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Several probabilistic forecast methods for heatwave (HW) in extended-range scales over
China are constructed using four models (ECMWF, CMA, UKMO, and NCEP) from the
Subseasonal-to-Seasonal (S2S) database. The methods include four single-model
ensembles (SME; ECMWF, CMA, UKMO, and NCEP), multi-model ensemble (MME),
and Bayesian model averaging (BMA). The construction and verification of reforecasts are
implemented by a defined heat wave index (HWI) which is not only able to reflect the actual
occurrence of heatwaves, but also to facilitate forecast and verification. The performance is
measured by traditional verification method at each grid point of the 105°E to 132°E; 20°N
to 45°N domain for the July, August, and September (JAS) of 1999–2010. For deterministic
evaluations of HWI forecast, BMA shows a better pattern correlation coefficient than SME
and MME and comparable equitable threat score (ETS) with ECMWF and MME. The good
performance of ECMWF and MME take advantage of setting the percentile thresholds for
forecasting HW. For the probabilistic forecast, the Brier score of BMA is comparable
(superior) to that of MME and ECMWF at short (long) lead-time. BMA also demonstrates an
improvement on the reliability of probabilistic forecast, indicating that BMA method is a
useful tool for an extended-range forecast of HW. Meanwhile, in the real-time extended-
range probabilistic forecast, the beginning date, end date, and probability of HW event can
be predicted by the HWI probabilistic forecast of BMA.
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1 INTRODUCTION

The heat wave (HW) is one of the extreme events around the world. It causes widespread destruction
of infrastructure and human activity, economic damage, and loss of life. It is well known that the
frequency and intensity of HWs are remarkably increased in the past years around various parts of
the world due to climate change. Typical HW events of recent years are central Europe in 2003 (Fink
et al., 2004; Fouillet et al., 2006; Schär et al., 2004; Trigo et al., 2005), over Russia in 2010 (Barriopedro
et al., 2011; Dole et al., 2011), and over Europe in 2018 (Schiermeier, 2018). The 2010 Russian HW
was the strongest recorded over the past 30 years (Hoag, 2014). It caused about 55,000 deaths and
numerous wildfires, the worst drought in Russia in nearly 40 years, and the loss of at least millions of
hectares of crops. Moreover, in the past summer (late June 2021), the Pacific North-West HW
crossing the US and Canada has been called a roughly 1-in-1,000-years event (www.climate.gov
2021: https://www.climate.gov/news-features/event-tracker/preliminary-analysis-concludes-pacific-
northwest-heat-wave-was-1000-year). In East China, the temperature has increased significantly in
the past 50 years, and the HW is one of the major disastrous weathers in this region (Shi et al., 2008).
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In summer 2013, this region experienced its worst HW on record
for the past 113 years (Xia et al., 2016). The time needed to
prepare for a persistent extreme event is often beyond the skillful
prediction timescales of a few days that are currently available
(White and Coauthors, 2017). Demands are growing rapidly in
the operational prediction and applications communities for
forecasts that fill the gap between medium-range weather and
long-range or seasonal forecasts, and the extended-range forecast.
However, it has been less well addressed despite the considerable
socio-economic value that could be derived from such forecasts.

The establishment of an extensive database (Vitart et al.,
2017), containing sub-seasonal (up to 60 days) forecasts by the
WMO S2S research demonstration project makes the forecasting
of HW in this time range possible. However, the accuracy of the
extended range forecast is limited due to the chaotic
characteristics of the atmosphere and uncertainties associated
with initial conditions and models (Thompson, 1957; Lorenz,
1963, 1969; Smagorinsky, 1969). Probabilistic forecasts are
becoming an inevitable method of solving this problem
(Carrol and Maloney, 2004). Probabilistic forecasts aim to
predict the uncertainty of a quantity or event of interest in the
form of full predictive probability distributions (Gneiting and
Katzfuss, 2014) rather than single-valued or point forecasts.
Information about the uncertainty of a forecast can provide
decision-makers with a range of possible outcomes and the
amount of confidence associated with a particular event
(Krzysztofowicz, 2001), which is valuable for deciding if,
when, and how many precautionary measures should be taken.
Besides, the use of probabilistic forecasts can realize more
economic value than control forecasts for most potential users
according to cost-loss ratios (Zhu et al., 2002). Especially at and
beyond 120 h lead-time, all users are better off using the ensemble
system than the control forecasts. Therefore, we focus this paper
on the generation and validation of probabilistic forecasts for
heatwaves in the extended range.

