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Assimilating the atmosphere with multifractal entities, nonlinear behaviors in the framework
of scale relativity theory regarding its hydrodynamic functionality are established at various
scale resolutions. From this perspective, revealing a “hidden” symmetry of the specific
multifractal force with the SL(2,R) group leads to synchronization of atmospheric entities
on the basis of operational procedures (differential and integral Riemann-type geometries,
harmonic mappings from Euclidian to hyperbolic space, variational principles, and others)
that imply cellular self-structuring, laminar channels and singularities as turbulence
generators. These behaviors can then be assimilated and compared with recent
discoveries regarding laminar channels found in atmospheric turbulence through lidar
data processing.

Keywords: self-structuring, turbulent (channel) flow, laminar channel flow, atmosphere, multifractal, LIDAR - remote
sensing

INTRODUCTION

In order to better introduce and contextualize this manuscript, our past works on the subject must be first
detailed and the theoretical and practical results obtained must be explained. In the first of these works, a
multifractal approach of the turbulent atmosphere is generally considered, whereby implementing this
theoretical framework through non-differentiable functions in the form of scale relativity theory, the fractal
minimal vortex of an instance of turbulent flow is obtained (Roşu et al., 2020). This leads to equations that
describe the minimal vortex itself, and the velocity fields that compose it. Once this theoretical framework
has been established, certain relations are exploited in order to calculate turbulent diffusion using lidar data,
and the resulting profiles are found to be in agreement with other associated published works (Roșu et al.,
2020). In the second paper, the connection between atmospheric multifractal theory and lidar data is
further explored by improving a turbulence cascade evolution model so that each vortex presents an
increasing Hausdorff dimension (Roșu et al., 2021a). In the third paper, the improvedmodel is found to be
resulting from a gauge produced by scaling theories, which implies that it is part of a large class of possible
models – most notably, however, the model is coupled to a Galerkin decomposition of the Navier-Stokes
equations which produces a logistic map-type evolution equation of velocity modes (Roșu et al., 2021b).
Then, this coupling makes it possible to identify quasi-laminar or fully laminar regions in atmospheric
profiles, leading to “laminar channel” structures that show either ascending or descending behavior (Roșu
et al., 2021b). Finally, developments were alsomade towards reducing the number of initial parameters that
the improved turbulence cascade evolution model requires (Roșu et al., 2021b). In the current work, the
particularities of these laminar channels, and laminarity in general in the context of multifractality, self-
structuring of atmospheric entities and the implications of self-structuring shall be the focus of our analysis.
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THE MOTION OPERATOR AS THE SCALE
COVARIANT DERIVATIVE

Since the atmosphere both structurally and functionally can be
assimilated to a multifractal object, its dynamics are
characterized in the frame of scale relativity theory through
the scale covariance derivative (Roșu et al., 2020; Roșu et al.,
2021a; Roșu et al., 2021b):

d̂F
dt

� {zt + V̂
r
zr + 1

4
(dt)[ 2

f(α)]−1Drpzrzp}F (1)

where:

V̂
r � V r

D − iVr
F (2a)

Drp � drp + i�d
rp

(2b)

drp � λr+λ
p
+ − λr−λ

p
− (2c)

�d
rp � λr+λ

p
+ + λr−λ

p
− (2d)

f(α) � f[α(DF)] (2e)

zt � z

zt
, zr � z

zxr
, zrzp � z

zxr
z

zxp
, i � ���−1√

, r, p � 1,2,3 (2f)

and:

-F is a fractal/multifractal function
-xr is the fractal spatial coordinate
-t is the time, non-fractal, playing also the role of an affine
parameter of the trajectories
-dt is the scale resolution
-f(α) defines the singularity spectrum of order α, where α is
the singularity index which is a functional of the fractal
dimension DF in the form α(DF)
-V̂

r
is the complex velocity

-Vr
D is the differentiable velocity independent on dt

-Vr
F is the non-differentiable velocity dependent on dt

-Drp is a constant tensor corresponding to the differentiable-
non-differentiable transition
-λr−λ

p
− respectively λr+λ

p
+ are constant vectors corresponding to

the backward, respectively forward differentiable-non-
differentiable processes

In the case of atmosphere dynamics through stochastic
fractalization/multifractalization (for example, Markov-type
stochastic processes, non-Markov stochastic processes, etc.) we
may distinguish the following patterns:

1) patterns which include atmospheric processes through
homogenous behaviors characterized by a single fractal
dimension, that possess the same scaling properties in any
time interval (monofractal) (Jackson, 1989; Cristescu, 2008);

2) patterns which include atmospheric processes through non-
homogenous behaviors characterized simultaneously by
multiple fractal dimensions (multifractal). Thus, the spectrum
f(α) can permit the identification of a universality pattern in
the domain of atmosphere dynamics, even when these patterns
appear different (Jackson, 1989; Cristescu, 2008).

