
Semi-Supervised Learning–Based
Petrophysical Facies Division and
“Sweet Spot” Identification of
Low-Permeability Sandstone
Reservoir
Hongjun Fan1,2, Xiaoqing Zhao3,4*, Xu Liang1,2, Quansheng Miao4, Yongnian Jin4 and
Xiangyu Wang4

1State Key Laboratory of Offshore Oil Exploitation, Beijing, China, 2CNOOC Research Institute Ltd., Beijing, China, 3Accumulation
and Development of Continental Oil and Gas Key Laboratory of Education Ministry, Northeast Petroleum University, Daqing,
China, 4School of Earth Sciences, Northeast Petroleum University, Daging, China

The identification of the “sweet spot” of low-permeability sandstone reservoirs is a basic
research topic in the exploration and development of oil and gas fields. Lithology
identification, reservoir classification based on the pore structure and physical
properties, and petrophysical facies classification are common methods for low-
permeability reservoir classification, but their classification effect needs to be improved.
The low-permeability reservoir is characterized by low rock physical properties, small
porosity and permeability distribution range, and strong heterogeneity between layers. The
seepage capacity and productivity of the reservoir vary considerably. Moreover, the
logging response characteristics and resistivity value are similar for low-permeability
reservoirs. In addition to physical properties and oil bearing, they are also affected by
factors such as complex lithology, pore structure, and other factors, making it difficult for
division of reservoir petrophysical facies and “sweet spot” identification. In this study, the
logging values between low-porosity and -permeability reservoirs in the Paleozoic Es3
reservoir in the M field of the Bohai Sea, and between natural gamma rays and triple
porosity reservoirs are similar. Resistivity is strongly influenced by physical properties, oil
content, pore structure, and clay content, and the productivity difference is obvious. In
order to improve the identification accuracy of “sweet spot,” a semi-supervised learning
model for petrophysical facies division is proposed. The influence of lithology and physical
properties on resistivity was removed by using an artificial neural network to predict
resistivity R0 saturated with pure water. Based on the logging data, the automatic
clustering MRGC algorithm was used to optimize the sensitive parameters and divide
the logging facies to establish the unsupervised clustering model. Then using the divided
results of mercury injection data, core cast thin layers, and logging faces, the
characteristics of diagenetic types, pore structure, and logging response were
integrated to identify rock petrophysical facies and establish a supervised identification
model. A semi-supervised learning model based on the combination of “unsupervised
supervised” was extended to the whole region training prediction for “sweet spot”
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identification, and the prediction results of the model were in good agreement with the
actual results.

Keywords: low-permeability sandstone reservoirs, semi-supervised learning, petrophysical facies, “sweet spot”
identification, Shahejie Fm

INTRODUCTION

As exploration and development progress, the research
objective of logging interpretation gradually shifts to
complex reservoirs such as low porosity and low
permeability. The seepage capacity and productivity of
these reservoirs are affected by many factors, and the
productivity varies greatly. Therefore, it is of great
significance for the identification of low-permeability
reservoirs. The production capacity of oil and gas
reservoirs is mainly affected by many factors such as
lithology, physical properties, oil content, shale content,
and pore structure. However, production capacity is a
combination of various influencing factors. With the
advantages of high wellbore resolution and strong multi-
well comparability, the logging method is the main means
of “sweet spot” identification. Logging response can, to some
extent, directly reflect the lithology, physical properties,
seepage characteristics, and production capacity of oil and
gas reservoirs. However, the similarity in response
characteristics of the logging methods for low-permeability
reservoirs and the high and low values of resistivity are not
only affected by fluid properties, which bring new challenges
to reservoir classification and “sweet spot” identification.
Therefore, in order to predict the hydrocarbon distribution
law and dominant reservoir of low-permeability sandstone
reservoirs, reservoir classification based on integrating
logging response, diagenetic type, and pore structure is
very important. Lithology identification, reservoir
classification based on pore structure and physical property
characteristics, and petrophysical facies division are common
methods for low-permeability reservoir classification
research. They establish reservoir identification charts from
different angles and mechanisms. There are several types of
existing reservoir classification criteria, and they vary from
region to region to provide guidance for the exploration and
development of low-permeability oil fields (Sun, 2016).

Rock petrophysical facies is a genetic unit of reservoir with
similar diagenesis. It is the comprehensive effect of
sedimentation, diagenesis, reservoir formation, and later
structure, which can better reflect the rock characteristics.
Identifying different diagenetic types and hence the delineation
of petrophysical facies is of great significance to predict favorable
reservoir and “sweet spot” distribution in low-permeability
sandstone reservoir (Lu and Liu, 2012). From the perspective
of “facies control,” Lai Jin et al. (Jin et al., 2013a; Jin et al., 2013b;
Jin et al., 2015; Lai, 2016 ) proposed that petrophysical facies are
mainly controlled by sedimentary facies, diagenetic facies, and
fracture facies (Gong et al., 2019; Gong et al., 2021), and their
classification and naming should adopt the principle of

superposition of three types of facies, namely, sedimentary
facies + diagenetic facies + fracture facies. Wang Bin (Wang,
2018) divided sedimentary microfacies according to well logging,
coring, mud logging, and other data. On the basis of well logging
identification and induction, the distribution law of diagenetic
facies in the vertical direction of the well section was identified by
using the information from the combination of log data. On this
basis, the petrophysical facies of the well was divided and named
by superposition. In order to more accurately predict the
distribution of high-quality reservoirs and the differences in
internal reservoir properties, Chai and Wang (2016) and
others studied the four main controlling factors of lithology,
lithofacies, diagenetic facies, fracture facies, and pore structure of
a tight sandstone reservoir of the second member of the Xujiahe
Formation in the Anyue area, central Sichuan, following the
concept of petrophysical facies, using core, thin layer, mercury
injection and logging data. The logging characterization method
and logging identification standard were established, and on this
basis, the classification of petrophysical facies and quantitative
evaluation standard of reservoirs were put forward.

Huang et al. (2017) proposed a comprehensive evaluation and
interpretationmethod of reservoir logging based on petrophysical
research, which combined the main control factors such as
macro-sedimentation, diagenesis, and structure with the
micro-rock characteristics, physical properties, and pore throat
structure characteristics, so that the logging interpretation has a
stronger comprehensive guiding significance and have got rid of
the limitations of “one hole view.” Shi et al. (2005) have found
that rock petrophysical facies is the dominant factor controlling
the “four properties” relationship and logging response
characteristics of low-permeability lithologic reservoirs.
Establishing a model for interpreting logging reservoir
parameters based on petrophysical facies classification is an
effective method to improve the logging interpretation
accuracy of low-permeability and heterogeneous reservoirs.