Several methods are currently used to construct probabilistic
forecasts from the ensemble forecast. The probability of a single
model ensemble (SME) is derived by computing the ratio of
ensemble members with events that occur to all members. For
this probabilistic forecast to be accurate and reliable, it is
necessary to enlarge ensembles, which represent a range of
possible evolutions of the system given the uncertainties
(Richardson, 2000). In addition, modeling uncertainties can be
taken into account by combining ensemble forecasts from several
models and forming a multimodel ensemble (MME;
Krishnamurti, 1999). Even still, raw ensemble (SME and
MME) forecasts do not capture the full range of forecast
scenarios and bear uncertainties that grow larger as lead time
increases (Hamill and Colucci 1997; Raftery et al., 2005; Stauffer
et al., 2017). Bayesian model averaging (BMA; Raftery et al., 2005;
Sloughter et al., 2007, 2010; Fraley et al., 2010) is one of the state-
of-the-art approaches developed for ensemble-based probabilistic
precipitation forecasts. The BMA predictive probability density
function (PDF) is a weighted average of PDFs centered on the
individual bias-corrected forecasts, where the weights are equal to
posterior probabilities of the models generating BMA model and
reflect the models’ relative contributions to predictive skill over

the training period (Raftery et al., 2005). It was originally applied
to the prediction of temperature and sea level pressure, and those
PDFs were approximately normal distribution, yielding well-
calibrated and sharp PDFs. Many analyses demonstrated that
the BMA method performed superior to raw ensemble forecasts
(Sloughter et al., 2007; Schmeits and Kok 2010; Liu and Xie,
2014). Subsequently, the method was employed in more studies
(Casanova and Ahrens 2009; Erickson et al., 2012; Liu and Xie,
2014) for the short- and medium-range forecasts with TIGGE
(The THORPEX Interactive Grand Global Ensemble) dataset.
However, it is unclear whether BMA is fit for the probabilistic
forecast of heatwave and whether it performs better than raw
ensembles in the S2S time scale. In this framework, we seek to
answer this question by constructing probabilistic reforecasts of
SME, MME, and BMA for heatwave and evaluating these
reforecasts skills, specifically probabilistic skill, based on a S2S
dataset.

Since a heatwave is an event with consecutive hot days in one
region and daily maximum surface temperatures is not enough to
represent it, it is necessary to develop an index based on daily
maximum surface temperatures that not only reflects the actual
occurrence of heatwaves but also facilitates probabilistic forecast
and verification. The heatwave has been widely identified by an
extreme heat factor (EHF) index based sliding 3-days window of
temperature (Nairn et al., 2009). But this index does not apply to
this study because it is difficult for this discontinuous variable to
construct proper PDFs. Another type of heatwave is defined as
one pentad mean surface maximum air temperatures exceeding
the local 95th percentiles during the control period of 1960–1990
(Zhu and Li, 2017). The defects of this definition, which does not
consider the continuity of the heatwave, also make it unavailable
to this study. Fischer and Schär (2010) defined a heatwave as a
spell of at least six consecutive days with maximum temperatures
exceeding the local 95th percentile over a control period. This
heatwave is based on the synoptic temperatures, which will not
engage any extended-range skill. How to synthesize the
aforementioned points and then develop a skillful HWI in the
extended range is another major topic in this study.

The metrics applied to verify the hindcasts, and the data used
are described in Section 2. The definitions of HWI and heatwave
are described in Section 3, which also shows the construction of a
probabilistic reforecast for HWI. The forecasting skills for the
different reforecasts are compared in Section 4. Section 5
summarizes the results and discusses the real-time
probabilistic prediction of heatwaves based on HWI.