Then, instead of “working” with a single variable described
by a strict, non-differentiable function, it is possible to
“operate” only with approximations of this mathematical
function, obtained by averaging them on different scale
resolutions. As a consequence, any variable purposed to
describe atmospheric processes will still perform as the
limit of a family of mathematical functions, this being
non-differentiable for null scale resolutions and
differentiable otherwise (Nottale, 2011; Merches and Agop,
2015; Agop and Paun, 2017). There are many ways to define
the fractal dimension: Kolmogorov, Hausdorff-Besikovitch,
etc. definitions, but once one chosen to employ it in the
atmosphere dynamics, it should be constant and arbitrary for
the entirety of our analysis (Mandelbrot, 1982; Jackson, 1989;
Cristescu, 2008).

CONSERVATION LAWS OF THE
MULTIFRACTAL FLOWS

Now, considering the scale covariance principle and using the
operator in Eq. 1 applied to the complex velocities from Eq. 2,
without any constraints, the multifractal conservation law of the
specific momentum can be written in the form:

dV̂
i

dt
� ztV̂

i + V̂
r
zrV̂

i + 1
4
(dt)[ 2

f(α)]−1DrpzrzpV̂
i � 0 (3)

where ztV̂
i
represents local multifractal acceleration, V̂

r
zrV̂

i

represents multifractal convection and DrpzrzpV̂
i
multifractal

dissipation (Roșu et al., 2020; Roșu et al., 2021a; Roșu et al.,
2021b). Thus, in every point of the given motion trajectory
multifractal inertia, multifractal convection and multifractal
dissipation are balanced. In these conditions, separating the
atmospheric dynamics on scale resolutions both at differentiable
and non-differentiable scale resolutions, Eq. 3 can be dissociated in
two equations:

ztV
i
D + Vr

DzrV
i
D − 1

4
(dt)[ 2

f (α)]−1DrpzrzpV
i
D � 0 (4)

ztV
i
F + Vr

FzrV
i
F +

1
4
(dt)[ 2

f (α)]−1DrpzrzpV
i
F � 0 (5)

which reflects the fact that the motions of the atmospheric entities
involve interdependent complex mechanisms, both at differential
and non-differential scale resolutions.

Since, usually, multifractalization proves to be reducible to
stochasticity, next we will consider the case of multifractalization
by Markov-type stochastic processes, which imply the following
conditions:

λi+λ
r
+ � λi−λ

r
− � λ(μ)δir (6)

μ � (dt)[ 2
f (α)]−1 (7)

where λ(μ) are specific coefficients associated to the multifractal to
non-multifractal transitions and δir is Kronecker’s pseudo-tensor.

In conditions expressed by Eq. 6, Eq. 3 becomes:
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dV̂
i

dt
� ztV̂

i + V̂
r
zrV̂

i − iλ(μ)zrzpV̂ i � 0 (8)

in which case the separation of the atmospheric dynamics on
scale resolutions implies the functionality of the following
differential equations for the velocity fields:

ztV
i
D + Vi

DzrV
i
D − [Vi

F + λ(μ)zr]zrVi
F � 0 (9)

ztV
i
F + Vi

DzrV
i
F + [Vi

F + λ(μ)zr]zrVi
D � 0 (10)

For laminar movements of atmospheric entities, the complex
velocity fields given by Eq. 2a become:

V̂
i � −2iλ(μ)zi lnΨ (11)

with Ψ the states function. If Ψ has the form:

Ψ � ��
ρ

√
eis (12)

where
�
ρ

√
is the amplitude and s the phase, the complex velocity

field transforms into:

V̂
i � 2λ(μ)zis − iλ(μ)zi ln ρ (13)

It is also possible to see from the previous equations that
��
ρ

√
is in

fact the state density of V̂
i
. The previous equation leads to the

determination of real velocity fields:

Vi
D � 2λ(μ)zis (14)

Vi
F � λ(μ)zi ln ρ (15)

By Eqs 13–15, Eq. 8 implies the multifractal hydrodynamic equations:

ztV
i
D + Vi

DzrV
i
D � −ziQ (16)

ztρ + zr(ρVr
D) � 0 (17)

where with Q is denoted the specific multifractal potential:

Q � −2λ2(μ)(zrzr ��
ρ

√��
ρ

√ ) � −Vi
FV

i
F −

1
2
λ(μ)zrVi

F (18)

The Eq. 16 is the multifractal conservation law of the specific
momentum, while Eq. 17 is the multifractal conservation law of
the states density. The potential Q expressed by Eq. 18 requires the
multifractal specific force:

Gi � −2λ2(μ)zi(zrzr ��
ρ

√��
ρ

√ ) (19)

which quantifies the multifractality degrees of the motion
trajectories of the atmospheric particles.

