation results:

1) When c1
c2
� 1, the problem of calculating the bearing capacity of

two-layer clay foundations is reduced to the problem of
calculating the bearing capacity of uniform and non-cohesive
foundations. The coefficient P

c1b
of the foundation bearing capacity

first decreases and then increases with h
b, reaching a minimum

value of 5.14 at hb � 0.71, which is the Prandtl theoretical solution.
2) When c1

c2
< 1 and H

b < 0.71(Hb � 0.2、0.5), local failure occurs in
the upper soil due to its low strength.

3) When c1
c2
< 1 and H

b > 0.71(Hb � 1.0、1.5), the variation law
before reaching the layered interface H

b is the same as that of
the uniform foundation, and P

c1b
reaches 5.14, theminimum value,

at hb � 0.71.No low value of P
c1b

can be obtainedwithin the range of
the lower soil because the strength of the lower soil is greater than
that of the upper soil as h

b increases. In that case, it can be
considered a uniform foundation.

4) When c1
c2
> 1 and H

b < 0.71(Hb � 0.2、0.5), the bearing capacity
coefficient of the foundation first decreases and then increases
with h

b. Furthermore, the minimum value will be lagging due to
the lower strength of lower soil, hb > 0.71.

5) When c1
c2
> 1 andH

b < 0.71(Hb � 1.0、1.5), a downwardandupward
trend can be seen on both sides ofHb , with two distinct troughs. In the
actual search, P

c1b
values corresponding to two troughs should be

compared, with the smaller one being used as the ultimate load.

According to the value range of hb provided by the above results
(Table 2), reducing the search range while calculating the
ultimate load can enhance the calculation efficiency.

4 OPTIMIZED CALCULATION METHOD
FOR THE BEARING CAPACITY OF
TWO-LAYER CLAY FOUNDATION
Based onTable 2 and FLU, an optimized calculation approach for
the bearing capacity of the two-layer clay foundation is proposed.
The proposed approach first calculates the range of slip depth
according to Table 2 and then obtains the final slip depth and
foundation bearing capacity using the dichotomy in iteration.
Figure 9 shows the specific process.

As shown inFigure 9, L (min,max) is an optimizationmodel of an
iterative solution using the dichotomy, where min is the minimum of
the initial iteration interval, and max is the maximum of the initial
iteration interval. FLU (hb) is the ultimate bearing capacity
corresponding to the slip depth h

b (as obtained by the upper-bound
solution of the limit analysis), FLU(Δ h

b) � FLU(hb) − FLU(hb + Δ),
and Δ � 0.001 is the calculation analysis increment.

Different calculation approaches of optimizing the bearing
capacity of the two-layer clay foundation are used to calculate
ultimate load under various combinations of c1c2 and

H
b according to

the foundation bearing capacity of the two-layer clay foundation.
Table 3 shows the ultimate load results and literature comparison.
Figure 10 shows the typical failure modes obtained by the search.

TABLE 3 | Statistics of ultimate bearing capacity coefficient.

H/b — c1/c2

0.2 0.25 0.33 0.5 1 2 3 4 5

0.2 This paper h/b 0.2 0.2 0.2 0.2 0.71 0.91 1.05 1.18 1.29
Upper bound 5.72 5.72 5.72 5.72 5.14 3.17 2.44 2.06 1.81

Merifield et al. (1999) Lower bound 5.44 5.44 5.44 5.44 4.86 3.08 2.15 1.75 1.48
Upper bound 5.89 5.89 5.89 5.89 5.32 3.24 2.44 2.00 1.73

0.5 This paper h/b 0.5 0.5 0.5 0.5 0.71 1.13 1.40 1.62 1.80
Upper bound 5.72 5.72 5.72 5.72 5.14 3.89 3.28 2.94 2.70

Merifield et al. (1999) Lower bound 4.86 4.86 4.86 4.86 4.86 3.52 2.84 2.44 2.16
Upper bound 5.31 5.31 5.31 5.31 5.31 3.89 3.16 2.74 2.44

1.0 This paper h/b 0.71 0.71 0.71 0.71 0.71 1.39 1.80 2.13 2.41
Upper bound 5.14 5.14 5.14 5.14 5.14 4.92 4.70 4.20 3.98

Merifield et al. (1999) Lower bound 4.94 4.94 4.94 4.94 4.94 4.44 3.89 3.46 3.10
Upper bound 5.32 5.30 5.30 5.30 5.30 4.82 4.24 3.83 3.54

1.5 This paper h/b 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 2.93
Upper bound 5.14 5.14 5.14 5.14 5.14 5.14 5.14 5.14 5.12

Merifield, Sloan et al. (1999) Lower bound 4.94 4.94 4.94 4.94 4.94 4.87 4.69 4.24 3.89
Upper bound 5.30 5.30 5.30 5.30 5.32 5.31 5.15 4.84 4.56
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As can be observed from the calculation results, when c1
c2
< 1 and

H
b < 0.71(Hb � 0.2、0.5), local failure occurs in the upper soft soil,
and the calculation result is between the Terzaghi solution (5.71)
and Prandtl solution (5.14) of uniform and agravic clay, which is
supported by the literature results. When c1

c2
< 1 and

H
b > 0.71(Hb � 1.0、1.5), the upper- and lower-bound solutions
calculated using the proposed calculation approach are 5.14,
which is within the range of the upper- and lower-bound
solutions in the literature. The proposed approach’s rationality
has been proven to a certain extent. When c1

c2
> and

H
b < 0.71(Hb � 0.2、0.5), the slip depth increases and the
ultimate bearing capacity decreases rapidly; the corresponding
ultimate bearing capacity coefficient P

c1b
corresponding to H

b �
0.2 and c1

c2
� 5 is 1.80. When c1

c2
> and H

b < 0.71(Hb � 1.0、1.5),
there are two possible instability modes. One is that the buried
depth of the soil is deep in the lower soft soil (such as H

b � 1.5) and
not much different from the upper soil (such as c1c2 � 2、3、4). The
lower soil does not influence the ultimate bearing capacity. In that
case, the uniform foundation is considered with the ultimate load
factor P

c1b
� 5.14 and slip depth h

b � 0.71. The other is that the weak
lower soil affects the ultimate bearing capacity with deep slip
generated. When H

b � 1.5 and c1
c2
� 5, the slip depth h

b reaches 2.93.

5 CONCLUSION

1) An optimized mathematical model is first established based
on a rigid block discrete system with the minimum bearing
capacity as the objective function, block velocity as the main
variable, and the satisfaction of velocity compatibility,
associated flow rule, and functional equilibrium equations
of an adjacent block as main constraints in the rigid block
discrete system. Then, FLU is proposed after the upper-bound
value of the bearing capacity of the foundation is obtained
through an optimization solution.

2) The influence of slip depth (hb) on the foundation bearing
capacity is investigated for the complex two-layer clay
foundation before proposing a value range of slip depth
under different parameter combinations (c1c2) and varied layer
depths (Hb ).

3) Based on the above results, an optimized calculation approach
for the bearing capacity of the two-layer clay foundation is
proposed by introducing an iterative solution using a
dichotomy. Furthermore, the approach’s rationality is
verified using a calculation example.
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