2 DATA AND VERIFICATION METHODS

2.1 Data
The S2S database (Vitart et al., 2017) collects forecasts/reforecasts
(or hindcasts) from the subseasonal forecasting systems of 11
different centers. The individual systems, including the China
Meteorological Administration (CMA), the European Center for
Medium-range Weather Forecast (ECMWF), the National
Centers for Environmental Prediction (NCEP), and the
United Kingdom Met Office (UKMO) are selected as SME.
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The configuration details of the four systems are summarized in
Table 1. The daily maximum temperature has been extracted
from the four different reforecast systems for the common 12-
years (1999–2010) summertime (July to September). Given that
all atmospheric models have different native horizontal and
vertical resolutions, the S2S data are extracted on a common
1.5 × 1.5° grid on the China domain (105°E to 132°E; 20°N to
45°N). The constructions of MME and BMA require the same
initial dates for all four systems. The different reforecast
frequencies shown in Table 1 could be a challenge to build.
Here we chose to overcome this drawback by selecting the
calendar dates of the ECMWF reforecast as the referred
starting dates, with others corresponding to these dates. It is
easy for the daily CMA and NCEP to complete this
correspondence. For UKMO, the closest date (early or later) is
selected to construct MME and BMA, which means that there
may exist different forecasting valid in MME and BMA.
Nevertheless, the operation will not create an issue with the
extended range forecast.

The observed daily maximum temperatures of 2,248 stations
in China are provided from the Chinese Meteorological
Information Center. The station data are interpolated onto the
common 1.5° × 1.5° grid to match up the forecasts in the S2S
database by natural neighbor interpolation method and used to
BMA train and verification for reforecasts over 1999–2010.

2.2 Verification Methods
2.2.1 Mean Absolute Error and Pattern Correlation
Coefficient
The mean absolute error (MAE) and pattern correlation
coefficient (PCC) are defined by

MAE � 1
N

∑N
i�1

∣∣∣∣∣∣∣∣∣fi − oi

∣∣∣∣∣∣∣∣∣ (1)

PCC �
1
N∑N

i�1(fi − �f)(oi − �o)������������������������
1
N∑N

i�1(fi − �f)2 1N∑N
i�1(oi − �o)2

√ (2)

where oi and fi are the observed and forecasting value, �f and �o
are the average ones, N is the number of forecast/observe pairs.

2.2.2 Equitable Threat Score
The ETS represents the deterministic forecasting skill of
heatwaves and is specified as follows:

ETS � a − R(a)
a + b + c − R(a) (3)

R(a) � (a + c)(a + b)
a + b + c + d

(4)

Variables in the formula are defined in Table 2. ETS takes a
random chance [R(a)] away to account for true forecast skill.
Larger ETS values represent higher forecasting skills, while ETS
less than 0 donates no skill in the forecast.

The probability of detection (POD), false-alarm rate (FAR),
and miss rate (MSR) are also employed to assess the deterministic
forecast as follows:

POD � a

a + c
(5)

FAR � b

a + b
(6)

MSR � c

a + c
(7)

2.2.3 Brier Score
The Brier score has been widely used in the assessment of
probabilistic forecasts (Ferro 2007). It is essentially the mean-
squared error of the probability forecasts, considering that the
observation Oi � 1 if the event occurs and Oi � 0, if the event
does not occur. The score averages the squared differences
between pairs of forecast probabilities and the subsequent
binary observations,

BS � 1
n
∑n

i�1(Pi − Oi)2 (8)

Where n is the number of forecast/event pairs, i denotes a
numbering of the n and Pi is the forecasting probability for
heatwave. The Brier score is negatively oriented and has the
range 0≤BS≤ 1.

TABLE 1 | Reforecast attributes for the four systems from the WMO S2S database.

Attributes CMA ECMWF NCEP UKMO

Time range Day 1–60 Day 1–46 d0–44 Day 1–60
Atmospheric resolution T106L40 T639/319 L91 T126L64 N216L85
Reforecast Fix On the fly Fix On the fly
Reforecast period 1994–2014 Past 20 years (1996–2015) 1999–2010 1993–2015
Reforecast frequency Daily 2 per week Daily 4 per month
Reforecast size 4 11 4 7

On the fly: every set of re-forecasts are produced to calibrate real-time ensemble forecasts of the following week using the latest version of IFS. The ensemble re-forecasts consist of
ensemble starting the same day and month as a real-time forecast, but covering the past years.

TABLE 2 | Heatwave test classification.

