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During the operation period, disasters caused by the expansion of tunnel surrounding rock
often occurs, but the understanding of this problem is still insufficient. This study
investigated the disaster that occurred in the tunnel based on numerical simulation on
a case in Dugongling, China. First, the main diseases, including lining cracks, pavement
uplift and cable trench overturning and so on, of the tunnel were investigated in the field.
According to the geological data, the expansion and softening of the surrounding rock was
likely to be the main cause of lining cracking. Then, this paper proposed a formula for
calculating the expansion force of expansive rock when the water content changes. Based
on the expansion force calculation formula, the most severely damaged section was
numerically analyzed, and the results were compared with the on-site monitoring data.
According to the simulation results, the deformation of the surrounding rock and the stress
of the supporting structure were studied. The research showed that the expansion and
softening of the surrounding rock led to an increase in the load acting on the lining
structure, which intensified the development of disasters. Finally, four reinforcement
schemes were proposed and simulated, and the best reinforcement scheme was
evaluated. The results of this study can provide a reference for the design and
construction of this project and similar projects.

Keywords: tunnel engineering, swelling rock, treatment measures, lining deformation, expansion and softening

INTRODUCTION

In recent years, with the vigorous development of a large number of construction projects, there have
been varying degrees of disasters, such as deformation, lining cracking or leakage, in tunnel
engineering during the construction or operation period. Some tunnels may even cause damage
that endangers personal safety in the process of construction (Bian et al., 2016; Li et al., 2018; Liu
et al., 2018; Dong et al., 2021; Fan et al., 2021; Yu et al., 2021). Among them, tunnel engineering
disasters caused by expansive surrounding rock have been very common.

Swelling rock is a special soft rock that expands and softens with water, shrinks and disintegrates
after water loss which is different from other rocks (Fan et al., 2019,2020; Liu et al., 2020a, 2020b; He
et al., 2021a, He et al., 2021b; Kang et al., 2021; Zhang et al., 2021a). It has special engineering
characteristics and easily causes tunnel disasters, which has a great impact on project cost and safe
operation (LiuShui et al., 2014; Tang and Tang, 2012; Selen et al., 2020; Vergara and Triantafyllidis,
2015).
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Most laboratory tests and field observations have shown that
considerable pressure can be generated when the expansion strain
is prevented. For example, a large number of tunnels in Baden-
Württemberg state (southwest Germany) expand, resulting in
high uplift of the unreinforced tunnel floor and exerting strong
expansion pressure in the tunnel with supports (Berdugo et al.,
2009). The surrounding rock will be extruded into the tunnel or
cause floor uplift with the passage of time. Great damage will be
caused to the initial support or lining of the tunnel (Kovari et al.,
1988; Oldecop and Alonso, 2012). Water is one of the important
factors for the uplift of the bottom of the tunnel (Anagnostou G.
and Kovári K. 1995; Butscher et al., 2011a; Butscher et al., 2011b).

In serious cases, an effort is made to prevent or impede the
expansion strain through the stiff tunnel lining. The expansion
pressure is often high enough to cause damage to the tunnel
lining. Even a 30 cm thick concrete support was destroyed during
construction along large tunnel sections due to shearing failure
(Wittke-Gattermann and Wittke, 2004). However, for large-scale
cases with diseases, it is necessary to conduct special research on the
damage and propose corresponding treatment measures for these.

