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This study combined theoretical analysis, physical simulation, and numerical simulation to
discuss the influences of the structural evolution and motion characteristics of a hard roof
during thickening coal seam mining on working face pressure. Results showed that during
the mining of the thickening coal seam with a hard roof, the settlement curve of low-level
strata was a stepwise wave slope, and the settlement curve of high-level strata shifted from
a “V-shaped” distribution pattern to a parabola under the full mining of the coal seam.
When the mining thickness was relatively small, the mining space expanded with the
increase in mining thickness due to the “masonry beam” structure formed by the low-level,
sub-critical overlying strata. The low-level critical strata formed a “composite cantilever
beam” structure with a hard immediate roof after advancing into the caving zone. After
complete recovery, the overlying strata were in a steady-movement state, and the plastic
failure zone of the overlying strata of the thickening coal seam presented obvious
distribution characteristics of longitudinal and transverse partitions. This study provides
theoretical reference for coal seam mining under similar geological conditions.
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INTRODUCTION

Decades-long production practices have shown that the caving height of overlying strata in a goaf
increases, and the sphere of influence of the overlying strata on the working face pressure expands as
the disposal mining thickness increases in fully mechanized caving mining of thick coal seams.
Meanwhile, a main roof with a hinged balance structure at low-level positions of the fully mechanized
mining face might change into an immediate roof. Studying the structural morphology and motion
type of overlying strata in the stope is the basis of analyzing the behavior law of working face pressure.

In this regard, a lot of studies have been carried worldwide. Generally, deformation, fracture
propagation, and energy release are highly associated with mining-induced stress evolution (Gao
et al., 2021). After mining, the state of stress equilibrium is disturbed by an opening formed due to
underground extraction of part of the coal seam (Wang et al., 2018a), resulting in the change of
overburden structure above the coal seam. Zhang (Zhang andWang, 1998) pointed out that there is a
stable “masonry beam” above the stope and a “semi-arch” structure below the “masonry beam.” The
combination of the two forms the basic form of overburden structure of a fully mechanized caving
face. The cantilever beam is formed by the rupture of low-level critical strata in a fully mechanized
caving face, whereas the masonry beam is formed in high-level critical strata (Huang et al., 2020;
Kong et al., 2020; Li et al., 2018). The higher the mining height, the closer the subcritical stratum is to
the coal seam, and the easier it is to move as a “cantilever beam” (He et al., 2020; Ju et al., 2011; Li

Edited by:
Kun Du,

Central South University, China

Reviewed by:
Jian Cui,

Tianjin University, China
Jinwang Zhang,

China University of Mining and
Technology, China

*Correspondence:
Xiangyang Zhao

673908201@qq.com

Specialty section:
This article was submitted to
Geohazards and Georisks,

a section of the journal
Frontiers in Earth Science

Received: 14 October 2021
Accepted: 31 December 2021
Published: 10 February 2022

Citation:
Zhang X, Zhao X and Luo L (2022)

Structural Evolution and Motion
Characteristics of a Hard Roof During

Thickening Coal Seam Mining.
Front. Earth Sci. 9:794783.

doi: 10.3389/feart.2021.794783

Frontiers in Earth Science | www.frontiersin.org February 2022 | Volume 9 | Article 7947831

ORIGINAL RESEARCH
published: 10 February 2022

doi: 10.3389/feart.2021.794783

http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2021.794783&domain=pdf&date_stamp=2022-02-10
https://www.frontiersin.org/articles/10.3389/feart.2021.794783/full
https://www.frontiersin.org/articles/10.3389/feart.2021.794783/full
https://www.frontiersin.org/articles/10.3389/feart.2021.794783/full
http://creativecommons.org/licenses/by/4.0/
mailto:673908201@qq.com
https://doi.org/10.3389/feart.2021.794783
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2021.794783