Yao et al. (1995) believed that petrophysical facies is a complex
of reservoir physical properties, which reflects the pore structure
information under the influence of sedimentation, diagenesis,
and microfractures. They classified petrophysical facies based on
equations such as the flow unit index and reservoir quality index,
thus improving the accuracy of permeability prediction. Soete
et al. (2014) took 8 wells in the Paleozoic study area of the Irish
Sea as an example, by calculating and comparing the porosity,
permeability, clay volume, and other parameters of each well and
dividing different petrophysical facies types to find the better
dominant formation of the reservoir. With the rise of intelligent
emerging technology, artificial intelligence logging evaluation
technology has also emerged. Neural networks, machine
learning, automatic clustering, and other intelligent algorithms
are also being developed in the field of well logging, which greatly
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improves the efficiency of reservoir classification and the accuracy
of “sweet spot” identification. Shi et al. (2018) combined with
geological, logging, and core casting thin section data and
successfully divided the logging facies by the graph theory
multi-resolution clustering algorithm. Compared with the
traditional method, the calculation accuracy was significantly
improved, the corresponding relationship between logging
facies and lithofacies in the study area was determined, and a
permeability evaluation model based on logging facies constraint
was established. Zhang Meng (Zhang, 2018) used the nuclear
attraction theory in the MRGC method to initially obtain the
rough classification results of lithology, and then used the SOM
algorithm and dynamic neuron splitting technology to achieve
coarse to fine classification of lithology according to the multilevel
classification scheme provided by theMRGCmethod. Grana et al.
(2012) proposed the formation, evaluation, and analysis of
petrophysical model division. Petrophysical properties of the
reservoir were studied by the combination of lithofacies
classification and other methods. Based on the traditional
stratigraphic evaluation model and cluster analysis technology,
a complete Monte Carlo method was introduced to participate in
the evaluation to find the relationship between petrophysical
properties, elastic properties, and facies, so as to divide rock
petrophysical facies. Li and Li (2013) combined k-means
algorithm and self-organizing feature mapping to identify
lithofacies. Researchers have also proposed task-driven data
mining with domain knowledge. Leite et al. (2013) used
classification models such as multilayer perceptron, SVM,
k-nearest neighbor, and other classification models, and
integrated classifiers by bagging and boosting to identify rock
layers. Ye and Rabiller (2000) solved the parameter sensitive
problem caused by “dimension” through an automatic clustering
MRGC algorithm and compared the phase classification results
with the nuclear magnetic T2 spectrum. It was found that the
classification results were basically consistent with the actual results.
Lifei et al. (2021) have carried out extensive experiments on real
logging data and found that the semi-supervised learning algorithm
can obtain relatively accurate lithology prediction effect by mining
the distribution characteristics contained in marked data and
unmarked data. Taking Paleogene Es3 of M oilfield in Bohai Sea
as an example, a semi-supervised learning model for petrophysical
facies division was proposed to better divide the petrophysical facies
and “sweet spot” identification with the help of the difference in
petrophysical characteristics of the formation logging data, in
response to the difficulty of “sweet spot” identification in a low-
permeability sandstone reservoir. Based on the mercury injection
data, the petrophysical facies of the coring section was analyzed,
and then the combination of “unsupervised supervised” was
extended to the whole region training prediction for “sweet
spot” identification, so as to realize the petrophysical facies
discrimination of the whole well section; we analyzed the
porosity permeability relationship based on the classification of
petrophysical facies. The predictions of themodel have proved to be
in good agreement with the actual results, which is of great
significance to find the “sweet spot area” of low-permeability
sandstone reservoirs.

REGIONAL OVERVIEW

The Palaeozoic M field in the Bohai Sea is geographically located at
the western end of Bonan low uplift and the boundary between
Bozhong sag and Huanghekou sag. The structural strike is mainly
EW and NE, and multiple faults are developed. The faults cut each
other, the shape is complex, and the faults determine the oil–water
distribution. On the whole, it presents the reservoir characteristics
of upper oil and lower water. Drilling shows that this well area is
one of themost favorable oil and gas enrichment areas in the Bohai
Sea, which has superior geological conditions for oil and gas
accumulation. The main development layer series of the oilfield
is the Shahejie Formation, and the buried depth of the reservoir is
3200–3900m. The third member of the Shahejie Formation is a
fan-shaped deltaic turbidite deposit, with wide distribution of rock
grain size and low maturity. It is mainly lithic arkose and
feldspathic lithic sandstone, with sub-prismatic roundness and
relatively poor sorting. The porosity (PORE) is mainly
3.3–17.9%, and the permeability (PERM) is mainly
0.01–25.4 md, and it is a medium-porosity, low-permeability
and ultralow-permeability reservoir. These reservoirs are
lithologically dense, with small pores, fine throat, poor pore
throat connectivity, obvious productivity difference, and difficult
identification of “sweet spots.” As an example, the four reservoirs
with significant production differences in the four key wells
selected (Figures 1, 2 and Table 1) yielded 106, 14.52, 3.25, and
0.83m3, respectively. It can be found from the prepared logging
response curve and logging response characteristic summary table
(Figure 1 andTable 1): the logging response of the four oil layers is
similar except resistivity, porosity, and permeability. The three-
porosity logging values [acoustic (AC), neutron (CNL), and density
(DEN)] are similar. The average AC values of the four oil layers are
75.69, 74.30, 75.00, and 62.10 US/FT, respectively; the average CNL
values are 0.16, 0.12, 0.12, and 0.07 V/V, respectively; and the
average den values are 2.45, 2.44, 2.40, and 2.53 g/m3, respectively.
In addition to the low value of① oil layer (61.94 API), the gamma
(GR) mean values of the other three oil layers are not different,
which are 85.98, 91.54, and 83.94 API, respectively. The difference
of resistivity value is relatively obvious. In addition to the influence
of oil and gas, pore structure, physical properties, and clay will
affect the resistivity. Poor physical properties and complex pore
structure will increase the resistivity, while high clay content will
decrease the resistivity. The average values of the four oil layers of
deep investigate lateral resistivity (RD) are 107.96, 20.41, 38.63, and
80.21 OHMM, respectively. From the observation of the cross-plot
of porosity and permeability (Figure 2), on the whole, the porosity
and permeability distribution trend of the four oil layers basically
presents a straight line with an angle of 60 degrees, and the porosity
and permeability correlation is good; when the four oil layers are
intersected, it can be found that the porosity and permeability
difference of the four small layers is obvious: the porosity and
permeability of oil layer ① is the highest, and the porosity of oil
layer ② is basically the same as that of oil layer ③, but the
permeability of oil layer ② is higher than that of oil layer ③, and
the porosity and permeability of oil layer ④ is the worst: the
permeability is basically below 0.1 mdc.
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FIGURE 1 | Logging response curve of Es3 (Gamma ray log (GR), Density log (DEN), Compensated neutron log (CNL), Acoustic log (AC), Shallow lateral resistivity
log (RS), Deep lateral resistivity log (RD), Porosity log (PORE), Permeability log (PERM), Fluid properties (RESULT), the same below).
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PREDICTION OF SATURATED PURE
WATER RESISTIVITY R0 BY ARTIFICIAL
NEURAL NETWORK DESPITE THE
INFLUENCE OF LITHOLOGY AND
PHYSICAL PROPERTIES ON RESISTIVITY