In view of the seriousness of tunnel accidents caused by such
expansive rock diseases, many researchers have studied the
mechanism and treatment measures of tunnels in recent decades
(Ren et al., 2006; Cui et al., 2014; IsagoN. et al., 2014; Liu et al., 2011a;
Liu et al., 2011b; Liu et al., 2020c; Liu et al., 2020d). During the tunnel
excavation of the Trasvasur tunnels (Canary Islands, Spain) (Pérez-
Romero et al., 2007), found that it is advisable to seal off the
excavation as soon as possible to prevent change due to the
decompression of the swelling clay levels and the absorption of
water from the tunnel itself. Researching the deformation
mechanism of swelling rock (Zhang et al., 2021b; Isago et al.,
2015; Oldecop and Alonso, 2012), it was found that these
measures that was the implementation of bolts (Waldemar 2015;
Jeong et al., 2015), reinforced linings (Li et al., 2019; Bilir and Sarıgül,
2021; Korzeniowski et al., 2015), allowable deformation to reduce
expansion pressuremeasurement (Aksoy et al., 2012; Sun andWang,
2011) and so on can greatly reduce the probability of large
deformation of the tunnel. Currently, most of the research on the
stability of the tunnel is focused on the deformation of the
surrounding rock in the process of construction, while the
research on secondary lining failure during tunnel operation is
limited. Therefore, it is of great significance to conduct research
on the disease during the tunnel operation period and then give
proper reinforcement measures to ensure that the tunnel is restored
to traffic as soon as possible.

According to the damage phenomenon of the Dugongling
tunnel of the Changping Expressway in Shanxi Province, China,
this study evaluated the disaster of the expansive rock tunnel
during the operation period. According to the geological data, the
expansion and softening of the surrounding rock was likely to be
the main cause of lining cracking. Then, this paper proposed a
formula for calculating the expansion force of expansive rock
when the water content changes. Based on the expansion force
calculation formula, the most severely damaged section was
numerically analyzed, and the results were compared with the
on-site monitoring data. Finally, the proposed reinforcement
schemes were put forwards, and then the stress situation of

the lining structure under each reinforcement treatment plan
was studied to analyze. The results of this study can provide a
reference for the design and construction of this project and
similar projects.

GEOLOGICAL CONDITIONS AND TUNNEL
DISEASES

Project Overview
The Dugongling Tunnel is a two-way four-lane highway tunnel.
The total lengths of the left and right tunnels are 2,474 m and
2,515 m, respectively. The maximum depth of the left tunnel is
221 m. The maximum depth of the right tunnel is 231 m. Except
for some imported sections, the distance between the left and
right lines of the tunnel is more than 20 m. The tunnel was
completed and started operation in 2013. During the construction
period and after tunnel operation, the tunnel support structures
were found to have varying degrees of disaster. The disaster
characteristics were mainly represented by the uplift and cracking
of the road surface in the tunnel, the overturning of cable
trenches, and the cracking of the second line of the tunnel,
which seriously affected the normal operation of the expressway.

Formation Lithology
Folds developed in the tunnel site, but the scale of folds is not
large. The strata are locally deformed and are broad folds with
small dip angles. The lithology of the tunnel site is mainly
composed of Quaternary Holocene slope diluvial loess-like
silty clay (Q4dl + pl), Quaternary Upper Pleistocene slope
diluvial gravel (Q3dl + pl), and marlstone and limestone of
the Middle Ordovician upper Majiagou Formation (O2S1 and
O2S2). The longitudinal section of the engineering geology of the
Dugongling left tunnel is shown in Figure 1. The tunneling site
mainly includes gypsum, softening marlstone, abolished mining
pits, karst, and other adverse hydrogeologies (Xu and Wang,
2019; Xu and Wang, 2020; Liu et al., 2020).

Hydrographical Meteorology
The tunnel site has a temperate semiarid continental climate, with
an average annual temperature of 9.2°C, of which January is the
coldest with an average temperature of−5.8°C and July is the
hottest with an average temperature of 22.6°C. In recent years, the
average annual precipitation has been 592.33 mm. The maximum
annual precipitation was 719.2 mm in 2013. The minimum
annual precipitation was 491.8 mm in 2012. The main
precipitation period is from July to September, accounting for
56–70% of the annual precipitation. The multiyear average
evaporation is 1,699.5 mm, which is nearly three times the
average precipitation over the years. The frost period is from
early October to mid-April of the following year, with a frost-free
period of 150 days, and the maximum frozen soil depth is
approximately 1.0 m.