Forecast Observation

Yes No

Yes a b
No c d
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2.2.4 Brier Skill Score
The Brier skill score (BSS) is:

BSS � BSf − BSref
BSp − BSref

� 1 − BSf
BSref

(9)

Where BSref is the reference probabilistic forecast, commonly
probability of event occurrence from climatology, and BSp is the
perfect forecast, BSp � 0.

Ideally, the climatological probabilities would be determined
from independent data, but commonly they are calculated from
the sample observed data. In the conventional method of
calculation, an average climatology pc is:

pc � 1
n
∑n

i�1Oi (10)

BSref � 1
n
∑n

j�1{pc − Oi}2 (11)

Considering the differences between the climatological event
frequencies for different months, the sample pc is determined by
each month so as to BSref. Then the BSS in each month is

calculated and the final BSS score is the weighted average of
monthly BSS. Hamill and Colucci (1997) for more details.

2.2.5 Continuous Ranked Probability Score
The CRPS measures the difference between the predicted and
occurred cumulative distributions

CRPS � 1
n
∑n

i�1 ∫x�∞
x�−∞

(Ff
i (x) − Fo

i (x))2dx (12)

Where Ff
i (x) is the predictive cumulative distribution function at

observation i, and Fo
i (x) � H(x − oi), is the well-known

Heaviside function:

H(x) � { 0 for x< 0
1 for x≥ 0 (13)

3 HEAT WAVE INDEX AND ITS
PROBABILISTIC FORECAST

3.1 HWI and Heat Waves
In this study, we define HWI as a sliding 5-days window and 9-
points equal weight average of the daily surface maximum
temperatures. For each grid point, a heatwave is a period with
HWI continuously greater than a certain percentile threshold.
The percentile is referred to the ratio of daily surface
maximum air temperatures below 35℃ to all samples for
each grid separately, shown in Figure 1A. The thresholds of
HWI (Figure 1B) can be calculated from the percentile in
Figure 1A. Why do we set the percentile related to 35°C but not
a fixed 90th percentile or 95th percentile? It is due to the
discomfort humans feel from environmental temperatures
higher than 35°C, and a fixed percentile may relate to lower
temperatures in colder regions.

The HWI is developed from the points of definitions of
heatwave in previous studies (Nairn et al., 2009; Fischer and
Schär, 2010; Perkins eta al., 2012; Zhu and Li., 2017) and for
facilitation of probabilistic forecast and verification. First, the 5-
days running average referred to Nairn et al. (2009), has filtered
the synoptic and small-scale noise that it can represent the large-
scale and long-lasting weather event to enhance extended-range
forecast capability (Buizza and Leutbecher, 2015). The spatial
running average is implemented to match the time running
average coordinately representing equivalence scales. Second,
the running average of daily temperature may also match
normal distributions that HWI may be fitted to use BMA. A
previous study (Raftery et al., 2005) has proved that predictive
PDFs of BMA were much better calibrated than the raw
ensemble. Whether the PDF of HWI fits normal distributions
will be examined in the following section. Third, the daily HWI
will be facilitated for verification when using the traditional
verification method mentioned above.

The observed HWI is mainly defined to consider the key
properties addressed through its extreme and persistence in terms
of the period and surrounding area. The extreme property of the

FIGURE 1 | (A) The percentiles of greater and equal to 35℃ daily surface
maximum air temperatures to all summer period (July–September) for each
grid and (B) the extreme thresholds of HWI basing the percentiles [in (A)] of
climatological distribution. The four boxes shown in Panel 1A are the
regions prone to HWI for Huanan, Yangtze, Huanghuai, and Huabei
respectively from South to North of eastern China.
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HWI is seen from the value of percentile (Figure 1A) ranging
from 80 to 92. The average persistent days of the observed heat
wave identified by HWI being greater than 5 days (Figure 2A)
indicates persistent property.

To further examine whether heatwaves determined by HWI
are objective, we compare them with the heatwaves in Lin et al.
(2021). Based on observation data from weather stations, they
objectively define the heat waves in four regions of China (the
four boxes in Figure 1A) by considering the certain percentage of
stations with a maximum temperature greater than 35°C, the
coincidence degree of stations comparing with the previous day,
and the persistent days (See Lin et all., 2020 for more details). For
comparison, we reconstruct HWI by four regional averages
instead of the spatial running average. The corresponding
thresholds are calculated by the four regional averages of
percentiles in Figure 1A, which are 0.82, 0.80, 0.93, and 0.97
respectively. Basing the reconstructed HWI and threshold, we
obtained the four regional heatwaves of our study. We found that
90 percent of these events are consistent with the heat waves in
Lin et al. (2021).