Resistivity Value of Saturated PureWater R0
Using formation resistivity to analyze the variability of the actual
formation is difficult due to the similar logging response in low-
permeability reservoirs, the similar range of values taken for natural
gamma rays and triple holes, and the fact that resistivity is influenced
by a number of factors. In addition to the influence of oil and gas, the
resistivity will be affected by pore structure, physical properties, and
clay. Poor physical properties and complex pore structure will lead to
the increase of resistivity, and high clay content will cause the decline
of the resistivity value. In order to eliminate the influence of these
factors on the reservoir resistivity value, it is necessary to calculate the
saturated pure water resistivity (R0). In conventional oil reservoirs,
the R0 value is usually calculated by the Archie formula or an
argillaceous sandstone conductivity model formula (Li and Ying,
2012), but the pore structure of the low-permeability tight reservoir
is complex, and the R0 value calculated by the aforementioned
method is often inaccurate, making it difficult to find the law of
model parameters. Therefore, this study adopts the method of
machine learning to learn and predict, selects a key well, and
takes the resistivity value of the pure water section of the well as
the saturated pure water resistivity R0’s training set, so as to conduct
modeling training to predict the R0 value of the whole well section.

The resistivity R0 value of saturated pure water predicted by
the neural network was superimposed with the formation deep
lateral resistivity RD value. The fluid properties can be judged
according to the amplitude difference and curve change direction,
which provided a basis for “sweet spot” evaluation. When the
amplitude of the R0 curve and RD curve of permeable layer
coincided, the reservoir was interpreted as water layer; When the
R0 curve of the permeable layer was significantly smaller than the
amplitude of the RD curve, the reservoir was an oil layer; When
the R0 curve was much higher than the deep lateral resistivity
curve RD and there was a peak, it could be identified as a dry
layer. This is because most dry layers contain calcareous

interlayer and its porosity is small, so the amplitude value of
R0 curve calculated according to the aforementioned formula is
very large. Therefore, the question of whether the predicted R0

value is correct can be controlled by comparing the two resistivity
values of the oil and water layers to control the quality of the
predicted R0 value.

Artificial Neural Network Prediction R0
The artificial neural network abstracts the human brain neural
network from the perspective of information processing and
establishes an operation model, which is composed of a large
number of nodes (or neurons) connected with each other. Each
node represents a specific output function, which is called an
excitation function. The connection between each nodes
represents the weighted value of the signal passing through the
connection, which is called the weight, and it is equivalent to the
memory of the artificial neural network. The output of the
network varies depending on how the network is connected,
the weight value, and the excitation function. Generally speaking,
the selection of the excitation function is particularly important
for the learning effect of data samples (Fang et al., 2011).

Therefore, Relu and Tanh were chosen as the activation
functions for the different neural layers, taking into account
the data characteristics of the input data (Guo and Gao, 1996;
Wei et al., 2020). In the framework of the neural network, a three-
layer neural network, one input layer, one hidden layer, and one
output layer, was adopted. In this study, acoustic time difference
AC, compensated neutron CNL, and density den and deep lateral
resistivity Rd were selected as the input data and was input into
the input layer after normalization. After fitting the data of the
hidden layer, the resistivity R0 saturated with pure water was used
as the output layer. The data structure is as follows:

Xinput �
⎧⎪⎨⎪⎩

x11, x12, · · ·, x1m

·· ·· ·· ··
xn1, xn2, · · ·, xnm

⎫⎪⎬⎪⎭
T

�
⎧⎪⎨⎪⎩

AC1, CNL1, DEN1, RD1

· · · · · · · · · · · ·
ACn, CNLn, DENn, RDn

⎫⎪⎬⎪⎭
T

, (1)

Youtput � (y1, y2, · · ·, yn)T � (R01, R02, · · ·, R0n)T. (2)

FIGURE 2 | Cross-plot of porosity and permeability of small layer 4 of the Es3 reservoir [(A): overall cross-plot of small layer 4; (B): separate cross-plot of small
layer 4].

Frontiers in Earth Science | www.frontiersin.org January 2022 | Volume 9 | Article 8053425

Fan et al. Petrophysical Facies Division

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


In Eq. 1, n is the number of training samples and m is the type of
input parameters corresponding to each sample, so the
number of inputs and outputs of the neural network are 4
and 1, respectively, and non-linear mapping completed by
the network is f:Rn→R1. If the hidden layer is p, the input of
each node in the hidden layer of the network is given as
follows:

Sj � ∑m
i�1
wijxi − θj(j � 1, 2, · · ·p), (3)

In the equation, wij is the connection weight from input layer
to hidden layer and θj is the threshold of the hidden
layer node.

When the input data, output data, activation function, and
neuron layers are completely determined, the neural network
architecture can be carried out. The neural network architecture
for predicting the resistivity R0 of saturated with pure water by an
artificial neural network is shown in Figure 3.