The inner wall of the tunnel has an upper layer of stagnant
water, the aquifer lithology is limestone, and the lithology of the
aquifer is marl or gypsum rock. The seasonal change in the upper
layer of stagnant water is large. In the dry season, the maximum
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flow rate of water seepage at the bottom of the cable trench is only
60 L/d. Atmospheric precipitation is the only source of recharge
for the upper layer. With the arrival of the rainy season, the
amount of water seepage will gradually increase. In addition, the
concentrated distribution of mining pits provides good access to
surface water infiltration.

Failure Characteristics of the
Representative Sections
From april to July 2014, the Institute of Highway Research of the
Ministry of Transport launched special test and assessment work
on the expanded rock tunnel. The detection results showed that
the left hole of the tunnel ZK34 + 300 ∼ ZK34 + 390, ZK34 +
605 ∼ ZK35 + 550 section was within the range of approximately
1,035 m, the right hole K34 + 430 ∼ K35 + 260 section was within
the range of approximately 830 m, having varying degrees of
disease phenomena. The lining crack length of the left tunnel was

1,580 m, which accounted for 63.86% of the total length. The
lining crack length of the right tunnel was 850 m, which
accounted for 33.80% of the total length. The uplift and
cracking lengths of the pavement of the left and right tunnels
were 207 m and 60 m, respectively. Among them, there were six
uplifts and twelve cracks on the left road surface. There were two
uplifts and nine cracks on the right road surface. The lengths of
cable trench damage of the left and right tunnels were 391 m and
238.5 m, respectively. Photos of the failure characteristics of the
tunnel are shown in Figure 2.

Based on the main diseases of the tunnel, section ZK35 + 045
of the left tunnel was selected as the research object. The lining of
the ZK35 + 045 section was seriously damaged, and the cracks
were densely distributed. Longitudinal cracks were mainly
associated with several oblique cracks. The cracks were mainly
distributed within 0 and 2 m of the sidewall, and the crack width
was 0.1–5 mm. On the left side of the ZK35 + 045 section, there
were longitudinal cracks with a length of 6 m. On the right

FIGURE 1 | Geological profile.

FIGURE 2 | Photos of failure characteristics of the tunnel (A). Transverse crack (B). Vertical crack (C).Cavity (D). Overturning of the cable trench.
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sidewall, there were circumferential cracks with a length of 4.0 m,
with a maximum of 6 cm on both sides of the arch waist and
13 cm on the road surface. The left and right pavements had
different levels of voids.

Analysis of the Causes of Swelling Rock
Tunnel Diseases
Through the analysis of the geological conditions of the diseased
holes and the drilling exploration results, it was considered that
themain causes of the disease in the expansion rock tunnel are the
following:

1) groundwater

The inner wall of the tunnel had an upper layer of stagnant
water, the aquifer lithology is limestone, and the lithology of the
aquifer is marl or gypsum rock. The seasonal change in the upper
layer of stagnant water is large. In the dry season, themaximum flow
rate of water seepage at the bottom of the cable trenchwas only 60 L/
d. Atmospheric precipitation was the only source of recharge for the
upper layer. With the arrival of the rainy season, the amount of
water seepage will gradually increase. In addition, the concentrated
distribution of mining pits provided good access to surface water
infiltration. It was estimated that the direct infiltration of
atmospheric precipitation through the pit was 31 m3/d.

2) geological structure

The cracks occurred in the surrounding rock of the diseased
section, which is a marlstone and a gypsum interlayer of the
Shangma Majiagou Formation of the Ordovician. The oblique S1
and S3 water storage structures caused the upper layer of stagnant
water to pool in the diseased section.

3) softening of marl

According to relevant data from geological survey reports, the
softening coefficient of marl was approximately 0.20–0.65, and
the softening characteristics of marl were more obvious.

4) softening and expansion of the gypsum and anhydrite

The process of gypsum hydration to gypsum was gypsum
expansion. During this process, expansion force will be generated
on the tunnel lining; at the same time, gypsum softening will
reduce the strength of the surrounding rock (Tang and Tang,
2012; LiuShui et al., 2014; Vergara and Triantafyllidis, 2016; Selen
et al., 2020).