COHERENCES IN STATIONARY
ATMOSPHERIC DYNAMICS THROUGH A
“HIDDEN” SYMMETRY
The existence of this force will be considered as the “trigger” of
the atmospheric processes that lead to turbulence. If the specific
multifractal potential is constant, or if in the one-dimensional
case the following condition is satisfied:

z2
��
ρ

√
zx2

+ k2 ��
ρ

√ � 0 (20)

k2 � ε

2λ2(μ) (21)

where ε is a multifractal integration constant. Then, according to
a special operational procedure, a multifractal hidden symmetry
of SL(2, R) multifractal type becomes functional. Indeed, let us
rewrite the general solution of Eq. 20 as:��

ρ
√ � hei(kx+Φ) + �he−i(kx+Φ) (22)

where h is a complex amplitude, �h is its complex conjugate, Φ is a
specific phase and x the spatial coordinate. Then, h and Φ brand
each entity of the atmosphere which has as a general
characteristic Eq. 20, and thus the same k.

The quantities h, �h and Φ give initial conditions which are
not the same for every atmospheric entity; more precisely,
these various entities find themselves in different states. The
following problem is highlighted – is it possible to emit “a
priori” a connection between h, �h and ei(kx+Φ) belonging to
different atmospheric entities? The fact that Eq. 22 is a
solution of Eq. 20 allows an affirmative answer to this
question. Indeed, Eq. 22 possesses a “hidden” symmetry
expressed through the homographic group: a ratio
σ(x) of two solutions of Eq. 20 is a solution of Schwartz’s
equation:

{σ, x} � (σ″
σ′)′ − 1

2
(σ″
σ′)2

� 2k2 (23)

where:

σ′ � dσ
dx

, σ″ � d2σ

dx2
(24)

and {σ, x} is the Schwartzian of the function σ in relation to x
(Mihaileanu, 1972; Agop and Mazilu, 2011). Equation 23 is
invariant to the homographic transformation of σ(x): any
such function is in itself a solution of Eq. 23. Since
homography characterizes line projectivity, it is then possible
to affirm that the ratio of two solutions of Eq. 20 is a projective
parameter for the totality of atmospheric entities sharing the same
k. A useful projective parameter can be constructed, which is in
biunivocal correspondence with any atmospheric entity.

First, let us observe a “universal” projective parameter – the
ratio of the fundamental solutions of Eq. 20 gives:

K � e2i(kx+Φ) (25)

Every homographic function of this type will be a projective
parameter. Among others, the function:

σ(x) � h + �hK
1 + K

(26)

has the advantage to be specific to every atmospheric entity. This
is not all; let another function:

σ′(x) � h′ + �h′K′
1 + K′ (27)
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which is specific to a different atmospheric entity. The fact that
Eq. 26 and Eq. 27 are solutions of Eq. 23 shows that between
them there is the homographic relation:

σ′(x) � aσ(x) + b
cσ(x) + d

, a, b, c, d ∈ R (28)

which implies the transformations group:

h′↔ ah + b
ch + d′ (29a)

�h′↔ a�h + b

c�h + d′ (29b)

K′↔a�h + b
ch + d

K (29c)

Equation 29 can be assimilated to a group of synchronisms
between the diverse entities of the atmosphere, a process which
includes synchronization between the amplitudes and phases of
the atmospheric entities.

The structure of this group is typical of SL(2R), i.e.:[B1,B2] � B1 (30a)[B2,B3] � B3 (30b)[B3,B1] � −2B2 (30c)

where B1, B2 and B3 are the infinitesimal generators of the groups:

B1 � z

zh
+ z

z�h
(31a)

B2 � h
z

zh
+ �h

z

z�h
(31b)

B3 � h2
z

zh
+ �h

2 z

z�h
+ (h − �h)K z

zK
(31c)

This group admits the absolute invariant differentials:

ω1 � dh(h − �h)K (32a)

ω2 � i(dK
K

− dh + d�h

h − �h
) (32b)

ω3 � − kd�h

h − �h
(32c)

and the 2-form (the metric):

ds2 � (dK
K

− dh + d�h

h − �h
)2

− dhd�h(h − �h)2 (33)

In real terms:

h � u + iv, �h � u − iv, K � eiθ (34)

and for:

Ω1 � ω2 � dθ + du
ν

(35a)

Ω2 � cos θ
du
ν

+ sin θ
d]
ν

(35b)

Ω3 � cos θ
dv
ν
− sin θ

du
ν

(35c)

the connection with Poincaré representation of the Lobachevsky
plane can be obtained. Indeed, the metric is a three-dimensional
Lorentz structure:

ds2 � −(Ω1)2 + (Ω2)2 + (Ω3)2 � −(dθ + du
ν
)2

+ du2 + dv2

v2

(36)