et al., 2017; Liang et al., 2017; Wang et al., 2014; Xu and Ju, 2011;
Yan et al., 2011; Yu and Yan, 2015; Yang et al., 2020; Zhang et al.,
2021). Li (Li et al., 2014) constructed a strata rupture model of
periodic roof weighting on a fully mechanized sub-level caving
face with a large mining height and found that the support has to
bear only the acting force of the inferior cantilever structure
during normal recovery stages. With the decrease of bottom coal
thickness, the stress concentration around roadways and
coalfaces decreased rapidly and then tended to be stable (Li
et al., 2018; Zhu et al., 2016). The failure scopes of the coal
seam and top coal on the working face present a nonlinear
proportional correlation with mining thickness (Wen et al.,
2019; Xie and Wang, 2010). Yan (Yan, 2009) showed that the
scope of “deformation pressure strata” expands with the increase
in coal seam thickness during the exploitation of super high
seams, thus increasing the external loads on the support. Due to
the controlling effect of critical overlying strata, the development
height of water conductive fissures presents stepwise sudden
changes with mining thickness rather than continuous
approximate linear variations (Feng et al., 2011; Miao et al.,
2011; Wang et al., 2019). Wang (Wang et al., 2018b) established
the critical conditions for the loss of stability of coal walls by
constructing a vertical mechanical model to analyze the
influencing mechanism of mining thickness. Through a
physical simulation test, Fan (Fan and Shen, 2019) found that
the superior immediate roof in the overlying strata is a “simply
supported beam” when the mining thickness is 30 m, and the
overburden pressure is shared by the caving gangues in the goaf,
resulting in a weaker strata pressure behavior compared with that
when the mining thickness is 17 m.

Scholars have focused on mining analysis by using several
mining thickness values in the same mining area or the mean coal
seam thickness, but they ignored the overlying strata structural
difference and mine pressure characteristics caused by
continuous variations in coal seam thickness under a specific
condition. This disregard leads to a serious judgment error in
certain cases. To address this issue, this study analyzed the
settlement characteristics of overlying strata and the
evolutionary laws of critical strata during the mining of a
thickening coal seam with a hard roof by combining similarity
and numerical simulations on the basis of critical strata theory of
strata control. The research results can provide theoretical
reference for coal seam mining under similar geological
conditions.

PROJECT OVERVIEW

The 4,321 fully mechanized caving face in Sangshuping Coal
Mine in Hancheng City was selected as the research object. The
3# coal seam is undergoing exploitation. On the working face, the
3# coal seam is 6.08–28.41 m away from the 2# coal seam above
(14.47 m on the average). The working face has a simple coal
seam structure with a rare dirt band. The immediate roof is
generally occupied by siltstone and medium sandstone with hard
lithology and an average thickness of 9.83 m. It is covered by 2#
and 1# coal seams. The roof of 1# coal seam is composed of

medium sandstone and fine sandstone and has an average
thickness of 10.38 m. According to evaluations of the critical
overlying strata on the working face (Xu and Qian, 2000; Qian
et al., 2003), the 3# coal seam has two sub-critical overlying strata
made of 8.0 m thick fine sandstone and 10.38 m thick medium
sandstone. A comprehensive histogram of the strata is shown in
Figure 1.

In Sangshuping Coal Mine, the 3# coal seam is soft and
clamped between the upper and lower hard and thick
sandstones, thus forming a composite structure of
“hard–soft–hard strata.” Functioning as two pieces of
“washboards,” the hard sandstone strata exert a strong
squeezing effect on the coal seam under the action of tectonic
stress. Slip surfaces are formed in the hard–soft interfaces due to
differences in coal petrography, mechanical strength, and
elastoplasticity, and they further develop to sliding surfaces. In
the “hard–soft–hard strata” structure, the coal seam produces
plastic flows that “creep” from the high-pressure zone to the low-
pressure zone. Macroscopically, coal seam thickness and
structure change to release stress and maintain stress balance.

FIGURE 1 | Comprehensive histogram of rock strata.
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The 3# coal seam is 3.5–14 m thick, with an average of 7.0 m.
After advancing from the open–off cut by 500 m, the coal seam
thickness increases gradually from 3 m to 14 m. The contour line
of the 3# coal seam’s thickness on the working face is shown in
Figure 2.

PHYSICAL SIMULATION OF THE MINING
OF A THICKENING COAL SEAM WITH A
HARD ROOF

Mining Thickness Conditions Formed by the
“Cantilever Beam” Structure in the Critical
Strata
During the mining of a thickening coal seam with a hard roof, the
structural morphology and motion characteristics of the hard
immediate roof and sub-critical strata change with coal seam
thickness. When the sub-critical strata are at a low level, the
available gyrating mass of blocks in the sub-critical strata is higher
than the ultimate value, and the masonry beam structure loses
stability, thus developing into a cantilever or simply supported
beam. In this section, the effects of coal seam thickness on the
structure of the sub-critical strata are analyzed by combining the
judgment results of the critical strata.