In view of the geological origin, this study concluded that the
excavation of tunnels will gradually expose gypsum, anhydrite
and marlstones to the environment, increasing the empty surface
and redistributing the surrounding rock pressure, leading to the
original recharge, runoff, and discharge routes of groundwater.
All have changed, and the basement of the tunnel has become the
drainage surface of the groundwater and the gallery corridor.
Groundwater and tectonic actions provide favourable conditions

for the softening and swelling of gypsum and limestone in the
diseased section. Under the long-term action of groundwater,
softening of marl, softening and expansion of gypsum and
anhydrite destroy the lining of the surrounding rock, which is
the main cause of disease.

NUMERICAL SIMULATION OF TUNNEL
DISEASES

The disasters of typical sections were simulated by using the
software FINAL. The software has a unique function in
geotechnical engineering. It has 32 types of units, which can
simulate a variety of engineering problems, such as the dynamic
and static problems of underground engineering, dam construction,
slope engineering and foundation engineering. It has been used in
many practical projects, such as the underground powerhouse of the
Xiangjiaba Hydropower Station on the Jinsha River in China, the
Heihe earth-rock dam in China and the left bank slope of Delsi
Hydropower Station in the Republic of Ecuador.

Expansion Force Simulation Method
Based on the theory of thermal expansion, this paper proposes the
expansion force of expansive rock when the water content
changes. In other words, the expansion force caused by the
change in water content is equivalent to the expansion force
caused by the change in temperature.

For expansive rocks of length L, when water is uniformly
encountered and water is raised from w0 to wh whwh the amount
of expansion of the expansive rock is:

ΔL � αL(wh − w0) � αLΔw (1)

where α is the coefficient of linear expansion of expansive rock
and its unit is percent sign.

If rigid consolidation at both ends of the swelling rock cannot
extend freely and cannot be bent and deformed, the elongation
ΔL of the expansive rock will be completely limited when it meets
water, and compressive stress will appear in the expansive rock.
That in a sense, the expansive rock should be swelled to ΔL before
it meets water. It was assumed that the expansive rock was
restrained and restricted. The volume of the expansive rock
after water is still L, which is equivalent to an axial pressure p
after the expansive rock meets water. The expansive rock of L +
ΔL produces an axial compression set ΔL. If the compression
deformation is elastic deformation, then:

ΔL � pL

EA
(2)

αLΔw � pL

EA
(3)

p � αEΔwA (4)

σ � p

A
� αEΔw (5)

where σ is the compressive expansion stress caused by axial
expansion when expansive rock is completely restricted, α is the
free expansion rate of expansive rock and its unit is percent sign,
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E is the elastic modulus of the expansive rock and its unit is MPa,
ΔW ΔWΔWΔW is the change in water content of the expansive
rock, L is the length of the expansive rock, and A is the cross-
sectional area of the expansive rock.

Then, expansion occurs, and the equivalent expansion load is:

{Fex} � ∑
m

i�n
∫
Si

[B]Ti {σ}dA (6)

where σ is the expansion stress field and [B]Ti is the transpose of
the set matrix of element i.

Numerical Model
According to the provided geological map and survey report
provided, the distribution of surrounding rock strata was
determined. The tunnel cross-section layout is shown in
Figure 3. The key points of the lining and pavement structure

are shown in Figure 4. The detailed model of the finite element
model and detailed details are shown in Figure 5. In this series of
analyses, the finite element model includes wall rock units (LST
units), excavation units (LST units), shotcrete unit units (BEAM6
units), and crack units (COJO units) (Li et al., 2000). The rock
masses (wall rock and the excavation section) adopt an
elastoplastic constitutive model and the Mohr-Colunmb
strength criterion, while a linear elastic constitutive model was
used for the shotcrete layer. The grouting effect was simulated by
activating the prearranged curved beam element to simulate the
shotcrete layer and lining structure, the system bolt and random
bolt were simulated by the bar element, the grouting effect was
simulated by improving the deformation modulus and strength
parameters of the local surrounding rock of grouting, and the
reinforcement effect of the reinforcing steel mesh and steel arch
was simulated by improving the modulus and strength of
concrete. The displacement boundary conditions permitted
were that normal constraint down left and right boundary,
adopts full constraints down the bottom boundary and
freedom to displace along the top boundary.

