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Embankments are widespread throughout the world and their safety under seismic
conditions is a primary concern in the geotechnical engineering community since the
failure events may lead to disastrous consequences. This study proposes an efficient
seismic slope stability analysis approach by introducing advanced gradient boosting
algorithms, namely Categorical Boosting (CatBoost), Light Gradient Boosting Machine
(LightGBM), and Extreme Gradient Boosting (XGBoost). A database consisting of 600
datasets is prepared for model calibration and evaluation, where the factor of safety (FS) is
regarded as the output and four influential factors are selected as the inputs. For each
dataset, the FS corresponding to the four inputs is evaluated using the commercial
geotechnical software of Slide2. As an illustration, the proposed approach is applied to the
seismic stability analysis of a hypothetical embankment example subjected to water level
changes. For comparison, the predictive performance of CatBoost, LightGBM, and
XGBoost is investigated. Moreover, the Shapley additive explanations (SHAP) method
is used in this study to explore the relative importance of the four features. Results show
that all the three gradient boosting algorithms (i.e., CatBoost, LightGBM, and XGBoost)
perform well in the prediction of FS for both the training dataset and testing dataset.
Among the four influencing factors, the friction angle φ is the most important feature
variable, followed by horizontal seismic coefficient Kh, cohesion c, and saturated
permeability ks.

Keywords: machine learning, seismic slope stability, embankment, CatBoost, LightGBM, XGBoost

INTRODUCTION

The embankment is one of the most important infrastructures distributed around the world and has
gained increasing attention in geotechnical and hydrogeological communities because its failure may
induce disastrous consequences (e.g., Hicks and Li, 2018; Wang et al., 2018; Gordan et al., 2021).
Rational stability assessment of embankments is a prerequisite for disaster prevention and reduction,
and the index of the factor of safety (FS) obtained from deterministic slope stability analysis methods
(e.g., limit equilibriummethod and finite element method) is frequently applied to measure the slope
stability due to its conceptual simplicity. It is well recognized that the embankment slope stability is
significantly affected by the combined effects of several internal factors (e.g., shear strength

Edited by:
Faming Huang,

Nanchang University, China

Reviewed by:
Huawei Zhang,

China University of Geosciences
Wuhan, China

Yu Zhuang,
Shanghai Jiao Tong University, China

*Correspondence:
Lin Wang

sdxywanglin@cqu.edu.cn

Specialty section:
This article was submitted to
Geohazards and Georisks,

a section of the journal
Frontiers in Earth Science

Received: 02 November 2021
Accepted: 15 November 2021
Published: 02 December 2021

Citation:
Wang L, Wu J, Zhang W, Wang L and
Cui W (2021) Efficient Seismic Stability

Analysis of Embankment Slopes
Subjected to Water Level Changes

Using Gradient Boosting Algorithms.
Front. Earth Sci. 9:807317.

doi: 10.3389/feart.2021.807317

Frontiers in Earth Science | www.frontiersin.org December 2021 | Volume 9 | Article 8073171

ORIGINAL RESEARCH
published: 02 December 2021

doi: 10.3389/feart.2021.807317

http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2021.807317&domain=pdf&date_stamp=2021-12-02
https://www.frontiersin.org/articles/10.3389/feart.2021.807317/full
https://www.frontiersin.org/articles/10.3389/feart.2021.807317/full
https://www.frontiersin.org/articles/10.3389/feart.2021.807317/full
https://www.frontiersin.org/articles/10.3389/feart.2021.807317/full
http://creativecommons.org/licenses/by/4.0/
mailto:sdxywanglin@cqu.edu.cn
https://doi.org/10.3389/feart.2021.807317
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2021.807317


parameters and hydraulic parameters) and external factors (e.g.,
earthquakes, water level fluctuations, and rainfall). Under such
circumstances, slope stability prediction can offer a fast
estimation of the stability status and further provide a
scientific basis for decision-making in disaster mitigation (Qi
and Tang, 2018).