The rotary deformation buckling model of critical blocks is
shown in Figure 3. Δmax is the ultimate rotary mass that is
necessary for rupture blocks in the critical strata to form a stable
“masonry beam” structure by hinge joints. Δmax varies in strata
that have different thicknesses, strengths, and levels. It is an
eigenvalue and attribute value of roof strata under a specific
mining condition.

Δmax � h −
����
2ql2

σc

√
(1)

where h is the thickness of the masonry block, q is the uniformly
distributed load of the rock beam, l is the length of the
masonry block, and σc is the extrusion strength of the block at
the corner.

The spatial displacement between the immediate roof after
collapse and the critical strata is Δj.

Δj � M + (1 −KP)∑ hi (2)
where M is the mining thickness of the coal seam (m), KP is the
caving crack-expansion coefficient of the immediate roof, and∑hi is the sum thickness of rock strata below the critical
strata (m).

FIGURE 2 | Contour line of coal seam thickness on the 4,321 working face.

FIGURE 3 | Rotary deformation buckling model of critical blocks.

FIGURE 4 | Discrimination diagram of the structural morphology of the
critical strata.
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The mining thickness condition for forming the “cantilever
beam” structure of the low-level critical strata is

M + (1 −KP)∑ hi > h −
����
2ql2

σc

√
(3)

Δj is a value that changes with the mining thickness of the coal
seam (M) and the thickness of the immediate roof (∑hi). It
increases with the increase inM, thereby increasing the possibility
of Δj>Δmax significantly. As a result, the longitudinal and
transverse scopes of movement of the surrounding rocks on
the working face are increased.

Figure 4 indicates that with the increase in M, Δj>Δmax is
proven after entering the shadow when the “masonry beam”
structure of the sub-critical strata loses its stability and becomes
part of the immediate roof. It is presented as a “cantilever beam”
structure.

A physical simulation test was designed to compare the
structural differences of the critical overlying strata during
thickening coal seam mining under the same overlying
conditions and to verify the above-mentioned discriminant
formula. The results are shown in Figure 5. When the mining
thickness was 5.2 m, sub-critical stratum 1 formed a “masonry
beam” structure. When the mining thickness was 9.5 m, it formed
a “cantilever beam” structure, and the “masonry beam” structure
shifted toward the high-level strata.

Displacement and Settlement Laws of
Overlying Strata in the Stope
A laboratory 2D physical simulation test was performed to
discuss the settlement deformation laws of the overlying strata
and the evolutionary features of the structure during thickening
coal seam mining. The process wherein the thickening coal seam
mining advanced from 3 m to 10 m was simulated. According to
the actual situation of the project site, excavate 5 m every 4 h,

maintain the simulated mining height of 2.3 m, and the caving
height increases with the increase of coal thickness. In the
physical simulation test, the geometric similarity ratio,
volume–weight similarity ratio, time similarity ratio, and stress
similarity ratio were 1:100, 1:1.6, 1:10, and 1:160, respectively. The
Poisson’s ratio was equal to that of the prototype. The thickness
values of different strata were designed as those in Figure 1. In the
test, the aggregate was fine sand, and the cement used was made
of lime and gypsum. The ratio is shown in Table 1.

The initial state of physical model is shown in Figure 6A and
the test model design is shown in Figure 6B. Vertical
displacement monitoring lines I, II, III, IV, and V were
designed in the test, and they corresponded to hard immediate
roof, sub-critical stratum 1 and its subsequent stratum, and sub-
critical stratum 2 and its subsequent stratum, respectively.

The siltstone immediate roof corresponding to Line I
developed the primary rupture when the working face
advanced by 90 m. At this moment, the maximum settlement
of the rock stratum was 5.037 m. As the working face advanced,
the rock stratum entered the periodic rupture stage, and the
primary periodical rupture distance was 10 m. The relevant
settlement curve was a wave slope as the coal seam mining
advanced forward. According to the analysis, the settlement
curve was determined by the thick and hard characteristics of
the immediate roof. Moreover, the settlement curve declined in a
stepwise manner as the coal seam mining advanced gradually.