By analyzing resistivity value of the well section in the pure
water layer using an artificial neural network, a model was
established and learned, and the R0 value of the whole well
section was obtained (Figure 4). Moreover, the resistivity R0 value
full of pure water predicted by the neural network was
superimposed with the formation deep lateral resistivity RD
value. According to the amplitude difference and curve change
direction, the fluid property of the well was clearly judged and the
oil–water interface was divided. By observing the superposition of
the RD curve and RS curve and the superposition of the RD curve
and R0 curve, it can be found that the deep and shallow lateral
resistivity curves always coincide and cannot show the difference
of fluid properties; When the R0 curve of the permeable layer
was obviously smaller than the amplitude of the RD curve, the
green filling with amplitude difference was interpreted as an
oil layer. When the R0 curve of the permeable layer basically
coincided with the amplitude of the RD curve, the reservoir
was interpreted as a water layer, and the oil–water interface is
clearly divided. The results showed that the resistivity R0 of
saturated pure water predicted by the artificial neural
network can remove well the influence of lithology and
physical properties on resistivity. Compared with the actual
results, the fluid property identification results with deep
lateral resistivity superimposed were in good agreement,
which provided a theoretical basis for “sweet spot”
identification of low-permeability reservoirs with complex
pore structure.

ESTABLISHMENT OF ROCK
PETROPHYSICAL FACIES IDENTIFICATION
METHOD BASED ON SEMI-SUPERVISED
LEARNING

Information of petrophysical formation can be obtained from
logging, including various physical and chemical properties of
rocks, such as rock density, resistivity, hydrogen index, natural
gamma ray, natural potential, and longitudinal wave propagationT
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velocity, and can directly reflect the lithology, physical properties,
reservoir properties, and production capacity of reservoirs to a
certain extent. Different reservoirs have their own petrophysical
characteristics. Logging and core analysis data can reflect the
heterogeneity and the pore structure of the reservoir. However,
due to the similar logging response of the low-permeability
reservoir, the similar range of natural gamma ray and three-
porosity values, and the high and low resistivity being influenced
by multiple factors, it is difficult to analyze the changes of the
actual formation by using the conventional logging data. It is
found that the petrophysical facies controls the “four
characteristics” relationship of low-permeability lithologic
reservoirs and the dominant factor of logging response
characteristics. “Sweet spot” identification based on
petrophysical facies classification is an effective method to
improve the logging interpretation accuracy of low-
permeability and heterogeneous reservoirs. Based on this, a
semi-supervised petrophysical facies identification method
(Figure 5) was established, which combined an unsupervised
clustering model with the supervised identification model. The
unsupervised clustering model is used to input sensitive logging
curves and divide logging facies by the automatic clustering
algorithm, while the supervised identification model is used to
recognize petrophysical facies by using mercury injection data,
core cast thin section, logging facies division results, and other

data, and thus realizing the function of petrophysical facies
recognition of semi-supervised learning.

Automatic Clustering MRGC Algorithm for
Logging Facies Division
A logging facies analysis involves selecting representative key
coring wells, dividing logging facies through conventional logging
curves of known lithology and strata, and determining the
corresponding relationship between each logging facies and
petrophysical facies. Based on this correspondence, a
continuous layer-by-layer logging facies analysis was carried
out for key wells and non-coring wells, and the petrophysical
facies of each layer was determined. Finally, the petrophysical
facies of all strata in these well sections were obtained. Generally
speaking, the formation of a certain lithology in the same
sedimentary environment has a specific set of logging
parameter values. The formation of the whole drilling profile
can be divided into several logging facies with geological
significance by logging data. Reservoirs of similar logging
facies generally have similar lithology, physical properties, pore
structure, and logging response characteristics. Therefore, the
study of reservoir logging facies can be used to better identify
petrophysical facies by transforming the heterogeneity and non-
linearity of complex reservoir into homogeneity and linearity.

FIGURE 3 | Structure diagram neural network of resistivity R0 saturated with pure water predicted by the artificial neural network.
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However, in the data analysis of logging field, there are many
kinds of index variables to choose, and the relationship between
variables is complex. Clustering is used to solve the problem
where explicit mathematical models are not considered and can
effectively represent and predict uncertain and unstructured data.
In this study, an automatic clustering algorithm (MRGC) was
used to divide logging facies. As an unsupervised learning
method, on the basis of absorbing the KNN algorithm, it
delimits the nearest neighbor relationship between sampling
points and integrates attraction set to realize classification
(Tian et al., 2016; Wu et al., 2020).

Principle of MRGC Algorithm
The MRGC algorithm is characterized by each depth logging
sample point using two indexes describing the adjacent
relationship: the neighboring index (NI) and kernel
representative index (KRI). Based on the relationship
between NI and KRI, small natural data groups are formed,
which may differ significantly in size, shape, separation, and
quantity. Then the mutation in KRI corresponds to the optimal
number of clusters at different resolutions. The optimal
number of segments is determined by mutation of the
decreasingly ordered KRI curves, thus enabling an
automatic cluster analysis.

A neighboring index (NI) was used to divide logging facies
(Gan, 1994). Let X be an element in set S, and y is the n-th
adjacent value of x in the set S, n≤N. The relative rank of point x
relative to its n-th NN, adjacent value y is defined as follows:

δn(x) � { e(−m/α), if x is y’s m − thNN,m≤N − 1;
b, if x is not belong to the set of y′sKNN.

, (4)

where x has a finite rank relative to each minimum adjacent value
(KNN) of x : δ n (n �1, 2,. . ., K). Let

S(x) � ∑N
n�1

δn(x), (5)

SMin � Min
i�1 N

{S(xi)}, (6)

SMax � Max
i�1 N

{S(xi)}, (7)

NI is determined by the normalized value of set S from 0 to 1,
that is,

NI(x) � S(x) − SMin

SMax − SMin
, (8)

In Eqs 4–8: N is the number of elements in S set and α is the
smoothing coefficient, a>0; when b ≤N-1, b is the estimated value

FIGURE 4 | Result plots of resistivity R0 of saturated pure water predicted by the artificial neural network.
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of the rank of the adjacent value x of y; δ n is the rank of the
adjacent value x of y, which is a decreasing function strictly varying
from 1 to 0. When m � 0, δ n � 1, the higher the value of M, δ n
approaches 0, but δ n is never equal to 0. Therefore, the higher the
NI value, the closer the point is to the core of the cluster.

The number of optimal classes is actually a function of
“resolution,” that is, the clustering results with more classification
results (high-resolution) are subdivided by a category in the clustering
results with less classification results (low-resolution), and then the
optimal class can be selected according to the actual needs.