In the past few decades, many researchers have contributed to
slope stability prediction and significant progress has been
achieved in landslide disaster prevention (e.g., Sakellariou and
Ferentinou, 2005; Gordan et al., 2016; Mahdiyar et al., 2017;
Mojtahedi et al., 2019; Bui et al., 2020;Wang et al., 2020c,Wang L.
et al., 2021; Zeng et al., 2021; Zhuang and Xing, 2021). For
example, Sakellariou and Ferentinou (2005) introduced neural
networks to predict slope stability. The geotechnical and
geometrical parameters were taken as inputs and the FS or
stability status was considered as output in their study.
Gordan et al. (2016) developed a hybrid prediction model for
predicting the FS of homogeneous slopes through combining the
particle swarm optimization (PSO) algorithm and artificial neural
network (ANN). They found that the proposed PSO-ANN
method performs better than the ANN model in the
prediction of FS. Mahdiyar et al. (2017) employed Monte
Carlo (MC) technique to predict the FS of slopes under
seismic conditions based on the five important input
parameters, including slope height, slope angle, cohesion, angle
of internal friction, and peak ground acceleration. Results showed
that the MC-based approach is able to predict the FS
appropriately. Qi and Tang (2018) compared the predictive
performance of six machine learning algorithms (i.e., logistic
regression, decision tree, random forest, gradient boosting
machine, support vector machine, and multilayer perceptron
neural network), and concluded that integrated artificial
intelligence techniques had great potential in the prediction of
slope stability.

Recently, Koopialipoor et al. (2019) compared the
performance of four hybrid intelligent models in the stability
prediction of slopes under static and dynamic conditions, namely
imperialist competitive algorithm (ICA)-ANN, genetic algorithm
(GA)-ANN, particle swarm optimization (PSO)-ANN, and
artificial bee colony (ABC)-ANN. It was observed that the
PSO-ANN model was superior to the remaining three hybrid
intelligent models in predicting the FS of slopes. Mojtahedi et al.
(2019) proposed an MC-based probabilistic approach for
forecasting the FS of slopes and found that the internal
friction angle was the most influential factor among the four
inputs through conducting sensitivity analysis. Zhou et al. (2019)
applied a gradient boosting machine (GBM) approach to predict
the stability status of slopes based on an updated database that
records a total of 221 historical cases gathered from the literature.
They found that the proposed GBM classifier can accurately
capture the nonlinear relationship between slope stability status
and the six influential factors. Bui et al. (2020) presented an
optimized ANN model for predicting the FS of slopes by
introducing the Levenberg–Marquardt backpropagation
technique. Luo et al. (2021) proposed a new hybrid intelligent
model to analyze the slope stability in open-pit mines by
combining the PSO and cubist algorithm (CA), and results

indicated that the proposed PSO-CA model was able to
provide satisfactory performance in the prediction of FS. Zeng
et al. (2021) investigated the predictive performance of three
hybrid least squares support vector machine (LSSVM) models
and found that both the gravitational search algorithm (GSA) and
whale optimization algorithm (WOA) could improve the
predictive accuracy.

It can be observed that previous research focused more on
geometric parameters, shear strength parameters, and seismic
coefficients. In contrast, hydraulic parameters (e.g., saturated
permeability) are rarely considered in slope stability
prediction. In engineering practice, embankments are usually
subjected to water level changes, which may pose potentially
destabilizing effects on the embankment slope stability.
Generally, the hydraulic parameters play an indispensable role
in the seepage analysis and slope stability analysis, and thus it is
necessary to take the hydraulic parameters into account in the
slope stability prediction of embankments. Benefited from the
rapid development of artificial intelligence, many machine
learning algorithms have been proposed, and they are served
as a promising tool for tackling geotechnical-related topics, such
as tunnels (Zheng et al., 2019; Zhang et al., 2020; Zhu et al., 2021),
embankments (Wang et al., 2020a,b), landslides (Huang et al.,
2020; Wang H. et al., 2021; Liu et al., 2021; Xiao et al., 2021), and
other issues (Atangana Njock et al., 2021; Jamei et al., 2021; Shen
et al., 2021).