Material Parameters
According to the relevant data and drawings of the tunnel disaster
treatment, the main lithologies were marl and lime. According to
the relevant geological drilling data and the relevant design
manual of the tunnel, the basic physical and mechanical
parameters of the surrounding rock are shown in Table 1.

According to the relevant data and the foregoing
preliminaries, it was presumed that the disaster of the tunnel
was caused by the softening and swelling of the marl. The disaster
simulation needs to consider the softening and swelling
characteristics of the marl. The main parameters include the
softening coefficient, expansion coefficient, moisture content and

FIGURE 3 | Arrangement diagram of the cross-section of the tunnel (unit: cm).

FIGURE 4 | The key points of the lining and pavement structure.
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softening expansion range. The parameters of marl softening
expansion are selected as shown in Table 2. The material
parameters of the supporting structure were mainly evaluated
according to the design values of the code for the design of road
tunnels (JTG D70-2004, 2004). The minimum reinforcement
ratio of C25 reinforced concrete was calculated to be 0.2%,
and its equivalent elastic modulus is 29.9 GPa. Other
parameters were the same as C25 concrete. The elastic
modulus of the sprayed concrete was calculated as per the
actual steel arch frame and concrete area weight. The tensile
strength of the anchor bolt was calculated according to the tensile
strength of the HRB335 steel bar. The modulus of elasticity was
measured by the longitudinal spacing equivalent. The values of
the support materials and pavement structural parameters are
shown in Table 3.

The expansion coefficient α is the most important parameter
for expansion and softening. According to the relevant
references, α can be calculated according to the following
formula.

α � ep
wh − w0

(7)

where ep is the expansion ratio,Wh is the saturated water content
or expansion limit, and w0 is the initial moisture content.

The back analysis method has gradually become an important
numerical calculationmethod in the process of survey, design and
construction. Based on the above numerical model and initial
parameters, the inversion analysis method is used to determine its
parameters. The inversion analysis process was divided into three
stages as follows:

FIGURE 5 | Finite element model and detail.

TABLE 1 | Basic physical and mechanical parameters of surrounding rock.

Rock mass Deformation modulus
(GPa)

Poisson’s ratio Cohesion (MPa) Internal friction
angle (°)

Specific weight
(kN/m3)

marlstone range 1.22–1.57 0.3–0.35 0.19–0.35 28.8–31.0 19.9–25.6
Average 1.4 0.33 0.27 30.0 23.38
Limestone range 4.24–16.74 0.25–0.30 0.7–1.5 39.0–50.0 23.0–25.0
average 10.0 0.28 1.1 44.5 24.0

TABLE 2 | Softening and expansion parameters of Marlstone.

Rock mass Rate of water content
(%)

Free
expansion rate (%)

Softening coefficient

Marlstone 6.25 0.016–0.094 0.20–0.65
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1) Numerical simulation is carried out for the support structure
of the tunnel and expansion softening process of the
surrounding rock from geometric and mechanical aspects.

2) It tracks and analyses the stress field, deformation field and its
distribution rule of surrounding rock when marlstone softens
and expands, and the stress and deformation of the initial
support and the secondary lining are analyzed.

3) The numerical simulation results are compared with the
actual deformation and stress monitoring results. Then, the
numerical model and parameters, forwards iteration and
recursive analysis are fed back and adjusted. The value for
the minimum difference between the numerical analysis result
and the detection result is 5%.

Simulation Results of the Tunnel Diseases
In this section, the representative section of ZK35 + 045 was
located in the ZK34 + 925∼ZK35 + 050 stretch of the left tunnel.
The lining was seriously damaged, and the cracks are distributed
densely. The failure of the lining was demonstrated by the back
analysis method introduced above.

Taking the parameters in Tables 1–3 as the initial parameters
of the simulation calculation, the deformation and cracking of the
representative section lining and pavement were simulated by the
established finite element analysis model. The simulated
deformation and cracking of the lining and road surface are
shown in Figure 6. Lining axial force and bending moment are
shown in Figure 7.