With the advancing of the working face, the settlement
volumes of Lines II and III close to the working face became
significantly higher than those at other positions in the goaf.
Influenced by the hard roof, the settlement curve close to the
working face had a large slope. With the increase in mining
thickness of the coal seam, the settlement curve after the periodic
rupture of rock strata presented a stepwise wave slope.

Lines IV and V presented an approximately symmetric “V-
shaped” distribution pattern after the primary rupture of rock
strata. The “V-shaped” distribution pattern after periodic

FIGURE 5 |Morphology test results of critical overlying strata during thickening coal seammining under different mining thicknesses. (A)Mining thickness of 5.2 m;
(B) Mining thickness of 9.5 m.
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TABLE 1 | Proportion and dosage of similar materials in the test model.

Seque-nce Lithology Thickness/m Total weight/kg Ratio Weight/kg

Sand: lime:
gypsum

Sand Lime Gypsum

1 siltstone 20 270 7:0.8:0.2 236.25 27 6.75
2 medium sandstone 1.54 20.79 7:0.7:0.3 18.191 1.819 0.780
3 fine sandstone 0.92 12.42 7:0.6:0.4 10.868 0.932 0.621
4 3#coal and siltstone 17.6–24.6 332.1 7:0.8:0.2 290.588 33.21 8.303
5 sandy mudstone 2.5–9.5 37.8 8:0.7:0.3 33.6 2.94 1.26
6 2#coal 1.12 15.12 9:0.8:0.2 13.608 1.210 0.302
7 fine sandstone 9.1 122.85 7:0.6:0.4 107.494 9.214 6.143
8 1upper#coal 2.08 28.08 9:0.8:0.2 25.272 2.246 0.562
9 sandy mudstone 1.02 13.77 8:0.7:0.3 12.24 1.071 0.459
10 medium sandstone 10.38 140.13 7:0.7:0.3 122.614 12.261 5.255
11 siltstone 1.5 20.25 7:0.8:0.2 17.719 2.025 0.506
12 sandy mudstone 1.55 20.925 8:0.7:0.3 18.6 1.628 0.698
13 siltstone 1.6 21.6 7:0.8:0.2 18.9 2.16 0.54
14 fine sandstone 3.58 48.33 7:0.6:0.4 42.289 3.625 2.417
15 siltstone 4.24 57.24 7:0.8:0.2 50.085 5.724 1.431
16 medium sandstone 1.57 21.195 7:0.7:0.3 18.546 1.855 0.795
17 sandy mudstone 40 540 8:0.7:0.3 480 42 18

FIGURE 6 | Model of physical simulation test. (A) The initial state of physical model; (B) Test model design.
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weighting was gradually changed into a parabola pattern. As the
working face advanced continuously, the parabola pattern of the
settlement curve expanded continuously. The displacement at the

maximum settlement point increased continuously, but the slope
at the coal wall declined gradually.

The maximum settlement volume of Line I was 1.24 times that of
Line II, 1.35 times that of Line III, 1.91 times that of Line IV, and
2.1 times that of LineV. Themaximum settlement volumes of the five
monitoring lines indicate that the sub-critical stratum 1 of Line II and
the sub-critical stratum 2 of Line IV could control the settlement
deformation of overlying strata locally.

The maximum settlement volumes of the five lines were at 240,
230, 210, 179, and 128mof the strike positions of the coal seam. These
values indicate that themaximum settlement volumes approached the
working face from the upper strata to the bottomoverlying strata. This
result differs significantly from the simulation results on uniform-
thickness coal seammining, that is, themaximum settlement volumes
of overlying strata are all located in the center of the goaf.