This metric reduces to that of Poincaré in case where Ω1 ≡ 0
which defines the variable θ as the “angle of parallelism” of the
hyperbolic planes (the connections) (Agop and Mazilu, 2011). In
fact, recalling that:

dK
K

− dh + d�h

h − �h
� 0↔dθ � −du

ν
(37)

represents the connection form of the hyperbolic plane, the Eq.
35 then represents general Bäcklund transformation in that plane.
In such a conjecture, the metric represented by Eq. 36 with the
restrictions represented by Eq. 37 becomes:

ds2 � dhd�h(h − �h)2 � du2 + dv2

v2
(38)

It is worthwhile to mention a property connected to the
integral geometry: the group in Ec. (29) is measurable (Sors
and Santaló, 2004). Indeed, it is simple transitive since its
structure vectors:

Cα � Cv
να (39)

are identically null as it can be seen from Ec. (30), this means that
is possesses an invariant function given by:

F(h, �h,K) � − 1

K(h − �h)2 (40)

As a result, in the space of variables (h, �h, K) can a priori be
constructed a probability theory, based on the elementary
probability:

dP � −dhΛd
�hΛdK

K(h − �h)2 (41)

where Λ denotes the exterior product of the 1-forms. This is in
accord with Jaynes’s theorem, wherein it can be implied that
any circumstance left unspecified regarding a certain dynamic
in an experiment can find its expression in the group SL(2, R)
(Jaynes, 1973). This means that the given circumstance is not
left unspecified for subjective reasons, but for the fact that the
particulars of the given dynamics, it is not manifested.

Nonlinear Behaviors in Atmospheric
Dynamics Through Harmonic Mappings
Let us suppose that the atmosphere dynamics are described by the
variables (Yj), for which we have discovered the metric:

hijdY
idYj (42a)
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in an ambient space of metric:

γαβdX
αdXβ (42b)

In this situation, the field equations of the atmosphere dynamics are
derived from a variational principle, connected to the Lagrangian:

L � γαβhij
dYidYj

zXαzXβ
(42c)

In our case, the Eq. 42a is given by Eq. 38, the field variables being
h and �h or, equivalently, the real and imaginary part of h.
Therefore, if the variational principle:

δ∫ L
�
γ

√
d3X (43)

is accepted as a starting point where γ � |γαβ|, the main purpose
of the atmosphere dynamics research would be to produce
metrics of the Lovachevski plane (or relate to them) (Xin,
1996). In such a context, the Euler equations corresponding to
the variational principle (42d) are:(h − �h)(h) � 2(h)2 (44a)(h − �h)(�h) � 2(�h)2 (44b)

which admits the solution:

h � cosh(Φ/2) − sinh(Φ/2)e−iα
cosh(Φ/2) + sinh(Φ/2)e−iα , α ∈ R (45)

with α real and arbitrary, as long as (Φ /

2) is the solution of a
Laplace-type equation for the free space, such that∇2(Φ /

2) � 0. For
a choice of the form α � 2Ωt, in which case a temporal dependency
was introduced in the atmospheric dynamics, Eq. 44 becomes:

h � i[e2Φ sin(2Ωt) − sin(2Ωt) − 2ieΦ]
e2Φ[cos(2Ωt) + 1] − cos(2Ωt) + 1

(46)

The previous relation can also be rewritten as:

h � 1 + ieΦ tan(Ωt)
eΦ + i tan(Ωt) (47)

In Figures 1–3 we shall present multiple nonlinear behaviors
of atmospheric dynamics at scale resolutions in dimensionless
coordinates: 1) nonlinear behaviors at a global scale resolution
(Figures 1A–C); 2) non-dissipative nonlinear behaviors at a
differentiable scale resolution (Figures 2A–C); 3) dissipative
nonlinear behaviors at a non-differentiable scale resolution
(Figures 3A–D). Let us note that, whatever the scale
resolution, atmospheric dynamics prove themselves to be

FIGURE 1 | Example 3D plot of h(Ω, t); (A) Φ � 2.35, (B) (top, i.e., positive values); Φ � 2.35 and (C) example 2D plot of h(Ω, t); Φ � 2.35.
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FIGURE 2 | Example 3D plot of Re[h(Ω, t)]; (A) Φ � 2.35, (B) (top, i.e., positive values); Φ � 2.35 and (C) example 2D plot of Re[h(Ω, t)]; Φ � 2.35.