This study aims to develop an efficient seismic slope stability
analysis approach by introducing three advanced machine
learning algorithms, namely Categorical Boosting (CatBoost),
Light Gradient Boosting Machine (LightGBM), and Extreme
Gradient Boosting (XGBoost). The four influential factors
(i.e., cohesion, friction angle, horizontal seismic coefficient,
and saturated permeability) are selected as the inputs and the
FS is regarded as the output. The remainder of this paper starts
with the introduction of CatBoost, LightGBM, and XGBoost,
followed by a description of the associated implementation
procedures. Then, the proposed approach is applied to the
seismic stability analysis of a hypothetical embankment
example subjected to water level changes. A database
consisting of 600 datasets is compiled for model calibration
and evaluation, where the four influential factors are selected
as the inputs and the factor of safety (FS) is regarded as the
output. Finally, the performance of CatBoost, LightGBM, and
XGBoost in the prediction of FS is investigated, and the relative
importance of features is ranked using the Shapley additive
explanations (SHAP) method.

METHODOLOGIES

Categorical Boosting
CatBoost is a new open-source library shared by the Yandex
company, which aims to handle the categorical features and
prediction shift problems in machine learning (Dorogush
et al., 2018; Prokhorenkova et al., 2018). Besides numerical
features, categorical features are also frequently encountered in
the application of machine learning, which contains a discrete set
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of values that are not necessarily comparable with each other. It is
evident that such categorical features can not be identified in the
binary decision trees and requires to be converted to numerical
features through encoding techniques. As a widely used encoding
technique, the one-hot encoding may cause the curse of
dimensionality in tackling the high cardinality features and
tends to be more efficient in handling the low-cardinality
features. To address this issue, CatBoost uses the target
statistics (TS) as new numerical features to deal with the
categorical features, which has been proved to be the most
efficient method with minimum information loss
(Prokhorenkova et al., 2018). It generates a random
permutation of the dataset and then calculates the average
label value of the training examples with the same category in
the permutation. Following Prokhorenkova et al. (2018), if σ �
(σ1, σ2, . . . , σn) is a permutation, the category xσp,k can be
substituted with the average label value x̂σp,k:

x̂σp,k �
∑p−1

j�1 [xσj ,k � xσp,k]Yσj + a · P
∑p−1

j�1 [xσj,k � xσp,k] + a
(1)

where P is a prior value; a is the weight of the prior; Yσj is a label
value; [·] denotes the Iverson bracket, namely [xσj,k � xσp,k]
equals 1 if xσj,k � xσp,k, and otherwise, it is equal to 0.

Traditional gradient boosting decision tree algorithms
generally suffer from an inevitable problem of gradient bias,
which will eventually lead to prediction shift. Although the
ordered boosting algorithm can avoid the prediction shift, it
may be infeasible in practical applications due to the
computational complexity and memory requirements in the
process of training a larger number of supporting models. In
such a case, CatBoost uses a modification of the ordered boosting
algorithm in which the gradient boosting algorithm with decision
trees are taken as base predictors. Furthermore, CatBoost also has
superiority in the aspects of fast scorer and fast training on GPU.
Interested readers are referred to Prokhorenkova et al. (2018) and
Dorogush et al. (2018) for more details about the CatBoost.

Light Gradient Boosting Machine
LightGBM is a novel member of the histogram-based gradient
boosting decision tree (GBDT) developed by Microsoft in 2017
for tackling the problems with big data and a large number of
features (Ke et al., 2017). Conventional GBDT models require
scanning all the data to evaluate the information gain of all the
possible split points for each feature, indicating that the
computational efforts may become prohibitively expensive
when the data size is large and the feature dimension is high.
To address this issue, LightGBM introduces two advanced
techniques called Gradient-based One-Side Sampling (GOSS)
and Exclusive Feature Bundling (EFB) to reduce the number
of the data instances and features in a rational manner.

The gradient of data instance generally poses a significant
effect on the evaluation of information gain. Compared with the
data instances with larger gradients, the data instances with small
gradients contribute less to the estimation of information gain. In
other words, more attention should be paid to the data instances
with larger gradients. Inspires by this thought, GOSS reduces the

number of data instances by excluding the data instances with
small gradients and simply using the rest to calculate the
information gain. Moreover, many features may be mutually
exclusive in a sparse feature space, and these mutually exclusive
features are unable to take nonzero values simultaneously. The
basic idea of EFB is to reduce the number of features by bundling
mutually exclusive features. These two novel techniques
(i.e., GOSS and EFB) enable the LightGBM to achieve
excellent performance in terms of computational efficiency
and memory consumption. More detailed explanations of the
LightGBM can refer to Ke et al. (2017).