Structural Evolution of Critical Overlying
Strata in the Stope
In accordance with the failure deformation laws of overlying strata in
the physical simulation test, a structural evolution model of critical
overlying strata during the mining of the thickening coal seam with a
hard roof was constructed (Figure 7, Figure 8). In the early mining
stage, a cantilever structure was formed due to the collapse of the hard
and thick immediate roof. Sub-critical stratum 1 reached the
maximum suspension step pitch and ruptured to form a three-
hinged arc “masonry beam” balance structure (Figure 8A). As the
working face advanced, the strata structure of the cantilever beam
below the masonry beam developed periodic sliding buckling at the
coal wall. With the subsequent increase in coal seam thickness, the
bed-separated fissures between the cantilever beam structure and the
masonry beam structure expanded further. The available rotary
deformation volume of the masonry beam blocks increased,
placing the masonry beam in the critical buckling state
(Figure 8B). With the increase in mining thickness, the available
rotary volume of the masonry beam blocks formed by sub-critical
stratum1 exceeded the ultimate value, resulting in rotary deformation
buckling of the low-level masonry beam structure. The masonry
beam structure formed a composite cantilever beam with the
immediate roof beneath and the upper supporting stratum
(Figure 8C). With the continuous advancement of the working
face, the composite cantilever beam structure developed periodic
ruptures and slid at the coal wall. Meanwhile, the masonry beam
structure was formed at a high level, and the “small structures” at the
rear positions of the coal wall were changed. New forms of composite
strata structure and motion state were developed (Figure 8D).

NUMERICAL SIMULATION

Construction of a Numerical Simulation
Model
The coal seams, roof, and floor in the model were designed based
on the deposition characteristics of coal seams on the 4,321
working face and mining technological conditions. The 3D
numerical simulation model is shown in Figure 9. In this
model, the lengths in the x and y directions were 900 and 570

FIGURE 7 | Variations in the settlement curves of overlying strata in the
recovery process. (A) Line Ⅰ; (B) Line Ⅱ; (C) Line Ⅲ; (D) Line Ⅳ; (E) Line V.
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m, respectively, and the height in the z direction was 200 m.
Normal constraints were applied at the sides and bottom to
restrict horizontal and vertical movements. The stress boundary
was used at the top. However, equivalent compensation loads of
4.7 MPa on the strata were not simulated. The corresponding
physical and mechanical parameters for the numerical simulation
are shown in Table 2.

The advancing length of the thickening coal seam was 300 m,
and the width of the working face was 170 m. The 200 m
boundary pillars were retained at two ends of the advancing
direction (x direction) and surface length direction (y direction)
to analyze evolution laws of the plastic zone of the surrounding
rocks caused by the mining of thickening coal seams with a hard
roof and to eliminate the boundary effects. The coal seam was
excavated at 200 m away from the boundaries of the model, and it
entered into the thickening coal seam zone (x = 400–700 m) after
advancing by 200 m (x = 200–400 m).

Analysis of Numerical Simulation Results
The internal stress in overlying strata is redistributed after the
mining of thickening coal seams. Rock strata rupture when the
stress over the rock strata is greater than the rock strength, which
further influences the transmission, release, and redistribution of
stresses and lithological changes. The numerical simulation
results during thickening coal seam mining are shown in
Figure 10. Influenced by the supports of the coal pillars, areas
of strong tensile stress concentration occurred in the open–off cut
in the goaf and the upper inclined rock strata at the coal walls. The
plastic failure zone developed the most, and a plastic failure
distribution pattern of “high at two ends and low in the middle”
was formed preliminarily. Influenced by the increasing mining
thickness of the thickening coal seam, the tensile failure zone of
the roof expanded continuously toward the high places.

At the end of recovery, the plastic failure zone of the
overlying strata of the thickening coal seam had obvious
characteristics of longitudinal and transverse partitions
after achieving the steady-movement state. Longitudinally,
the low-level strata area of the thickening coal seam developed
tensile failure because of the two-way tensile stresses, showed
the development of fractures and separation layer, and
collapsed. On this basis, this area was determined to be the
caving zone. The stresses over the roof strata at middle-level
and high-level positions exceeded the yield or shear strength.
Shear plastic failure played the dominant role. Hence, the
development height of the strata state in this area was defined
as the upper limit of the fissure zone. The stress state in these
strata areas was still in the elastic deformation stage, and these
areas were defined as the bending settlement belt.
Transversely, the roof tensile and shear plastic failure zone
in the thick coal seams was significantly larger than that in the
thin coal seams. Shear failure was the major mode in the coal
mass in front of the boundary pillars and above the rock strata.
The plastic zones at the two sides of the stope were higher than
those above the stope. The plastic zone close to the open–off
cut was relatively higher than that at the coal walls of the
working face.