Figure 2B shows the period of these two types of heatwave that
occurred from 2000 to 2010 in South China. The result indicates

great consistency, verified the rationality of our definition
for HWI.

3.2 Single- and Multi-Model Ensemble
Probabilistic Forecast of HWI
For short- and medium-range forecasts the extreme threshold
are generally defined from observations or reanalysis and are
often replaced by fixed boundaries that have societal
implications. However, numerical models drift with
increasing lead-time very quickly toward their own
climate, which can be very different from observations.
Therefore, for extended-range forecasts, the preferred
option is to define the percentile thresholds from
reforecasts (Vitart and Robertson, 2018). The reforecasts of
HWI for SME and MME are obtained by sliding 5-days
window and 9-points running average on the ensembles of
SME and MME respectively. Then based on the ensemble
means of reforecast and the percentile shown in Figure 1A,
the thresholds of different ensembles and different forecast
validations (Figure 3) are calculated. Finally, the
probabilistic forecast of heatwave for each SME and MME
will be obtained by calculating the percentage of members
with HWI greater than the corresponding threshold.

Figure 3 shows that the value of the threshold varies among
different ensembles and different forecast validations. The
threshold of each ensemble shows a decreasing trend with the
forecast timeliness, indicating that the numerical models
quickly drift toward their own climatology. So, it is
necessary to set a threshold along with forecast time. In
terms of overall intensity and location, the threshold of the
United Kingdom is closest to the observation, indicating that
the HWI climatological distribution of the United Kingdom
matches the observation best. This view can be visually proved
by the largest correlation of the United Kingdom threshold
with the observational threshold (digital in the lower right
corner of each panel in Figure 3). The results implied that the
United Kingdom may perform a higher forecast skill in HWI
forecast. Although the threshold of CMA is the largest among
SMEs, MME and its magnitude are closest with the threshold
of observation (Figure 1B), the center of the large values has
shifted to the north.

The definition of HWI and the forecasting thresholds for
SMEs and MME make the extended-range forecast of
heatwave events possible. As shown in Figure 4, the ETS of
ECMWF for HWI (green line) reaches up to 0.3 in the first 10-
days forecast and maintain greater 0.2 in the 10–30-days
forecast, while the ETS of daily maximum air temperature
for 35°C (blue line) is less than 0.2 during the 1–30-days
forecast. This contrast shows that the daily maximum
temperature and fixed thresholds are not fit for extended-
range prediction of HW events. It is necessary to define the
HWI and set its forecasting thresholds for SMEs and MME.
Besides, the better forecasting skill of the HWI (green line)
than the 5-days running average of daily maximum
temperature (red line) proves the necessity of spatial
average in the definition of HWI.

FIGURE 2 | (A) The number of average persistent days of the observed
heat wave identified by HWI, and (B) comparison for the period of heatwaves
in this study (red line) and in Lin et al. (2021) (blue line) over Huanan from 2000
to 2010 (B).
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3.3 Bayesian Model Averaging Probabilistic
Forecast of HWI
The BMA model used in this study followed Raftery et al.
(2005) and is only briefly described here. The BMA method
generates a total PDF of HWI amount by weighted averaging

PDFs estimated from bias-corrected forecasts of individual
ensemble members, which is defined as

p[y∣∣∣∣(f1, ..., fK, y
T)] � ∑K

k�1wkpk[y∣∣∣∣(fk, y
T)] (1)

where y is the HWI quantity, f is the forecast of a particular
ensemble member, k is the index of the ensemble member, K is
the total number of the ensemble members, pk[y|(fk, yT) is
the conditional PDF of y given that fk is the best among the
ensemble, and wk is the nonnegative posterior probability of
the kth ensemble member being the best among all members,
they add up to 1.

The poor POD, MSR, FAR, and ETS of raw ensemble
members for heatwave events (dash line in Figure 5)
shows the bias-corrected requirement for each ensemble
before doing BMA. In our study, linear regression is
applied to correct bias for each SMEs. The parameters are
obtained by training with some observation/forecast pairs. It
is indicated that bias correction has significantly improved
the forecasting skill of ECMWF (solid line in Figure 5). The
bias-corrected forecasts of the individual ensemble will
contribute to the forecasting capability of BMA.