The kernel representative index (KRI) is a combined function
of the neighborhood index NI (x), the number of neighbors m (x,
y), and the distance function d (x, y), that is,

KRI(x) � NI(x)M(x, y)D(x, y), (9)

In Eq. 9: M(x,y) � n; y is the nth adjacent value of x; and D (x, y) is
the distance from point x to point y.

NI (x) can be used to identify the kernel of a clustering result.
The number of neighbors M (x, y) tends to produce data sets of
the same scale, while the distance function D (x, y) tends to
produce data sets of the same volume. The combination of M (x,
y) and D (x, y) can therefore achieve a good balance in the data
scale and volume and produce consistent results, that is, the best
logging results can be selected. When the KRI is arranged in a
descending order, a change from one steady state to another
results in a corresponding number of inflection points, which
correspond to different kinds of clustering results. At the same

time, the local maximum (i.e., inflection point) of the gradient
curve is calculated, and the points corresponding to the
maximum KRI are selected to form the final clustering result
(Figure 6).

Division of Logging Facies Flow by Automatic
Clustering MRGC Algorithm
The logging facies division of the automatic clustering algorithm
(MRGC) roughly has the following process: first, a key well with
more coring was selected, and uniform distribution of coring
sections was as much as possible. The key wells with complete

FIGURE 5 | Flowchart of petrophysical facies division based on semi-supervised learning.

FIGURE 6 | Schematic diagram of determining the optimal number of
logging facies by the KRI.

Frontiers in Earth Science | www.frontiersin.org January 2022 | Volume 9 | Article 8053429

Fan et al. Petrophysical Facies Division

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


logging curve and distinct electrical characteristics that are
representative of the whole area were used as standard wells
for modeling. Then logging curves with different parameter
combinations were input as learning curves. Due to different
data types measured by different logging methods, their
dimensions and numerical magnitude were completely
different. Data samples of different dimensions were directly
used to train logging facies prediction model, which might
lead to excessive data weight of higher magnitude. In order to
balance the weight of different logging curves and eliminate
internal errors of the system, it is necessary to normalize the
data and clear the outliers. Finally, the neighboring index NI and
the kernel representation index (KRI) were calculated using the
MRGC algorithm. The logging facies were divided by the
neighboring index NI, and the kernel representative index
(KRI) was used to determine the optimal number of logging
facies, so as to perform cluster analysis on the sample data and
output the optimal clustering results and determine the
parameter combination for the optimal division of logging
facies according to the comparative analysis of logging facies
division results of different parameter combinations (Figure 7)
(Ye and Rabiller, 2000; Shi et al., 2017).

Analysis of Logging Facies Division Results
The most important point of automatic clustering division of
logging facies is the determination of input curve, which directly

determines the accuracy of division results. Therefore, parameter
optimization and comparative analysis of different parameter
combinations are of particular importance. For the combination
of different parameters of logging curves on the basis of the
mechanism analysis, six groups of comparative experiments
(Table 2) were carried out in this study, and six different
parameter combinations were automatically clustered. The
division results are shown in Figure 7. Based on the analysis
of the division results of different parameter combinations, the
basis for determining the best parameter combination for logging
facies division mainly focuses on two basic principles: first, the
division of reservoir and non-reservoir should be clear, that is,
sandstone and mudstone can be clearly distinguished; second, the
interface between reservoirs and non-reservoirs delineated by
automatic clustering should be basically the same as the interface
between reservoirs and non-reservoirs delineated by hand.
According to the two basic principles, the division results of
the six groups are analyzed as follows (Table 2):

The first group of parameter combinations is GR and RD
(Channel 8 in Figure 7). GR and RD are the basic parameters for
lithology and electrical identification in the “four property
relationship,” respectively. The division results can generally
reflect the distribution of reservoirs, but the reservoir division
in some areas is not clear, and the sand mudstone cannot be
clearly distinguished (green in Channel 8 in Figure 7 is actually
mudstone, but green is distributed in the reservoir). Therefore,

FIGURE 7 | Comparison of automatic clustering division of logging facies with different parameter combinations.

Frontiers in Earth Science | www.frontiersin.org January 2022 | Volume 9 | Article 80534210

Fan et al. Petrophysical Facies Division

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


these two parameters alone cannot reflect the actual situation of
the reservoir.

The second group of parameter combinations is GR, AC, and
RD (Channel 9 in Figure 7). This group can give a better picture
of the distribution of reservoir and non-reservoir. Sandstone and
mudstone can be largely distinguished (except that the
penultimate non-reservoir section is slightly unclear), but the
thickness of the non-reservoir section (dark blue and light blue in
Channel 9 in Figure 7 are mudstone) is relatively small, and the
reservoir and non-reservoir interfaces divided by automatic
clustering are not consistent with the reservoir and non-
reservoir interfaces divided manually.

The third group of parameter combinations is GR, AC, CNL,
and DEN (Channel 10 in Figure 7). The combination does not
introduce resistivity parameters, so the division effect is very
poor, and the division of the reservoir and non-reservoir is
chaotic (red in Channel 10 in Figure 7 is distributed in both
reservoir and non-reservoir sections), making it impossible to
distinguish. Obviously, resistivity parameters are indispensable
parameters for logging facies division.

The fourth group of parameter combinations is GR, AC, CNL,
DEN, and RD (Channel 11 in Figure 7). The division results of
this group of combinations can generally reflect the distribution
of reservoirs, but the reservoir division in some areas is not clear
and the sand mudstone cannot be clearly distinguished (the
division of the first three reservoirs and non-reservoir sections
in Channel 11 in Figure 7 is chaotic).

As discussed before (Resistivity Value of Saturated Pure Water
R0 section and Artificial Neural Network Prediction R0 section), it
is difficult to use formation resistivity to analyze the variability of
actual formations as the resistivity values of low-permeability
reservoirs are influenced by a variety of factors including physical
properties, oil bearing properties, complex lithology, and pore
structure.

Therefore, the resistivity R0 saturated with pure water was
introduced to remove the influence of physical property and rock
property on resistivity (RD). Similarly, based on the combination
of the first four parameters, the resistivity R0 saturated with pure
water was introduced for parameter combination to observe the
division effect. The fifth group of parameter combinations is GR,
AC, CNL, DEN, RD, and R0 (Channel 12 of Figure 7). This group
can better reflect the distribution of reservoir and non-reservoir,
and the sandstone and mudstone can be basically distinguished
(except that the second non-reservoir section and the third
reservoir section are slightly unclear), but the thickness of the

non-reservoir section (green and red in Channel 12 of Figure 7
are mudstone) is too large, and the reservoir and non-reservoir
interfaces divided by automatic clustering are not consistent with
the reservoir and non-reservoir interfaces divided manually.