Extreme Gradient Boosting
XGBoost is a scalable end-to-end tree boosting method developed
by Chen and Guestrin (2016), which has gained increasing
attention in the famous Kaggle machine learning competitions
due to its advantages of high efficiency and sufficient flexibility.
The main idea of XGBoost is to build classification or regression
trees one by one in an additive manner, and each tree learns from
its predecessors and updates the residual errors in the estimated
values (ZhangW. et al., 2021). Specifically, the prediction result of
the gradient boosting tree model can be evaluated by integrating
the values calculated from all the previously trained trees. The
depth and number of trees play a significant role in the XGBoost
model construction, which affect the predictive accuracy directly
and can be determined by optimizing the objective function.
Inspired by Chen and Guestrin (2016), the objective function
Obj(t) is expressed as:

Obj(t) � ∑
t

i�1
l(Yi, y

(t)
i ) +∑

t

i�1
Ω(fi) (2)

whereYi is the actual value; y
(t)
i is the predicted value; l(Yi, y

(t)
i )

is the loss function describing that how well the model fits
training data; Ω(fi) is a regularization term to penalize model
complexity and avoid potential over-fitting problems. For more
detailed information about the XGBoost algorithm, interested
readers can refer to Chen and Guestrin (2016).

IMPLEMENTATION PROCEDURE

Figure 1 shows the implementation procedures of seismic
stability analysis of embankment slopes using gradient
boosting algorithms. Firstly, the database used for model
calibration should be prepared, which contains the necessary
information about the input parameters (e.g., shear strength
parameters), and output quantity of interest (e.g., FS). Then,
divide the database into the training dataset and testing dataset
according to a rational ratio. Thereafter, the three variants of the
gradient boosting algorithms, namely CatBoost, LightGBM, and
XGBoost, are used to construct the machine learning models,
where the associated hyper-parameters can be determined by
optimization techniques (e.g., Bayesian optimization). Finally, the
predictive performance of these constructed machine learning
models can be quantitatively measured using statistical indicators
(e.g., the coefficient of determination R2). For illustration, the

Frontiers in Earth Science | www.frontiersin.org December 2021 | Volume 9 | Article 8073173

Wang et al. Efficient Seismic Stability Analysis

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


proposed approach is applied to the seismic stability analysis of a
hypothetical embankment case in the next section.

ILLUSTRATIVE EXAMPLE

For illustration, a hypothetical embankment example with a
height of 12 m and a slope of 27° is used in this study for
illustration, as shown in Figure 2. It is situated on a
foundation of 100 m. Due to the fact that the embankments
suffer from water level changes frequently, and thus a constant
total head equal to the upstream water level is applied to the
embankment below the water level. For the foundation, a zero
flux boundary is assigned to both sides and the bottom. In this
example, the 2D limit equilibrium slope stability software Slide2
(Rocscience Inc., 2018) is applied to perform seepage and slope
stability analysis of the embankment example under combined

effects of seismic loading and water level changes. The water level
is assumed to rise uniformly from the initial water level
(i.e., 17 m) to the highest water level (i.e., 19 m) after 8 days.
Table 1 tabulates the mean values of the four main influential
factors the govern the stability of embankment slopes, including
the cohesion c, friction angle φ, horizontal seismic coefficient Kh,
and saturated permeability ks. Based on these mean values, the
simplified Bishopmethod embedded in the Slide2 software can be
applied to calculate the FS of the downstream slope. Figures 3A,B
plot the FS values of embankment slope example at the initial
state and 50 days, respectively. The FS at 50 days reaches a steady-
state, and it is used as a baseline in the following database
preparation.