The BMA was developed initially for quantities whose PDFs
can be approximated by normal distributions, such as
temperature and sea level pressure. Whether normal
distribution fit the PDF of HWI is necessary to be examined.

FIGURE 3 | The thresholds (°C) of HWI for MME, EC, CMA, UK, NCEP (columns from left to right) forecasts from the different forecasting valid days (5-, 10-,
15-, 20-, 25-days; rows from top to bottom). The digits in the lower right corner of each panel are the correlation of this pattern with the observational threshold
pattern.

FIGURE 4 | The ETS of ECMWF for daily maximum air temperature
greater than 35°C (blue line), 5-days running average of daily maximum
temperature (red line), and HWI (green line) greater than their relative
thresholds.
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As we are mainly concerned with the probabilistic forecast of
heatwaves, only the distributions of observed HWI conditional on
forecasting heatwaves are shown in Figure 6 for different lead
times and ensembles. It is shown that the normal distribution
fits HWI for all of them. Especially, the distribution of EC is
better approximated by normal shape than other SMEs as its
value varies more smoothly.

On the basis of the normal distribution of HWI, the following
steps can finish the training of BMA. The conditional PDF by a
normal distribution is centered at a linear function of the forecast,
ak + bkfk, so that pk[y|(fk, yT) in 1) is a normal PDF with mean
ak + bkfk and standard deviation σ, expressed as
y|(fk, yT) ∼ N(ak + bkfk, σ2). As a result, ak, bk, wk and σ
are the model parameters required to estimate on the basis of
a training dataset consisting of ensemble forecasts and verifying
observations. The ak and bk can be estimated by simple linear
regression for the training dataset. The σ and wk will be
estimated from the training data by maximum likelihood
(Fisher 1922), which can be operated by the expectation-
maximization (EM) algorithm (Dempster et al., 1977;
McLachlan and Krishnan 1977; Raftery et al., 2005). At last,

the trained parameters substituting into 1) will obtain the
BMAmodel, which can be used to get the probabilistic forecast
by a certain forecast value fk.

In our implementation, the training set consists of a
sliding window of forecasts and observations for the
previous m samples, where m � 7,12, 17, 22.27. The
certain number of samples when the verification metrics
tend to be stable is taken as the optimal sliding training
number. Here we adopt the mean absolute error (MAE) and
continuous rank probabilistic score (CRPS) as the verification
metrics. As shown in Figure 7, the short-term forecasts (blue
lines and green lines in Figure 7) require about 12 training
samples to have the best MAE and CRPS scores. But for long-
term forecasts (yellow lines and red lines in Figure 7), 20
samples obtains the best probabilistic forecast skill with
optimal CRPS score (Figure 7B). Since this article focuses
on the probabilistic forecasting of the extended period, 20
sliding samples are selected for BMA model training.
Figure 7C shows the average weights of each ensemble
trained from BMA when using 20 sliding samples. BMA
automatically adjusts the weights for each ensemble

FIGURE 5 | Comparison of the raw (dash lines) and bias-corrected (solid lines) ECMWF forecast for POD (A), MSR (B), FAR (C), and ETS (D) of heatwave events.
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according to their performance during the training period so
that BMA may engage a better forecasting skill than SMEs
and MME.

The definition of the threshold for HWI of BMA is similar
to SMS and MMS, which is based on the percentile from
reforecasts (Figure not shown). According to the PDF and

FIGURE 6 | Histograms of observed HWI conditional on the forecasting of heatwaves. The rows from top to bottom correspond to the lead days at 5, 10, 15, 20,
25. The columns from left to right correspond to the different forecast models (ECMWF, CMA, UKMO, NCEP).

Frontiers in Earth Science | www.frontiersin.org January 2022 | Volume 9 | Article 8105798

Zhang et al. Probabilistic Forecast Heat Wave

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


threshold for HWI of BMA, a probabilistic forecast of BMA for
heatwave is obtained.