The sixth group of parameter combinations is GR, AC, CNL,
DEN, and R0 (Channel 13 in Figure 7). The division results of this
group meet the two basic principles that the reservoir and non-
reservoir division can be significantly distinguished from the
automatic clustering division and the reservoir and non-
reservoir interface should be basically the same as the
manually divided reservoir and non-reservoir interface, with
the best division results.

Based on the division results, the best parameter combination
of GR, AC, CNL, DEN, and R0 logging facies was optimized. The
division of logging facies provided an experimental and
theoretical basis for further identifying the petrophysical facies
of low-permeability reservoirs in this area.

The Supervised Identification of
Petrophysical Facies
Pore Structure Classification
The reservoir pore structure facies refers to the geometry, size,
distribution, and interconnection of pores and throats in rocks. It
is a general term for the changes of pore structure in reservoir
units. During the formation of a reservoir different diagenesis has
a certain impact on the destruction and preservation of primary
pores and the generation of secondary pores. The pore structure is
the manifestation of the micro-impact on the reservoir.

According to the observation of core casting thin section, the
dissolution of feldspar and rock debris in the Es3 reservoir was
developed; expanded intergranular pores, reduced intergranular
pores, intragranular pores, and mold pores were also developed.
There are many expanded intergranular pores, but the absolute
content of pores is small, indicating that the intensity of
dissolution is limited. According to the characteristics of
diagenetic stage, diagenetic type, type of diagenetic minerals
under microscope, formation sequence, strength of dissolution,
and type and content of clay matrix, it can be divided into four
diagenetic types: secondary solution pores, mica deformed by
compaction, no obvious characteristics or transition, and
carbonate cementation. Based on the data of different
diagenetic types of core cast thin sections and the pore
distribution of mercury injection test, the pore structure types
of Es3 reservoir in the study area were studied according to

TABLE 2 | Comparison of effects of automatic cluster division of logging facies with different parameter combinations.

Experimental sequence
(group)

First Second Third Fourth Fifth Sixth

Parameter combination GR/
RD

GR/
AC/RD

GR/AC/
CNL/DEN

GR/AC/CNL/
DEN/RD

GR/AC/CNL/
DEN/RD/R0

GR/AC/CNL/
DEN/R0

Logging channel sequence in Figure 10 8 9 10 11 12 13
Whether the reservoir classified by cluster is obviously different from the
non-reservoir (qualitative)

× √ × × √ √

Whether the layer interfaces of cluster division and manual division are
consistent (quantitative)

× × × × × √
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different pore structure parameters, and the reservoir pore
structure facies were divided into four categories: I, II, III, and
IV (Table 3).

The diagenetic type of class I reservoir is mainly secondary
solution pores, accounting for a relatively large proportion of
secondary pores (the secondary pores of core cast thin section
accounts for 25%), containing certain argillaceous matrix and
obvious cements such as quartz and dolomite, with porosity
greater than 15%, permeability greater than 10mdc,
displacement pressure less than 0.2 MPa, maximum mercury
saturation greater than 80%, and maximum throat radius
greater than 5 μm. The mean throat radius is greater than
1.0 μm, and the throat is relatively large and well sorted, so it
is a fine throat and is a good reservoir.

The diagenetic type of class II reservoir is mainly mica
deformed by compaction, the proportion of secondary
pores is slightly smaller than that of secondary solution
pores, containing a large amount of argillaceous

(the argillaceous content of core cast thin section b is 15),
less cement, mostly iron calcite, porosity between 10 and 15%,
permeability between 1 and 10 mdc, displacement pressure
between 0.2 and 0.5 mpa, and maximum mercury saturation
between 65 and 80%. The maximum throat radius is between 2
and 5 μm, and the mean throat radius is 0.25–1.0 μm, with fine
throat and poor sorting; it is an ultra-fine throat and a
medium reservoir.

The main characteristics of the diagenetic type of class III
reservoirs are the absence of obvious features and transitions, a
slightly higher proportion of secondary pores is slightly higher
than that of carbonate cementation, a small amount of
argillaceous matrix, quartz enlargement, dolomite, obvious
calcite and other cements, mostly iron dolomite, porosity
between 10 and 15%, permeability is between 0.1–1 mdc,
displacement pressure is between 0.5 and 1 mpa, maximum
mercury saturation is between 50 and 65%, maximum throat
radius is between 0.7 and 2 μm, and mean throat radius is

TABLE 3 | Classification standard of pore structure of the Es3 reservoir.

Pore structure type Ⅰ Ⅱ Ⅲ Ⅳ

Color representation

Thin
section of
core cast

Thin section characteristics
of core casting

Total secondary porosity 3 0.5 0.5 0.5
Total holes (%) 12 5 2 3.5
Proportion of secondary pores (%) 25 14.67 8.3 7.14
Interstitial
filler (%)

Heterobase Argillaceous 6 15 3 0
Argillaceous
cloud

0 0 0 0

Cement
composition

Calcite Occasionally Occasionally 0.5 17
Dolomite 1 2 0.5 4
Quartz
enlargement

Common × Common Individual

Note × Ferroan calcite Ankerite ×
Core casting slice correspondence Secondary solution pore Mica deformed by

compaction
No obvious characteristics

or transition
Carbonate cementation

Diagenetic type discrimination
Mercury
penetration

Characteristics of pore mercury injection
curve

Pore radius distribution frequency

Porosity (%) >20 15–20 10–15 <10
Permeability (mdc) >10 1–10 0.1–1 <0.1
Displacement pressure (mpa) <0.2 0.2–0.5 0.5–1 >1
Maximum mercury saturation (%) >80 60–80 50–60 <50
Maximum throat radius (μm) >5 2–5 0.7–2 <0.7
Mean throat radius (μm) >1 0.25–1 0.1–0.25 <0.1
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0.1–0.25 μm, exceptionally fine pore throat, but good flow
properties with moderately sorted and finely skew roar
channel. It belongs to micro-throat and is a poor reservoir.