TABLE 3 | Material parameters for support and pavement structures.

Support materials Elasticity
modulus
(GPa)

Poissn’s
ratio

Specific
weight
(kN/m3)

Axial
compression

(MPa)

Bending
compression

(MPa)

Tensile
strength
(MPa)

Asphalt Concrete Surface 31.0 0.2 22 17.5 19.0 1.64
C35 concrete surface 31.0 0.2 22 17.5 19.0 1.64
C15 concrete cushion/Backfill/bottom
drain

26.0 0.2 22 7.5 8.5 0.93

Sand Pebble 6.0 0.25 23 / / /
C25 plain concrete 29.5 0.2 22 12.5 13.5 1.3
C25 reinforced concrete/side drain/cable
trench

29.9 0.2 25 12.5 13.5 1.3

C20 shotcrete 21.0 0.2 22 10.0 11.0 1.0
HRB335 Rebar 210 0.27 78.5 / / 268
D25 hollow grouted bolt 200 0.3 78.5 / / 268
B22 mortar bolt 200 0.3 78.5 / / 268

FIGURE 6 | Simulated lining deformation of the section of ZK35 + 045. (A) Axial force of the lining (unit: kN) (B) Bending moment of the lining (unit: kNm).
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In Figure 6, the road surface and the upside-down arches are
uplifted, and the middle road surface uplift is relatively large.
There were different levels of voids amongst the layers of the road
surface. Cracks appear on both sides of the wall. Both the left and
right sidewall and spandrel have converged deformation, and the
sidewall deformation is relatively large. Both sides of the cable
trench produce an inward tilt phenomenon. The simulated
disaster law of the tunnel was basically consistent with the
actual disaster characteristics on site.

To further verify the failure of the tunnel, according to the
monitored deformation, the expansion coefficient and saturation
of the surrounding rock were calculated. When the softening
expansive range was 2 m, the softening coefficient was 0.20–0.54,
the marl moisture content was 6.25% and the expansion
coefficient was 0.125–0.138. The deformation and failure of
the lining structure and road surface obtained by simulation
are shown in Table 4.

From Table 4, it can be seen that the maximum deformation is
approximately 138.02 mm at the pavement midpoint, while the
maximum deformation at the lining arch bottom was
approximately 121.69 mm, reducing approximately 12%

compared to the road surface. According to the measured
deformation data at the site, the highest point of the road
surface ridge was approximately 130 mm, which is in good
agreement. Convergence deformations of approximately 41.41
and 72.03 mm were also produced in the left and right sidewalls
(arch waist), respectively, which were basically consistent with the
measured 6 cm. Tensile stresses appear on the arch feet, sidewalls
and road surfaces, but the tensile stress at the pavement does not
exceed 0.20 MPa. The tensile stress at the sidewalls and arches
was as high as 6.20 MPa, far exceeding the ultimate tensile
strength of C25 concrete, causing severe cracking damage at
the sidewall. In addition, the tensile stress at the arch feet was the
greatest. When reinforced, the enlargement leg of the bracket can
be set at the arch feet.

From Table 4, it can be seen that the deformation of the road
surface was approximately 38.7 mm from September 12, 2014, to
May 31, 2015, and the convergence deformation of the sidewall
was approximately 10.2 mm, which is approximately 25% of the
road bump deformation. The left sidewall obtained by inversion
was approximately 30% of the bump deformation of the road
surfaces, which was caused by the late setting of convergence

FIGURE 7 | Lining axial force and bending moment.

TABLE 4 | Summary of stress and deformation of lining structure.

