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China’s Paleozoic deep carbonate effective reservoirs, mainly non-porous reservoirs, are
generally formed under the interaction of late diagenesis, hydrothermal fluids, and
structural fractures. Faults and their deformation mechanism and internal structure of
fault zones play an important role in the formation of carbonate reservoirs and hydrocarbon
accumulation. Based on the detailed analysis of outcrop data in Xike’er area, Tarim Basin,
this paper systematically studies the deformation mechanism and internal structure of
reverse fault in the carbonate rock, and discusses the reservoir characteristics, control
factors and development rules. The study shows that the deformation mechanism of the
fault in carbonate rocks is faulting and fracturing, and the dual structure of fault core and
damage zone is developed. The fault core is mainly composed of fault breccia, fault gouge
and calcite zone, and a large number of fractures are formed in the damage zone, which
are cemented by calcite locally. The mineral composition and rare earth element tests
show that the fault core has the dual effect of hydrothermal fluids and atmospheric fresh
water, which is easy to be cemented by calcite; while the damage zone is dominated by
atmospheric fresh water, which is a favorable zone for the development of fracture-vuggy
reservoirs. Therefore, the damage zone is the “sweet spot” area of carbonate oil and gas
enrichment, and generally shows strip distribution along the fault.
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INTRODUCTION

Carbonate reservoir is an important part of global oil and gas. Its conventional oil and gas reserves
account for about 60% of the world’s total reserves, and its production accounts for about 50%. The
distribution area of carbonate rocks in China is nearly 3million square kilometers, and the oil and gas
exploration potential is huge. After the discovery of Renqiu oilfield in Hebei Province in the 1970s,
China’s marine carbonate oil and gas exploration has successively discovered a number of large oil
and gas fields, such as Shanzhong gas field in Ordos basin, Tahe-Lunnan, Tazhong and Shunbei oil
and gas fields in Tarim Basin, and Northeast Sichuan gas field in Sichuan basin, etc. In recent years,
China’s deep marine carbonate rocks are at the peak of discovery of large oil and gas fields. With the
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discovery of “fault controlled-karst” reservoirs in Shunbei area of
Tarim Basin, exploration practice has proved that fault is not only
an important pathway for oil and gas migration, but also an
important reservoir space (Jiao., 2018; Cahngyu et al., 2019; Li
et al., 2019; Baozeng, 2020; Zhiwen et al., 2020). Fault is a “three-
dimensional geological body”with a certain width and containing
fault rocks with different characteristics (Xiaofei et al., 2013;
Lingdong et al., 2014). Faults zones localize shear deformation
and are made up of intensely deformed fault cores encompassed
within the fault damage zones (Sibson, 1977; Caine Saul et al.,
1996; Shipton and Cowie, 2003; Crider and Peacock, 2004; Agosta
and Aydin, 2006; De Joussineau and Aydin, 2007; Wibberley
et al., 2008; Faulkner et al., 2010). The fault core has been
transformed from the host into new rock types, such as
mudstone, cataclastic rock, breccia and mylinite, due to high
strain processes such as crushing, cataclastic, brecciation and
crystal plasticity (Higgins 1971; Engelder 1974; Sibson 1977;
Caine Saul et al., 1996; Evans et al., 1997; Chester et al., 2004;
Berg and Skar 2005; Agosta and Aydin 2006; Mort and
Woodcock 2008; Mitchell and Faulkner 2009; Faulkner et al.,
2010; Michie 2015). Lower strain mechanisms create damage
zones surrounding the fault core, such as fracturing and veining
in low porosity or overconsolidated rock (e.g. Caine Saul et al.,
1996; Chester et al., 2004; Agosta et al., 2007; De Joussineau and
Aydin 2007; Gaviglio et al., 2009; Mitchell and Faulkner 2009;
Bastesen and Braathen, 2010; Faulkner et al., 2010; Hausegger
et al., 2010), or cataclasis and cementation creating deformation
bands in high porosity rock (e.g. Shipton and Cowie 2003; Fossen
et al., 2007; Schueller et al., 2013). Other processes, such as
mineral reaction or precipitation/dissolution, can affect both
zones (Kim et al., 2004; Agosta et al., 2007). Beyond the
damage zone is the protolith, where no alteration from
faulting is observed. The complex structural characteristics of
the fault zone are formed due to the combined action of fault
deformation and fluid modification. At present, oil and gas
drilling in Tarim carbonate strike slip fault zone has achieved
good results, but the exploration deployment of reverse fault has
not been carried out yet. The fundamental reason lies in the
unclear understanding of the internal structure and genetic
mechanism of reverse fault. How to scientifically understand
the mechanism of fault modification on carbonate reservoir is
an important basis for exploration of large-scale reservoirs.
Taking the field reverse fault in Xike’er area of Tarim Basin as
the anatomical object, the internal structural characteristics and
formation mechanism of reverse fault are discussed through the
Analysis of internal structure characteristics and geochemical
tests of macro to micro fault zone, and the reservoir control mode
of reverse fault is clarified, which has important practical
significance for improving the success rate of carbonate oil
and gas exploration.