FIGURE 3 | Example 3D plot of Im[h(Ω, t)]; (A) Φ � 2.35, (B) (top, i.e., positive values); Φ � 2.35, (C) (bottom, i.e., negative values); Φ � 2.35 and (D) example 2D
plot of Im[h(Ω, t)]; Φ � 2.35.
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reducible to self-structuring cellular patterns. Furthermore, a
“dephasing” between the positive and the negative parts of the
imaginary part of, or the positive and negative sides of the
dissipative nonlinear behaviors, can be observed (Figures 3B,C).

Let us also note that the mathematical formalism of the
Multifractal Theory of Motion naturally implies various
operational procedures (invariance groups, harmonic
mappings, groups isomorphism, embedding manifolds etc.)
with quite a number of applications in complex systems
dynamics (Agop and Merches, 2018; Mazilu et al., 2019).

Interestingly, plotting h, once again in dimensionless
parameters, also highlights certain temporal self-similar
properties, with the multifractal structures being contained
into similar multifractal structures at much higher scales
(Figures 4A–C). This behavior is quite difficult to represent,
because of the complicated balance between choosing an
adequate number of plot points and manifesting self-similarity,
but it shows how the small-scale behavior of the system ripples
and h manifests itself at higher scales, which is exactly what we
would expect from a multifractal system. In order to reconfirm

FIGURE 4 | Example 2D plot of h(Ω, t); (A) maximum at 200; Φ � 2.35, (B) maximum at 400; Φ � 2.35 and (C) maximum at 600; Φ � 2.35.

Frontiers in Earth Science | www.frontiersin.org January 2022 | Volume 9 | Article 8010207

Roșu et al. Approach to Atmospheric Laminar Channels

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


the presence of these behaviors, multiple other plots of this
function have been performed in Mathematica through the
Wolfram Alpha application (Figures 5A–D).

The results presented in Figures 4, 5 also specify that, through
self-structuring of atmospheric entities scale, transitions induced
through the modification of fractal dimensions of movement
curves that describe atmospheric dynamics can be assimilated to
laminar channels. These channels are also described and observed
in experimental data in our previous work (Roșu et al., 2021b).

Other nonlinear behaviors can be obtained by expanding the
states density, the specific multifractal potential, and the
multifractal non-differentiable velocity field. To this end, let us
rewrite Eq. 22 based on Eq. 47, which produces:�

ρ
√ � [1 − ieΦ tan(Ωt)]e−i(kx+Φ)

eΦ − i tan(Ωt) + [1 + ieΦ tan(Ωt)]ei(kx+Φ)
eΦ + i tan(Ωt)

(48)

In Figures 6A–C Eq. 48 is represented in dimensionless
coordinates for a spontaneous symmetry break obtained
through a Wick-type rotation in the hyperbolic plane
(Ovchinnikov, 2016; Ovchinnikov et al., 2016; Hamilton,
2017). In such an operational procedure in dimensionless
coordinates, k found in Eq. 48 can be substituted with Ω.

Moving on to plots of other parameters of interest, the
�
ρ

√ (x, t)
plot manifests multiple lines that represent synchronization modes

at certain times; a sudden increase in activity throughout the length
of the system of states density shows spontaneous “activations” of
the multifractal entities leading to the increase of multifractal
potential and of the potential appearance of multifractal force
(Figure 6A). Multiple peaks are found throughout the figures
plotted as a function of Ω and t (Figure 6B). Notably, peaks in the�
ρ

√ (Ω, t) plot seem to follow a pattern which corresponds to the
appearance of the previously-described self-similarity (Figure 6C).

De aici, one can now calculate Q and VF directly, slightly
modifying previous equations to highlight Ω, which implies, as
previously-discussed:

Q � −2Ω2(zrzr �
ρ

√�
ρ

√ ) (49)

VF � Ω(zrρ
ρ
) (50)

The difference between the standard fluctuations of the plotted
parameter fields and the spontaneous symmetry break peaks is
too high in order to correctly show the orders of magnitude of
each at the same time (Figures 7, 8). It must also be specified that
these spontaneous symmetry break peaks are not calculus
artefacts produced by point-wise derivation through Python
code; the plots are drawn from analytically obtained functions.

The occurrence of anomalous, intense positive and negative
peaks in the topology of our plots shows local spontaneous

FIGURE 5 | Example 2D plot of h(Ω, t), in this case x ≡ Ω, y ≡ t, in WolframAlpha; (A) maximum at 25; (B) maximum at 50, (C) maximum at 100, (D) maximum
at 200.
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symmetry break for our equations corresponding to the SL(2, R)
group. This is because the appearance of the peaks violates the
local symmetry of the equation fields, and these peaks also
represent the spontaneous quality of the breaks because they
appear even though the equations were developed under the
assumption of laminarity. Now, in time-dependent dynamical
systems, chaos is often described by the spontaneous break of
topological symmetry, which is an intrinsic property of operators
that describe all stochastic and deterministic differential

equations (Ovchinnikov, 2016; Ovchinnikov et al., 2016). A
local symmetry break might instead show that, at a given
coordinate, time, and Ω parameter, peaks in the multifractal
potential field might spontaneously appear. These peaks then
represent variations and ripples in the potential field, which then
shows the occurrence of multifractal forces spontaneously acting
upon the multifractal laminar flow. Such forces do not
immediately trigger chaos – in fact, the gradual occurrence of
these forces can be responsible for the gradual development from