Position Simulated lining deformation (mm) Simulated lining
stress (MPa)

Measured data
1 (mm)

Measured data 2 (mm)

X displacement Y Displacement σmax σmin Measured data Monitoring time

Vault −19.82 −6.46 −5.55 −6.20 2 3.5 2014/9/12–2015/5/29
Shoulder span 31.23 −0.52 −5.32 −6.72 / / /

−46.84 10.15 -6.99 −7.45 −60 / /
Sidewall 41.41 30.52 5.35 −2.14 14 −10.2 2014/9/12∼2015/5/31

−72.03 69.85 1.69 −7.47 −27 / /
Arch feet 0.63 44.37 4.97 −17.29 / / /

−40.58 58.29 6.17 −17.55 / / /
Arch bottom −21.32 121.69 −3.19 −4.23 / / /
Pavement Midpoint −21.39 138.02 0.19 −0.41 131.3 38.7 2014/9/12∼2015/5/29
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monitoring in the hole, resulting in the difference between the
two values. In addition, the tunnel ridge deformation was
approximately 130 mm, as measured by the tunnel laser cross-
section detector, which was close to the 138.02 mm inversion
value of the pavement midpoint. The actual convergent
deformation at the arch shoulder was 60 mm, which was close
to the inversion deformation of 46.84 mm. Therefore, the
deformation simulation results were in good agreement with
the actual deformation.

According to the results of the back analysis, the deformation
and failure characteristics of the ZK35 + 045 section are extracted,
and then the equivalent swelling and softening load of the
surrounding rock on the lining structure when the lining was
damaged was inverted by the integral method. When the disaster
occurred, the maximum equivalent expansion softening load of the
surrounding rock to the lining was located at the left wall and the
right arch, which are 1.30–2.00MPa. The rest were no more than
1.00 MPa, and the bottom of the arch is the minimum in Figure 8.

TREATMENT MEASURES OF TUNNEL
DISEASES

Combined with the original support scheme and engineering
experience and based on the failure and parameter inversion
results, several treatment measures were proposed. A numerical
method was used to study the feasibility of the treatment scheme
for representative sections under the effect of surrounding rock
swelling and softening. The force situation and the effect of each
reinforcement plan were evaluated.

Disposal Schemes
Several treatment schemes are proposed, as shown in Table 5.

Evaluation of the Disposal Measures
For tunnel defects, after the above four disposal schemes are
adopted, the stress of the lining structure under the action of
expansion force and surrounding rock softening is shown inTable 6.

Table 3 shows that when scheme A was adopted for the tunnel
section, the stress of the lining structure undergoes a major
change after arching, the tensile stress at various parts of the
lining structure was significantly reduced during the later period

of surrounding rock loads, and the most significant reduction was
in the arch foot portion. Significantly (mainly due to the use of an
enlarged bracket for the lining of the arch feet), after arching, the
tensile stress at the left wall decreased from 5.35 to 3.47 MPa,
nearly 35%; the tensile stress at the right wall was relatively small,
and it decreased only 20%. The drop in the foot of both sides was
up to 80%. However, the tensile stress at the left wall of the lining
still exceeds the ultimate tensile strength of C25 concrete, and
there was still the risk of cracking and destruction.

Compared with the tensile stresses of scheme A, when the
section adopts scheme B, the reduction of the tensile stress at the
left and right wall linings was most obvious, and the reduction
was approximately 55%. The tensile stress at the left wall was
approximately 1.59 MPa, and tensile stress at the right wall was
approximately 0.58 MPa. The tensile stress at the arch feet was
not significantly different from scheme A. Although the stress at
the whole section was reduced to varying degrees after exchange
and replacement, the tensile stress at the left wall and the arch feet
were still greater than the ultimate tensile strength of the C25
concrete, and the tunnel safety was still insufficient.

Compared with the tensile stresses of scheme B, when the
section adopts scheme C, the reduction of the tensile stress at the
left and right wall linings was approximately 10%. The tensile
stress at the left wall was approximately 1.42 MPa, and tensile
stress at the right wall was approximately 0.58 MPa. The tensile
stresses at the left and right arch feet were 1.34 and 1.20 MPa,
respectively. Although the stress at the whole section has been
reduced to varying degrees after exchange and replacement, the
tensile stress at the left wall and the arch feet are still greater than
the ultimate tensile strength of the C25 concrete, and the tunnel
safety is still insufficient.