4 VERIFICATION FOR HEATWAVES

Seeking the continuous days with HWI greater than extreme
percentile thresholds respectively can identify the observed
and forecast heat waves. But it is not easy to quantitatively
verify the forecasting heatwaves against observed heatwaves.
Some of the investigations only verify the forecast skill of
heatwave qualitatively on the case studies (Hudson et al.,
2016; Mandal et al., 2019). To solve this problem, the daily
forecasting HWI is verified against daily-observed HWI using
the traditional verificationmethod. It implied that the verification of
heatwaves is executed by decomposing these events into individual
days. These deterministic and probabilistic reforecasts of SME, MME,
and BMA are verified for the 1999–2010 JAS period at each grid point
of the domain.

4.1 Deterministic Verification for Heatwaves
The PCC, POD, MSR, FAR, and ETS are used to evaluate each
deterministic HWI reforecasts that is the ensemble mean of
their members for SMS and EMS. The PCC shown in Figure 8
indicates that the HWI of BMA possesses the best pattern
correlation to observed HWI with a coefficient up to 0.92.
Though the PCC of BMA decreases with lead time, its value is
still over 0.8 in the extended range. For SMS and EMS, the UK
displays the best pattern correlation with observation, which
is consistent with the rank of the spatial correspondence
between the threshold of ensembles (Figure 3) and
observation (Figure 1B). The POD, MSR, FAR, and ETS
scores for heatwave forecasts are presented in Figure 9.
ETS skills of BMA, ECMWF, and MME are the best
among all reforecasts and are comparable across themself
for all lead times. The POD, MSR, and FAR show consistent
skill with ETS. The CMA performs the worst among all
forecasts for all scores. Given this, we have tried to
improve the BMA without CMA, based on ECMWF, UK,

FIGURE 7 | The MAE (A) and CRPS (B) of BMA as a function of the number of samples used for BMA training. The different patterns of lines indicate different
forecast valid days. The average weights (C) of four individual ensemble members were used for BMA when using 20 sliding samples.
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FIGURE 8 | Pattern correlation of the daily PHEI between the observed
dataset and different model forecasts as a function of forecast lead days.

FIGURE 9 | The POD (A), MSR (B), FAR (C), and ETS (D) as a function of forecast lead days for different reforecasts of heatwaves.

FIGURE 10 | The BS for heatwave as a function of forecast lead days for
different reforecasts including SMEs, MME, and BMA.
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and NCEP. The performance of BMA based on three models
is almost the same as BMA based on four models. Therefore,
BMA based on four models is adopted in this paper.

4.2 Probabilistic Verification for Heatwaves
The probabilistic performance for heatwave of BMA is
compared to the MMEs and SME for the JAS start dates of
the common period 1999–2010. The BS, reliability, and BSS
are employed to verify the performance. Since our study
focused on the dichotomous extreme events and CRPS
measures the overall probabilistic performance, it is not

employed here. BS is used in the assessment of
probabilistic forecasts of events exceeding extreme
thresholds, which are set separately for observation and
forecast. Figure 10 shows the BS score at each lead day for
heatwave forecast of BMA, SMSs, and MMS. As it shows, the
performance of BMA is comparable (superior) to that of
MME and ECMWF at small (large) lead times. The result
suggests that the BMA model, based HWI, is fit for the
probabilistic forecast of heatwaves in the S2S time scale.

As pointed out by Murphy (1973), the algebraic
decomposition of the Brier score is expressed as three