Geological Background
Tarim Basin is a multi-cycle, superimposed petroliferous basin
composed of Paleozoic craton basin and Mesozoic-Cenozoic
foreland basin (Chengzao, 1997). After multi-stage tectonic
movement, Tarim Basin was associated with a series of fold
and thrust belts. Aksu-Keping area is located in the northwest

margin of Tarim Basin, which is the transition zone between the
South Tianshan orogenic belt and the Tarim Basin and belongs to
Tabei uplift belt. The Keping uplift is divided into Xike’er area,
Keping area and Aksu area by Piqiang fault and Yingan
mountain. The compression strike slip and thrust nappe are
very strong in the area, so the reverse faults are relatively
developed. Controlled by the Cambrian Ordovician global
inundation event, the early Ordovician to Middle Ordovician
in Tarim Basin showed an overall sea-level rise, from semi
restricted platform to open platform. The early Ordovician is a
large epicontinental sea platform, which basically inherited the
Cambrian sedimentary pattern. After the Middle Ordovician, the
plate movement in the southern margin of Tarim Basin changed
from discrete to convergent. The basin entered the tectonic
compression system, the basin pattern evolved to the North-
South zoning, and the sedimentary environment also changed
frommarine facies tomarine continental transitional facies (Yang
et al., 2016).

The study area is located in the Akesu-Keping area of the
Tarim Basin, and comprises the Bachu Uplift in the west
(Figure 1A). It is composed of a series of marine carbonate
rocks formed in open platform margin and evaporative lagoonal
to restricted platform margin during the Cambrian- Lower
Ordovician Periods. The Cambrian can be divided into three
sub-sequences as follows: the Lower Cambrian includes the
Yuertusi, Xiaoerbulake and Wusongger Formations, which
contains thick dolomites, limestones, dolomicrites,
microbialites/stromatolites bed, characterized by restricted to
evaporative-lagoonal carbonate platform and open platform
environment (Lin et al., 2009). The Middle Cambrian includes
the Shayilike and Awatage Formations, which contains thick
gypsum, anhydrite and salt layers. The upper Cambrian
consists of the Xiaqiulitage Formation, which contains algae
dolomite and argillaceous dolomite, limestone, atromatolitic
dolomite etc (Ngia et al., 2019) (Figure 1C). The Lower-
Middle Ordovician succession is divided into the Penglaiba
Formation and the Yingshan Formation, and is composed
mainly of thick bedded dolomites, dolomitic limestones,
packstones-grainstones, formed on open platform to platform
margins as reef and shoal deposits (Figure 1C) (Lin et al., 2012).

The Ordovician carbonate rocks are widely exposed in the
Xike’er area, Tarim Basin. The exposed strata are mainly
Penglaiba formation (O1p), Yingshan formation (O1-2y) and
Yijianfang Formation (O2y) (Figure 1). Different types and
characteristics of fault zones are developed in this area
(Wenyuan et al., 2002), but reverse faults are the main ones,
such as Xike’er fault, the orientation of the reverse fault is NWW
or EW. The orientation of the strike-slip faults, such as Piqiang
fault, are NNW or NS (Figure 1). This paper mainly studies the
structural characteristics and genetic mechanism of reverse fault
in the carbonate rock.