Compared with the tensile stresses of scheme C, when the
section adopts scheme D, the reduction of the tensile stress of
the lining at the left wall and the arch feet is approximately
10%, and the stress of the lining at the right wall slightly
increased. After adding the prestressed bolts, the tensile stress
at the left wall was approximately 1.28 MPa, and tensile stress
at the right wall was approximately 0.76 MPa. The tensile
stresses at the left and right arch feet were 1.26 and 1.02
MPa, respectively. In this reinforcement scheme, the tensile
stress value of the full section of the lining structure was less
than the design tensile strength of the C25 concrete, and the
tunnel can operate safely under subsequent expansion and

FIGURE 8 | Expansion load of ZK35 + 045 (unit: MPa).

TABLE 5 | Treatment schemes.

Scheme A B C D

specific measures replacing the inverted arch √ √ √ √
replacing lining √ √ √
install anchor shank √
install prestressed bolts √

1) Replacing the inverted arch and lining: first, the inverted arch and sidewalk are
excavated and then replaced with concrete of the same strength and thickness. 2) Install
anchor shank: seven anchor shanks with a length of 6 m and spacing of 1 m × 1 m were
applied to the left and right sidewalls. 3) Install prestressed bolts: seven prestressed bolts
are applied on the left and right sidewalls. Their prestress is 10 tons, the length is 6 m,
and the spacing is 1 m × 1 m. 4)√ represents the corresponding measures taken by the
treatment scheme.
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softening. The lining axial force and bending moment of
scheme D are shown in Figure 9.

In summary, when section ZK35 + 045 adopts treatment plan
D and steel reinforcement, the lining stress is less than the design
tensile strength of C25 concrete, which meets the design
requirements. Therefore, it is suggested that disposal scheme
D be adopted as the final disposal scheme of this section.

CONCLUSION

Based on the investigation and analysis, the disaster of expansive
rock tunnels in mountainous areas was studied by FINAL finite
element software. The main conclusions were drawn.

1) Based on the theory of thermal expansion, a formula for
calculating expansive force with water content of expansive
rock was proposed.

2) As the marlstone expands and softens in water, the load on the
lining structure increases and the tunnel disease intensifies.

The simulated disaster confirmed this phenomenon. This
tunnel’s disaster was mainly caused by the expansion and
softening of the marlstone.

3) The inversed deformation is 130 mm at the pavement
midpoint of ZK35 + 045, which was close to the measured
value of 140 mm. The measured convergence deformation at
the sidewall was 60 mm, which was consistent with the
measured value of 70 mm.

4) According to the actual cracking situation, the progressive
treatment scheme (A, B, C and D) was proposed. Scheme D
(replacing the inverted arch and lining and installing
prestressed bolts) met the design requirements and was
recommended for practical disposal in Dugongling tunnel.
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TABLE 6 | Stresses at key points of the lining structure under different schemes.

Key points Scheme A Scheme B Scheme C Scheme D

σmax

(MPa)
σmin

(MPa)
σmax

(MPa)
σmin

(MPa)
σmax

(MPa)
σmin

(MPa)
σmax

(MPa)
σmin

(MPa)

Vault −5.38 −5.6 −2.15 −2.35 −2.15 −2.31 −2.14 −2.31
Shoulder left −5.33 −6.34 −1.56 −2.5 −1.36 −2.48 −1.06 −2.62

right −5.84 −7.96 −2.16 −3.35 −2.13 −3.2 −2.14 −3.04
Sidewall left 3.47 −1.08 1.59 −0.58 1.42 −0.44 1.28 −0.31

right 1.36 −5.64 0.58 −2.21 0.58 −2.08 0.76 −2.39
Arch feet left 1.02 −5.63 1.46 −6.15 1.34 −5.6 1.26 −5.34

right 1.31 −5.48 1.31 −5.49 1.2 −4.84 1.02 −4.05
Arch bottom 1.68 −2.11 −1.7 −2.11 −1.35 −2.06 −1.63 −1.92
Pavement midpoint 0.1 −0.08 0.11 −0.08 0.09 −0.08 0.26 −0.02

The bolded values are tensile stress.

FIGURE 9 | Lining axial force and bending moment of scheme D.
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