Database Preparation for Model Calibration
A database containing the four input parameters (i.e., c, φ, Kh, and
ks) and the corresponding output of FS should be prepared for
calibrating the machine learning models. Inspired by previous
research (e.g., Cho, 2012; Li et al., 2015; ZhangW. G. et al., 2021),
the four input parameters are assumed to follow lognormal
distributions, so as to avoid possible negative values that may
be physically meaningless. Based on the mean values, coefficients
of variation (COVs), and probability distributions tabulated in
Table 1, a total of 600 groups of data are generated using the Latin
hypercube sampling method. Figure 4A–D plot the histogram of
the cohesion c, friction angle φ, horizontal seismic coefficient Kh,

FIGURE 1 | Implementation procedure of the proposed method.

FIGURE 2 | Geometry and boundary conditions of the embankment example.

TABLE 1 | Statistical properties of parameters used in this example.

Parameters Mean value COV Distribution

Cohesion c (kPa) 8 0.25 Lognormal
Friction angle φ (◦) 28 0.15 Lognormal
Horizontal seismic coefficient Kh 0.1 0.3 Lognormal
Saturated permeability ks (m/s) 1.0 × 10−6 0.5 Lognormal
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and saturated permeability ks, respectively. The possible ranges
for c, φ, Kh, and ks are [3.74 kPa, 17.66 kPa] [17.29°, 45.08°] [0.04,
0.25], and [1.73 × 10−7, 5.69 × 10−6], respectively. Each data group
containing the c, φ, Kh, and ks is used as input in the Slide2
software for calculating the FS of the embankment slope example.
With the aid of Slide2 software, all the FS values corresponding to
the 600 groups of data can be evaluated. As plotted in Figure 4E,
the FS values range from 0.747 to 1.507. These input parameters
and output consequences constitute a database with a total of 600
datasets and each dataset consists of four input parameters (i.e., c,
φ, Kh, and ks) associated with the corresponding FS value.
Although the Slide2 software is used in this study to perform
seismic stability analyses of the 600 groups of data, other
geotechnical commercial software of interest can also be applied.

The compiled database can be divided into training dataset
and testing dataset for model construction and evaluation. In this
study, 400 groups of data are used as the training dataset and 200
groups of data are regarded as the testing dataset. Then, the three
gradient boosting algorithms (i.e., CatBoost, LightGBM, and
XGBoost) are used to construct the machine learning models.
The performance of different machine models in the prediction of
FS can be evaluated using statistical indicators.

Predictive Performance of Different Models
Figure 5A compares the FS values obtained from the established
CatBoost model and actual values calculated from the Slide2
software for all the 600 groups of data. It can be observed that the
predicted FS values obtained from the established CatBoost
model agree well with those calculated from the Slide2
software for both the training dataset (i.e., 400 groups of data)

and testing dataset (i.e., 200 groups of data). To quantitatively
evaluate the model performance, the frequently used index of the
coefficient of determination (R2) is used in this study. As shown
in Figure 5A, the R2 values of training dataset and testing dataset
are larger than 0.90, indicating that the established CatBoost
model is able to predict the FS of the embankment slope example
with satisfactory accuracy. Likewise, Figure 5B compares the FS
values predicted from the constructed LightGBM model and
actual values calculated from the Slide2 software. Both the
training dataset and testing dataset can achieve a relatively
high R2 value, illustrating the excellent capability of LightGBM
model in predicting the FS. Furthermore, Figure 5C compares the
prediction results of XGBoost model and actual values calculated
from the Slide2 software. It is shown that most of the points
gather around the reference line (i.e., 1:1 line), and the
corresponding R2 values of training dataset and testing dataset
are also relatively high. This implies that the XGBoost model
performs well in the prediction of FS. In general, it can be
concluded that all the three machine learning models
(i.e., CatBoost, LightGBM, and XGBoost model) are able to
provide satisfactory performance in the prediction of FS for
the embankment slope example, which offers a promising
approach for seismic stability analysis by introducing advanced
gradient boosting algorithms.