FIGURE 11 | The reliability diagram for heatwave for MME (blue) and BMA (red) at lead days 10 (A), 15 (B), 20 (C), 30 (D) respectively. The forecast frequency in
each probability bin is represented below on the bar plots for each forecast with the same color. The number inside each figure is the reliability which is the integral area
from the diagonal line to forecast reliability line with weighting from the sample frequency.
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terms, reliability, resolution, and uncertainty. According to
the research of Weisheimer and Palmer (2014) for the case of
seasonal forecasts, reliability is the most important aspect to
determine how good a forecast is. Reforecasts for every point
of the domain are pooled together so as to provide robust
estimates. The reforecasting probabilities are categorized into
12 bins, 0.0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0.
For a given forecast probabilistic bin, reliability is the
correspondence between the forecasting and the observed
probability of a heatwave. The comparison of reliability
diagrams is only made for BMA and MME owing to the
best BS score of them among all reforecasts. Blue and red lines
in the upper part of Figure 11 show this comparison between
MME and BMA at lead days 10, 15, 20, 25. The forecast
frequency in each probability bin is represented below the bar
plots in Figure 11. For small probabilistic bins (less than 0.2)
in all lead days, MME and BMA points are nearly located at the
diagonal line, showing perfect reliability. However, BMA points
are closer to the diagonal line at large probability bins (greater
equal than 0.2), showing greater confidence for the occurrence of
a heatwave. The overall performance of reliability is intuitively
seen from the weighted area between the dashed and solid lines,
which are the numbers in the bottom right corner of Figure 11.
The good reliability of BMA is due to the much better calibrated
predictive probability density function. The shapes of the bars
represent the sharpness of probabilistic forecasts, which is
another important aspect of probabilistic verification. On lead
day 10, the ECMWF is sharper than BMA with more forecasting
frequency in the lowest probability bin. But this superiority
decreases with increasing lead-time, histograms of both
forecast probabilities indicate high sharpness. The result
implies that the better performance of BMA for BS mainly
takes advantage of reliability, not sharpness.

5 DISCUSSION AND SUMMARY

This study proposes a heatwave index (HWI) in the sub-seasonal
time scale for observation and forecast. We have examined the
qualification of HWI definition from available observations,
which indicated that a newly defined index is able to represent
heatwaves that actually occurred. On this basis, several methods
are constructed for the probabilistic forecasting of HWI. We have
evaluated the performance of these methods, including
deterministic and probabilistic forecasts. The result shows that
the probabilistic forecast performance of BMA is the best even
though the deterministic performance of BMA is comparable to
the MME and ECMWF. It means that the BMA model has
demonstrated its value for heatwave forecast in the extended-
range prediction.

The outcome of the BMA model is the daily probability of
HWI in the sub-seasonal forecast. In the real-time forecast,
decision-makers are more concerned about the period of a
heatwave, including start date, end date, persistent days, and
the probability of the whole event. This information provides
decision-makers with the amount of confidence associated
with heatwaves, which is valuable for deciding if, when, and
how many precautionary measures should be taken. Figure 12
shows an example of transformation from the daily probability
of HWI to probability of heatwave in reforecast initiated from
June 19, 2010 to July 3, 2010 at grid 24°N, 113°E. In this region,
there existed a significant heatwave from July 1, 2010 to July
19, 2010 shown in the below part of Figure 12. The forecasting
period of a heatwave should be the days with a probability
greater than 50 percent. The forecasting probability of the
whole heatwave should be the average probability during this
period. Taking the forecast initiated from June 19, 2010 as an
example, the forecast heatwave occurs during July 3, 2010 to

FIGURE 12 |Observed HWI (lower part) and probabilistic forecasting HWI (upper part) by BMA initiated from 2010.6.19 to 2010.7.3 at grid 24°N, 113°E. Red filled
area in the lower part is the observed heatwave from 2010.7.1 to 2010.7.19. The probabilistic levels are represented by different colors in the small square.
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July 8, 2010 with the probability of heatwave equal to 82. The
BMA model has successfully predicted this heatwave 12 days
in advance with much higher confidence, which is confirmed
by the observations. Two important points should be taken
when using the HWI to predict a heatwave. First, the actual
start date and end date of the heatwave may deviate by one or
2 days whatever for forecast or observation since the 5-days
running average is used in the definition of HWI. Second, the
heatwave defined on each point is not restrained to this point.
It represents a region centered on this point with 4.5 × 4.5 °.
Meanwhile, similar steps could generate the quantitative
thresholds of the HWI for other regions if it is requested
from stakeholders.

The conclusions from this study could be summarized as
follows: 1). The HWI could be modified to simulate reality
through observations and raw (re)forecast from the worldwide
forecast system; 2). A multi-model ensemble (equal weight or
poor man ensemble) could improve the forecast skills partially
from comparing individual model forecasts; 3) The BMA process
has demonstrated the best forecast skills around all forecasts in
terms of deterministic (ensemble mean) and probabilistic
forecasts (forecast reliability); 4) The implementation of HWI
could present the spatial details and day-to-day hot extreme for

an extended range to help to give earlier warning and/or make
decisions further in advance.
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