The diagenetic type of class IV reservoir is mainly carbonate
cementation, and the proportion of secondary pores is the
smallest among all diagenetic types shown in the figure (the
secondary pores of core cast thin section D account for 7.14%),
the content of matrix is small, the content of cement is large, and
most of them are calcite, the content of calcite is 17%, the porosity
is less than 10%, the permeability is less than 0.1 mdc, the
displacement pressure is greater than 1.0 MPa, and the
maximum mercury saturation is generally less than 50%, The
maximum throat radius is less than 0.7 μm. The mean throat
radius is less than 0.1 μm. It belongs to extra micro-throat, and
this kind of reservoir is extra poor reservoir or ineffective
reservoir.

Combination of Logging Facies and Identification of
Petrophysical Facies
Considering diagenetic type, pore structure, and logging response
characteristics, it is necessary to optimize and merge multiple
logging facies obtained by automatic clustering. First, the logging
facies considers the division of reservoir segments, and the quality
of reservoir is closely related to the pore structure. By observing
the pore and permeability range, mercury injection curve, pore
radius, and diagenetic type of different logging facies, the
logging facies with similar pore structure were combined as a
whole. Second, the logging response characteristics should be
considered, different logging response characteristics should
be further optimized to merge and scale based on the
combination of pore structure types, and finally the whole
section can be divided into five types of logging facies; the
combined logging facies were calibrated in combination with
the petrophysical name obtained by core casting thin section
analysis, making the corresponding logging facies to have

petrophysical facies of geological characteristics (Song et al.,
2013; Zhu, 2016). After combining, the five types of logging
facies are named by petrophysics, and there are four types of
sandstone petrophysical facies, including corrosion facies,
argillaceous cementation facies, transition facies, calcarenite
facies, and mudstone (in Table 4, Figures 8, 9; the 8th pore
structures in Figure 9 are pore structure facies, and the color
distribution corresponds to Table 3, where white is the non-
reservoir section. The 9th petrophysical in the figure is
petrophysical facies, and the color distribution
corresponds to Table 4, in which white is the non-
reservoir section):

Facies_1 is corrosion facies with relatively good physical
properties. The reservoir is a dominant reservoir with
relatively high productivity (Figure 9 ①). The corresponding
reservoir pore structure type is class I or class II (Table 3, Channel
8 of Figure 9). The logging response is characterized by the “three
low, one medium, and one high” of low DEN, CNL, and GR
values; medium AC value; and high RD value. The distribution
range of AC value is 68.0–85.9 us/ft, the distribution range of
CNL value is 0.11–0.18 V/V, the distribution range of GR value is
54.4–84.4 API, the distribution range of DEN value is
2.35–2.51 g/cm3, and the distribution range of RD value is
20.7–110.9Ωm.

Facies_2 is argillaceous cementation facies with relatively
general physical properties. The reservoir is a medium
reservoir with low productivity (Figure 9 ②). The
corresponding reservoir pore structure type is class II or class
III. The logging response has the characteristics of “three low and
two medium” of low CNL, DEN, and RD values; medium AC and
GR values. The distribution range of AC value is 71.0–84.4 us/ft,
and the distribution range of CNL value is 0.12–0.20 V/V. The
distribution range of GR value is 71.6–94.3 API, the distribution
range of DEN value is 2.36–2.46 g/cm3, and the distribution range
of RD value is 11.1–28.2Ωm.

TABLE 4 | Typical characteristics of different petrophysical facies in the Es3 reservoir.

Facies Color AC CNL GR DEN RD Pore
structures

Petrophysical

(US/FT) (V/V) (API) (G/CM3) (OHMM)

Facies_1 68.0–85.9 0.11–0.18 54.4–84.4 2.35–2.51 20.7–110.9 Ⅰ or Ⅱ Corrosion
76.4 0.14 62.3 2.42 85.3

Facies_2 71.0–84.4 0.12–0.20 71.6–94.3 2.36–2.46 11.1–28.2 Ⅱ or Ⅲ Argillaceous
77.5 0.15 84.7 2.40 23.1

Facies_3 65.6–80.8 0.12–0.21 84.3–108.3 2.35–2.54 12.1–52.8 Ⅱ or Ⅲ Transition
74.3 0.17 92.5 2.48 30.5

Facies_4 62.3–78.9 0.10–0.16 78.9–97.7 2.53–2.58 15.8–120.2 Ⅲ or Ⅳ Calcarenite
70.1 0.12 80.1 2.55 91.6
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Facies_3 is transition facies with poor physical properties. The
reservoir is a poor reservoir with low productivity (Figure 9 ③).
The corresponding reservoir pore structure type is class III or
class IV, and the logging response is characterized by “one low,

two medium, and two high” of low RD value, medium DEN and
AC values, and high CNL and GR values. The distribution range
of AC value is 65.6–80.8 us/ft, and the distribution range of CNL
value is 0.12–0.21 V/V. The distribution range of GR value is

FIGURE 8 | Logging response box diagram of different petrophysical facies in the Es3 reservoir.
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84.3–108.3 API, the distribution range of DEN value is
2.35–2.54 g/cm3, and the distribution range of RD value is
12.1–52.8Ωm.

Facies_4 is calcarenite facies with extremely poor physical
properties. The reservoir is an extremely poor reservoir with
extremely low productivity (Figure 9 ④). The corresponding
reservoir pore structure type is class III or class IV. The logging
response is characterized by the “three low and two high” of low
AC, CNL, and GR values and high DEN and RD values. The
distribution range of AC value is 62.3–78.9 us/ft, and the
distribution range of CNL value is 0.10–0.16 V/V, the
distribution range of GR value is 78.9–97.7 API, the
distribution range of DEN value is 2.53–2.58 g/cm3, and the
distribution range of RD value is 15.8–120.2Ωm.

Based on the previous results, the corresponding relationship
between logging facies combination and petrophysical facies
identification was well explained, and the accuracy of logging

FIGURE 9 | Results plot of different petrophysical facies of the Es3 reservoir.

FIGURE 10 | Relationship between porosity and permeability of different
petrophysical facies in the Es3 reservoir.
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facies division and petrophysical facies identification of low-
permeability sandstone reservoir in this study was fully verified.