FIGURE 6 | Example 2D plot of
�
ρ

√ (x, t); (A) zoom-in of multifractal synchronization modes (top-right);Ω � 2.1,Φ � 2.35, (B) x � 5,Φ � 2.35, (C) zoomed-in region
of

�
ρ

√ (Ω, t) multifractal synchronization modes; dotted line roughly shows synchronization modes distribution; x � 5.Φ � 2.35.
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laminar to chaotic flow according to the typical bifurcation
sequence for the Navier-Stokes equations given by Ruelle and
Takens, which is
steady → periodic → quasiperiodic → chaotic (Reichl, 1992;
McDonough et al., 2004). It must be highlighted that this
standard route to chaos is also followed by the logistic map.

The objective now is to determine how and when these
symmetry breaks occur, and this shall be done by checking the
general variability of the potential at a varying Ω. This can be
shown by performing the bifurcation map of the inhomogeneity
ofQ. Now, in general, the total inhomogeneity of a parameter in a
given volume V of fluid is (Tatarski, 2016):

G � 1
2
∫〈ϑ′2〉dV (51)

However, given our relatively limited spatial conditions, it shall
suffice to consider the analysis of |Q|′2. Performing a Reynolds
decomposition, it is possible to obtain (Alfonsi, 2009; Tatarski,
2016):

〈|Q|′2〉 � 〈(|Q| − 〈|Q|〉)2〉 (52)

This parameter can then be iterated across Ω in a bifurcation
map (Figure 9). The interpretation of these plots can be found in

the following statements: for points given by Ω � 2n, a general
tendency towards stability is found, such that the inhomogeneity
distribution is low and very concentrated (Figure 9). In fact, in
these regions, the potential is always constant and equal to Ω3,
such that |Q|(x, t,Ω � 2n) � Ω3 (Figure 9) – with a constant real
potential, the implication is that the real multifractal force is null
and there is a complete non-manifestation of any phenomena
that might lead to turbulence of any kind. At the same time,
regular variations in the

�
ρ

√
field are still present, which might

indicate that a multifractal anti-synchronous behavior is taking
place. Then, it is also possible to identify certain “mixture” areas;
these manifest slightly higher average inhomogeneity, however
inhomogeneity values are very widely spread out, pointing to
uncertainty with regards to multifractal force generation. Finally,
all other points show high and concentrated inhomogeneity –
these signal areas of high potential for turbulence generation, and
a significant amount of spontaneous local symmetry break peaks
are guaranteed to be found in the multifractal potential field along
with certain generation of multifractal force.

Thus, there is a very clear and ordered intermittency between
homogeneity, inhomogeneity, and “mixture” states, and it is this
behavior that gives rise to the gradual process of turbulent energy
cascades. All throughout this analysis, it is important to
remember that the bifurcation maps show the “potentiality of

FIGURE 7 | Example 2D plot of Q(x, t); (A) zoom-in of spontaneous symmetry break peak (top-right); Ω � 2.1, Φ � 2.35, (B) x � 5, Φ � 2.35.
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turbulence” of a given flow at a given point as Ω increases, given
the fact that the equations were developed on the premise of
laminarity. Furthermore, these points of stability in the potential
bifurcation maps cannot exactly show the spatio-temporal
coordinates of the spontaneous symmetry breaks because of
the averaging in the inhomogeneity calculation (Eq. 54); for
this, it is necessary to plot individual samples of
inhomogeneity. On the other hand, it is significant that the
dependency |Q|(x, t,Ω � 2n) � Ω3, in terms of the stability
behavior found at the doubling of Ω, is similar to scale
variation and vortex bifurcating behavior exhibited by a
different model.

In our previous works, we have made use of a modified
β-constant turbulence cascade scale model, developing it in
relation to lidar data (Roșu et al., 2020; Roșu et al., 2021a).
The typical gauge employed by such models is a dependency of
type:

ln � 2n(dt)
2

(53)

Given the fact thatΩ is intrinsically connected to the scale resolution,
it is only natural that similarities between this model and our current
results are found; it would then be helpful to determine whether or
not the β-constantmodel can showwhether or not aΩ3-type relation

might occur in terms of a diffusion coefficient of the modelled flow.
However, according to the equations found through developing this
model in our previous works, both molecular and turbulent diffusion
parameters are constant throughout the flow; this takes place because
the scale resolution is taken to be constant (Roșu et al., 2021b).
Fundamentally, the β-constant turbulence cascade scale model is
inadequate because of the scale resolution non-variability in the
2n(dt)

2
term which describes scale progression in this case. Instead,

if the scale resolution is not constant, not onlywould these parameters
be variable, but it would be possible to obtain not just a variable fractal
dimension but also a proper multifractal singularity spectrum f(α)
as required here.