FIGURE 8 | Structural evolution model of the critical strata. (A) Sub-
critical stratum 1 presents a “masonry beam”; (B) “Cantilever beam” structure
of the hard immediate roof develops sliding buckling; (C) “Masonry beam”

structure of sub-critical stratum 1 shows rotary deformation buckling;
(D) “Composite cantilever beam” structure develops sliding buckling.
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FIGURE 9 | Numerical calculation mesh model. (A) Meshing; (B) A-A profile map along the coal tendency.

TABLE 2 | Physical and mechanical parameters.

Lithology Density/kg·m−3 Elastic modulus/Gpa Poisson’s ratio Tensile strength/Mpa Cohesion/Mpa Internal friction
angle/°

siltstone 2,620 26.7 0.2 3.3 6.34 37.33
medium sandstone 2,690 35.5 0.18 5.5 7.47 38.48
fine sandstone 2,640 35.9 0.19 8.5 7.68 38.7
3#coal 1,400 5.31 0.33 1.32 1.25 32
sandy mudstone 2,650 19.47 0.22 2.5 5.75 36.43
2#coal 1,400 5.31 0.33 1.32 1.25 32
1upper#coal 1,400 5.31 0.33 1.32 1.25 32

FIGURE 10 | Evolutionary laws of plastic zones during thickening coal seam mining.
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Figure 11 is the vertical stress variation curve of the roof in
different layers with coal seam excavation, in which roof 1,
roof 2, and roof 3 are 5, 19, and 33 m away from the coal seam
respectively, and the layers correspond to thick and
hard direct roof, sub key layer 1, and sub key layer 2
respectively.

In the area with no change in coal thickness (within the
excavation range of 0–200 m), during the simulated coal
seam excavation, the peak value of advance bearing
pressure of roof 1 is 20.26 MPa and the stress
concentration factor is 2.31. The peak value of advance
bearing pressure of roof 2 is 13.14 MPa and the stress
concentration factor is 1.57. The peak value of advance
bearing pressure of roof 3 is 10.53 MPa and the stress
concentration factor is 1.31. In the 3–10 m unequal
thickness coal seam area (within the excavation range of
200–500 m), during the simulated coal seam excavation,
the peak advance bearing pressure of roof 1 is 20.33 MPa
and the stress concentration factor is 2.32. The peak value of
advance bearing pressure of roof 2 is 13.52 MPa and the stress
concentration factor is 1.61. The peak value of advance
bearing pressure of roof 3 is 10.82 MPa and the stress
concentration factor is 1.35. It shows that different
distances from the coal seam have a significant impact on
the stress distribution of the roof. The closer to the coal seam,
the more significant the stress concentration effect caused by
the excavation of the coal seam.

In the mining area of unequal thickness coal seam, the
thickness of coal seam increases continuously. Under the
action of “cushion” of top coal, the stress distribution in
the front arch foot and arch of stress arch evolves, the peak
value of advance bearing pressure gradually decreases, and the
peak position gradually goes deep into the coal body.

CONCLUSION

Through the analysis of the roof structure of a hard roof during
thickening coal seam mining, the physical simulation test and
numerical simulation calculation are carried out. The structural
evolution andmotion characteristics of roof structure are studied,
and the following conclusions are drawn:

1) The mining thickness conditions for structural changes in
low-level critical strata during the mining of thickening coal
seams with a hard roof were deduced and verified through a
simulation test.

2) The settlement curve of low-level strata presented a stepwise
wave slope. The settlement curve of the high-level strata
changed from a “V” pattern into a parabola pattern with
the full mining of the coal seam. From top to bottom, the
position of the maximum settlement volume of the overlying
strata approached the working face. We conclude that sub-
critical strata have local control over the settlement of
overlying strata.

FIGURE 11 | Variation of vertical stress curve during working face
advancement. (A) Roof monitoring line 1 (5m above the coal seam); (B) Roof
monitoring line 2 (19 m above the coal seam); (C) Roof monitoring line 3 (33 m
above the coal seam).
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3) With the increase in mining thickness, the available rotary
volume of “masonry beam” blocks in the low-level critical
strata increased continuously, and the masonry structure
lost its stability gradually, entering into the caving zone.
The “masonry beam” structure formed a “composite
cantilever beam” structure with the hard immediate roof
beneath.

4) A numerical model was established by combining practical
geological conditions to simulate thickening coal seam
mining. After the overlying strata achieved movement
stability, the plastic failure zone presented obvious
characteristics of longitudinal and transverse partitions.
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