PHYSICAL PROPERTY RELATIONSHIP
AND “SWEET SPOT” EVALUATION OF
DIFFERENT ROCK PETROPHYSICAL
FACIES

Using the rock petrophysical facies analysis method to classify
and evaluate reservoirs can fully consider the main geological
factors affecting characteristics of the reservoir micropore
structure. These factors are finally reflected in the differences
of reservoir porosity and permeability (Cui, 2015) (Figure 10).
The corrosion facies is the dominant facies belt, and the physical
properties of the reservoir in which this kind of petrophysical
facies is developed are the best. Secondary pores account for a
large proportion of the pore space. The pore types are mainly
residual primary intergranular pores and secondary dissolution
pores. The pore throat connectivity is good, the pore permeability
value is relatively high, with porosity generally greater than 15%,
and the permeability is greater than 10 mdc. The calcarenite facies
is mainly affected by the cementation of carbonate rocks in the
diagenetic stage, and its physical properties are poor. Although it
has undergone corrosion transformation at a later stage, it cannot
change the fact that its physical properties are poor. Among
the four petrophysical facies, the calcarenite facies has the
lowest porosity and permeability, most less than 10%, the
permeability is less than 0.1 mdc, with a relatively high slope
of porosity and permeability, R2 � 0.7771. The argillaceous
cemented facies is mainly affected by the deformation of mica
by compaction. Its reservoir physical properties are between
the corrosion facies and the transition facies (or calcarenite
facies). Although it is also in the dominant facies belt, it has

experienced complex diagenesis, the pore structure is
relatively complex, reservoir heterogeneity is obvious, and
its pore permeability characteristics show a low slope
relationship. The transitional facies is mainly affected by
the dissolution of unstable components, clay rim
cementation, secondary increase of quartz or strong
compaction, and protogenetic rock. Although it has
undergone certain diagenetic transformation at a later
stage, it still cannot change the characteristics of relatively
poor reservoir physical properties. Similar to the calcarenite
facies, its porosity and permeability value is also low, with
permeability almost less than 1 md.

Studies have found that the desserts of low-permeability
sandstone reservoirs are mostly concentrated in the secondary
pores with large primary porosity or local corrosion development.
Represented by corrosion facies, the pore structure is good and
the productivity is high. The total production of oil layer
represented by layer ① is as high as 106 m3 (Figure 11 shows
the distribution range of PORE and PERM values of different
petrophysical facies and the productivity of different
petrophysical facies represented by four sub-layers). Due to
the high mud volume and obvious heterogeneity of the
argillaceous cemented facies, there is a big gap between the
productivity and the corrosion facies. The total production of
the oil layer represented by layer ② is 14.52 m3. Due to the
“calcium content,” the resistivity of calcarenite facies is high but
affected by the cementation of carbonate rock, and the physical
property is very poor and the productivity is very low. The total
output represented by layer ④ is only 0.83 m3. The transitional
facies has a complex composition, poor pore structure, and
physical properties between argillaceous cemented facies and
calcarenite facies, with low production capacity. The total
production of oil layer represented by layer ③ is only 3.25 m3.
By comparing the huge differences in productivity of different
petrophysical facies, it is of great significance to predict the “sweet
spot” of low-permeability sandstone reservoir and adjust oilfield
development measures. Generally speaking, perforation
development is preferred for “sweet spot” of low permeability,
while fracturing is an efficient stimulation measure to improve
production. Different methods can be used for fracturing
measures of reservoirs with different petrophysical facies. For
calcarenite facies and transition facies with low production
capacity, due to the metasomatic filling of carbonate minerals,
the primary pores are destroyed. During fracturing, acid
fracturing fluid should be properly used to transform the
reservoir to improve production.

CONCLUSION

In this study, a semi-supervised learning model based on
petrophysical facies delineation was modeled using
conventional logging data, combined with mercury injection
data and core cast thin layers, which improved the efficiency
and accuracy of petrophysical facies division, and greatly
improved the accuracy of “sweet spot” identification, so as to

FIGURE 11 | Comparison of porosity and permeability distribution and
productivity of different petrophysical facies in the Es3 reservoir. (Note: Total
output is the production, ① ②, ③, and ④, respectively, correspond to the
four sub-layers in Figure 9; pore is the main coordinate axis, and its unit
is %; PERM and total output are secondary coordinate axes, and the units are
mdi and m3, respectively.)
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solve the problem in that it is difficult to predict the dominant
section of low-permeability sandstone reservoir and better grasp
the productivity of reservoir. The reservoir heterogeneity
characterization based on petrophysical facies transformed the
heterogeneity problem into a homogenization problem, realized
the classified evaluation of reservoir macro-physical properties
and the micropore structure, improved the accuracy of reservoir
characterization, and provided a basis for reservoir evaluation
and prediction of dominant facies to find “sweet spot area.”

1) There are many classification methods for low-permeability
sandstone reservoirs, but they have limitations in varying
degrees. The petrophysical facies can provide a
comprehensive characterization of the pore structure and
genesis of rocks and better reflects differences in
productivity. Therefore, this classification method has great
advantages. The automatic clustering (MRGC) algorithm
divides logging facies by calculating nearest neighbor index
NI and uses kernel representative index (KRI) to determine the
best number of logging facies, making it an ideal method for
logging facies division of low-permeability sandstone reservoir.

2) The artificial neural network was used to predict the resistivity
R0 saturated with pure water to remove the influence of
lithology and physical properties on the resistivity, and the
superposition of resistivity R0 saturated with pure water and
deep lateral resistivity was consistent with the actual results,
providing a theoretical basis for the identification of “sweet
spot” of low-permeability reservoirs with a complex pore
structure.

3) In this study, a semi-supervised learning was used to divide
petrophysical facies and “sweet spot” identification.
Unsupervised clustering and supervised recognition were
well combined. This “unsupervised/supervised” or semi-
supervised learning model was extended to the whole

region training prediction for “sweet spot” identification.
Experimental results showed that the prediction results of
the model were in good agreement with the actual results;
from the observation of core cast thin section to logging
modeling and from diagenetic characteristics to
determination of petrophysical facies division, this scaling
evaluation problem from the millimeter level to meter level
has been applied well in this study.

4) Through the analysis of the physical property relations of
different petrophysical facies, the porosity and permeability of
different petrophysical facies have different slope relations
and they vary widely, which provides a certain theoretical
basis for the subsequent better study of the physical property
relations and “sweet spot” identification of low-permeability
sandstone reservoirs. It is of great significance for predicting
the “sweet spot” of low-permeability sandstone reservoir and
adjusting oilfield development measures. In general,
perforation development is preferred for “sweet spot” of
low-permeability, and fracturing is an efficient stimulus to
improve production.
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