In our previous study, a similar conclusion regarding the
β-constant model was reached regarding connecting it to the
logistic map – because fitting this model to the map would yield
unequal scale ratios, which goes against the principle of a β-constant
which implies that such scale and volume ratios remain constant
throughout the turbulent energy cascades. It seems that both
the bifurcation diagram of the logistic map and the
inhomogeneity evolution have similar properties.
Furthermore, in a previous study it has been shown that it
is possible to reduce velocity modes of a multifractal Navier-
Stokes equation to the logistic map, pointing to the existence
of such a connection (Roșu et al., 2020; Roșu et al., 2021a;

FIGURE 8 | Example 2D plot of VF(x, t); (A) zoom-in of spontaneous symmetry break peak (top-right); Ω � 2.1, Φ � 2.35, (B) zoom-in of spontaneous symmetry
break peak (bottom-right); x � 5, Φ � 2.35.
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Roșu et al., 2021b). We propose that the non-manifest
scenario of chaos shown by the bifurcation diagram of
multifractal potential inhomogeneity generally describes
both non-chaotic intervals in such maps used to model
atmospheric flow, and also potential chaos arising from
spontaneous symmetry breaks in the parameter fields
describing such flows.

In order to better illustrate the potential origin of this quasi-
periodic and intermittent character of the inhomogeneity of the
multifractal potential, it is possible to rewrite

�
ρ

√
such that it is a

function of r,Ω and twith the last two parameters fully contained
in simple trigonometric functions. We start with:�

ρ
√ � a0e

iϕei(Ωx+Φ) + a0e
−iϕe−i(Ωx+Φ) (54)

FIGURE 9 | (A) Bifurcation diagram of |Q|′2, (B) Zoomed-in bifurcation diagram of |Q|′2.

FIGURE 10 | Example 2D plot of the alternative equation of
�
ρ

√ (Ω, t); x � 5, Φ � 2.35.

Frontiers in Earth Science | www.frontiersin.org January 2022 | Volume 9 | Article 80102012

Roșu et al. Approach to Atmospheric Laminar Channels

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


This can then be considered as:�
ρ

√ � 2a0 cos(Ωx +Φ + ϕ) (55)

with:

a0 � |h| �
�����������������
1 + r2 − 2r cos(2Ωt)
1 + r2 + 2r cos(2Ωt)

√
(56)

which results in:

�
ρ

√ � 2

�����������������
1 + r2 − 2r cos(2Ωt)
1 + r2 + 2r cos(2Ωt)

√
cos(Ωt) (57)

This function has been plotted in Figure 10. In itself, the
simple trigonometric function cos(xy) is subject to numerous
interesting behaviors, including cellular structures and
topological instabilities; as such, its presence in the function of
the multifractal velocity state density function, which is then used
to calculate the specific multifractal potential, could be what
points to cellular structures and the symmetry breaking peaks.
In fact, most simple trigonometric functions containing two or

more multiplied independent parameters seem to exhibit
complex, quasi-periodic and even fractal behavior at higher
values of the given parameters. In any case, cos(xy) can be
difficult to describe as a function of simpler trigonometric
functions, except by using Chebyshev polynomials which
presuppose that x or y, in this case Ω or t, has a positive
integer value (Mason and Handscomb, 2002).

In terms of the theory presented here, our results clearly
suggest that the transition from laminar to chaotic might
come from spontaneous sources; the opposite is also true,
given the correspondence between the logistic map and the
Navier-Stokes equation and the sudden intervals of stability
found in the logistic map throughout the Pomeau-Manneville
area. This then suggests that there exist laminar channels
throughout the atmosphere – not only that, but the cellular
linear entities found in h heavily imply that such laminar
areas self-structure themselves in cohesive and coherent ways
across space. Furthermore, in a previous study, such channels
have been found to exist in the atmosphere through experimental
lidar data; their existence and characteristics can be demonstrated
and analyzed again through novel sets of data. In the following

FIGURE 11 | (A) RCS timeseries, Bucharest, Romania, 13/06/2019, (B) zoomed RCS timeseries, Bucharest, Romania, 13/06/2019; area of interest for
subsequent laminar channel study.
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figures, this is done by first presenting the Range Corrected Signal
(RCS) timeseries plot (Figure 11), then the corresponding
analysis of these signals is performed by calculating vortex
length scales using the signals. For these, by associating a
modified turbulence cascade model to the logistic map as per
an earlier study, a corresponding r value is obtained, which is then
used to obtain a corresponding maximal Lyapunov exponent
(Roșu et al., 2021b). These exponents can then be used to quantify
chaoticity at a given stage of the turbulent cascade at a given
altitude, and it is indeed found that segments of the analyzed
atmospheric flow are not chaotic at all (Figure 12).