Feature Importance Analysis
To investigate the relative importance of features on the
predictive performance of machine learning models, the
Shapley additive explanations (SHAP) method is used in this
study due to its fast implementation for tree-based models. It uses

FIGURE 3 | The FS values of the embankment example at different times: (A) FS at the initial state; (B) FS at the 50 days.
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the Shapley values to quantify the contribution of each feature to
the prediction based on the coalitional game theory (Lundberg
and Lee, 2017; Guo et al., 2021). Generally, the features with

higher positive SHAP values tend to pose a more significant
influence on the final prediction. Figure 6 plots the SHAP values
of the four features calculated from the CatBoost model. Each

FIGURE 4 | Histogram of the four influential factors and factor of safety: (A) c; (B) φ; (C) Kh; (D) ks; (E) FS.
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scattered point on the figure represents one sample, and the
points with red colors indicate that the associated feature values
are high. On the other hand, the blue colors imply that the feature

values are low. For the friction angle φ, it can be observed that
many sample points with red colors gather around the zone with
positive SHAP values, indicating that the friction angle affects the

FIGURE 5 | Predictive performance of the three gradient boosting algorithms: (A) CatBoost model; (B) LightGBM model; (C) XGBoost model.

FIGURE 6 | SHAP values of features calculated from the
CatBoost model.

FIGURE 7 | Relative importance of features calculated from the
CatBoost model.
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FS of the embankment slopes significantly, and the larger value of
friction angle will enhance the embankment slope stability. In
contrast, for the horizontal seismic coefficient Kh, a large number
of sample points with red colors locate in the zone with negative
SHAP values. This means that the horizontal seismic coefficient
will weaken the embankment slope stability.

In general, the friction angle φ has the most significant
influence on the prediction of FS, followed by horizontal
seismic coefficient Kh, cohesion c, and saturated permeability
ks. Among the four features, the shear strength parameters (i.e., φ
and c) have positive influences on the embankment slope
stability, while the increasing Kh and ks will destabilize the
embankment slope stability. Furthermore, Figure 7 ranks
feature importance of the four features. The arrangement of
these four features from bottom to top is based on their
relative importance. Similarly, it can be found that the friction
angle φ has the most significant influence on the prediction of FS,
followed by Kh, c, ks. This finding is consistent with that observed
in Figure 6, further validating the significance of shear strength
parameters (i.e., φ and c) and seismic coefficient (i.e., Kh) in the
seismic stability evaluation of embankment slopes.

SUMMARY AND CONCLUSION

This paper developed a gradient boosting algorithm-based approach
for seismic stability analysis of embankment slopes. Three advanced
gradient boosting algorithms, namely Categorical Boosting
(CatBoost), Light Gradient Boosting Machine (LightGBM), and
Extreme Gradient Boosting (XGBoost), were calibrated and
evaluated in this study using a well-established database that
contains a total of 600 datasets. Each dataset records the four
features (i.e., the cohesion, friction angle, horizontal seismic
coefficient, and saturated permeability) associated with the factor
of safety (FS). For illustration, the proposed approach was applied to
the seismic stability analysis of a hypothetical embankment example
subjected to water level changes. The predictive performance of
CatBoost, LightGBM, and XGBoost were compared, and the relative
importance of features on the prediction was also quantified by the
Shapley additive explanations (SHAP) method.

Results showed that all the coefficient of determination (R2)
values of the three gradient boosting algorithms (i.e., CatBoost,
LightGBM, and XGBoost) were larger than 0.90 for both the

training dataset and testing dataset, indicating that the proposed
approach is able to predict the FS of embankment slopes with
satisfactory accuracy. Among the four influencing factors, the
friction angle φ had the most significant influence on the
prediction of FS, followed by horizontal seismic coefficient Kh,
cohesion c, and saturated permeability ks. Different from the
shear strength parameters (i.e., φ and c) that had positive
influences on the embankment slope stability, the increasing
Kh and ks tended to destabilize the embankment slope
stability. The proposed approach making the best use of
advanced gradient boosting algorithms can serve as a useful
tool for geotechnical practitioners to grasp the stability status
of slopes accurately and fastly, and further provides a scientific
basis for decision making in disaster prevention and mitigation.
Besides the above four influential factors, other geometric and
geotechnical parameters of interest can also be considered in
future studies. This study provided a preliminary exploration of
the machine learning-aided seismic stability analysis of
embankment slopes subjected to water level changes, and a
practical engineering case considering more influential factors
warrants further research.
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