The RCS data used in this study has been obtained from the
RALI Multiwavelength Raman Lidar Platform, which is a part of
the National Institute for Research and Development in
Optoelectronics INOE 2000 in Bucharest, Romania, 93 m ASL
(Figure 11). The laser emission wavelengths are 1064nm (90mJ),
532nm (50mJ) and 355nm (60mJ) and the detection channels are
1064, 532 cross, 532 parallel, 355nm (elastic wavelengths), and
607, 387 and 408nm (Raman channels). A 532nm set has been
used for this study (Figure 11). The laser pulse duration is

7 − 9ns, repetition rate 10Hz, and the beam diameter between
5.5 − 7mm at FWHM. The dynamic range covers 2 − 15km
depending on atmosphere transmission, with a 3.75m spatial
resolution. The reception has a 400mm Cassegrain telescope with
1.73mrad field of view, and the system acquisition is both analog
and photon counting, with a 20MS/s analog sampling rate and
250Mhz photon counting count rate. The RALI lidar system was
upgraded and tested against other lidar systems, and its results
have been published in multiple other studies (Belegante et al.,
2018; Nicolae et al., 2018; Adam et al., 2020).

Regarding the obtainedRCS data,many features of the atmosphere
can be directly observed in what appears to be a calm, typical
atmospheric scenario, including but not limited to stratospheric
cirrus clouds, pollutant plumes and the PBL – it possible to
confidently exclude the presence of clouds in the lower
atmosphere, given the fact that Meteomanz.com displays clear
conditions for the “Bucuresti Filaret” station, which happens to be
closest to the lidar platform, and also given the fact that ACTRIS lidar
data collecting procedure demands that data collecting start only
during clear conditions (Figure 11). In relation to the laminar analysis,

FIGURE 12 | (A) Lyapunov exponent per turbulent cascade stage colormap altitude plot, Bucharest, Romania, 13/06/2019, 07:00:00, (B) zoomed-in Lyapunov
exponent per turbulent cascade stage colormap altitude plot, Bucharest, Romania, 13/06/2019, 07:00:00.
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certain “V-shaped structures” can be observed; these are the
laminar channels, and their presence is given by the fact that, at
a certain altitude, the inequality necessary for laminar behavior
is satisfied, and then satisfied again at a different altitude at a
different or similar scale (Figure 12). We thus identify
“ascending” or “descending” laminar channels, and these
structures can help explain various atmospheric transport
phenomena regarding aerosols and cloud formations, but
also regarding PBL stability (Figure 12). The classification
difference between “ascending” and “descending” is justified
by the fact that the turbulent cascade progresses from larger to
smaller scales; thus, it is necessary to assume that a continuation
of the laminar channel at higher altitude towards smaller scales
indicates, for example, that the channel is ascendent.

CONCLUSION

In this study, we have found that representing laminar
atmospheric flows in a multifractal framework reveals
unexpected results that might explain emergent turbulent
behavior. Even by approaching these equations from an
irrotational perspective, it is shown that relations between
them and the SL(2, R) symmetry group lead to self-structuring
cellular structures in the multifractal velocity field and to a
fluctuating multifractal specific potential field. These
fluctuations take the form of peaks which represent local
spontaneous symmetry breaks in the topology of the potential
field, being singularities that lead to turbulence generation. This
then indicates that the laminar multifractal flow is spontaneously
subjected to occurrences of multifractal force at a given position
and time, and these forces might lead to the intermittency and
quasi-periodicity commonly associated with the transition to
turbulent flow. Furthermore, a regularity relation exists which
shows periods of stability and instability in the potential field, as
shown by the evolution of the inhomogeneity of this potential
field, and this evolution can be connected to the logistic map,
which itself can be roughly connected to the Navier-Stokes
equation as seen in multiple other studies. The self-structuring
cellular aspect of the multifractal flow is otherwise found to be
connected to exotic behaviors of simpler functions. Finally, the
emergence relations between laminarity and turbulence imply the
existence of what have been named “laminar channels” in a
previous study, and the connection between theory and

experiment is made by highlighting such laminar structures in
atmospheric lidar data. Further experimentation will be necessary
in order to better quantify these relations and to develop methods
of using them in a predictive scenario, in the context of both
meteorology and atmospheric science in general.
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