Data and Methods
Sample Collection and Processing
Samples were collected from the Xike’er area to capture
representative portions of fault rock and undeformed host
rock. Block samples with weight greater than 200 g were taken
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for sample analysis, and polished thin sections were produced for
optical microscopy. These samples have been perpendicular to
fault strike. Samples were taken adjacent to the representative
thin sections, to accurately capture the microstructures fully
representing the measured petrophysical properties.
Representative oriented host samples have also been collected,
with core plugs and thin sections taken. For the Xike’er reverse
fault, 16 samples were mainly selected, of which 4 were taken
from the host rock, five were taken from the damage zone, six
were taken from the fault core, and one was taken from the
overlap zone.

All samples were cleaned using carbonate-saturated
deionized water to remove salts that were likely to impact
the petrophysical property measurements by occluding pore
space. Cleaned core plugs were then placed in an oven and
heated to 60 °C until dry.

Microstructural Analysis and Petrophysical
Measurements
All 16 samples are made of thin slices and observed under a
Leica microscope made in Germany. The model of the
microscope is DM4P. The maximum available field of view is
25 mm and supports 50-500x zoom. As the porosity of the fault
zone samples is difficult to obtain, the porosity can only be
reflected by observing the plane porosity of the thin section. The
face plane porosity to the visible porosity of the rock under the
microscope (without micro-voids), that is, the percentage of the
void area to the total area of the observation field. A low-
viscosity resin containing blue dye was used to make pore spaces
more apparent when viewed in plane polarized light. Optical

images from the thin sections were analysed to assess the
deformation mechanisms in each sample based on
documented deformation and/or diagenetic microstructures.
These observations were used to divide samples into different
fault rock categories and to interpret how different deformation
mechanisms might govern the petrophysical properties of
fault rocks.

XRD Analysis and Rare Earth Element
Analysis
The whole-rock mineralogy of all samples was determined by
X-ray powder diffraction analysis (XRD) performed on randomly
oriented powders following the sideloading method (Środoń
et al., 2001). The XRD analysis was performed on the Brook
X-ray diffractometer of Northeast Petroleum University. The
model of the instrument is D8AA25, and the rated voltage
and rated current are 60 kV and 80 mA, respectively.Data
collection was carried out in the 2θ range -10–168° with a step
size of 0.0001°. Operating temperature of 10–40°C and relative
humidity less than or equal to 75% are the working conditions of
this instrument.

The rare earth element analysis of samples at different
positions of the fault zone was carried out to obtain the
source of the fluid that affected the Hickel fault zone. Rare
earth element analysis was carried out by ICP-MS X-Series-2
inductively coupled plasma mass spectrometer. The mass
spectrum of the instrument was in the range of 2–255 amu,
and the sensitivity was Y(89)>200Mcps/ppm. The testing
accuracy of trace elements with the content of ppm-ppb level
is high, the error is less than 5%

FIGURE 1 | Location and geological map and lithological of the Akesu-Keping area in Tarim Basin. (A)Regional locationmap of the Tarim Basin. (B) 3D topographic
map of the Akesu-Keping area, the Xike’er fault is located in the west of the Piqiang fault, which is a NW reverse fault with a steep dip of 83°, and the surrounding strata are
mainly Cambrian, Ordovician and Silurian. (C) Lithologic histogram of Tarim Basin. It can be found in the bar chart that the outcropping strata in the study area are mainly
carbonate strata.
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RESULT

Internal Structural Characteristics of
Reverse Faults in the Carbonate Rock
Based on the differences and influencing factors of deformation
in the different rocks, the carbonate can be divided into high
porosity (porosity greater than 15%) and low to non-porosity
(tight) carbonate rock (porosity less than 15%) (Kaminskaite
et al., 2019). The high porosity carbonate rocks are mainly
cataclastic, and the associated sub-seismic structures are
mainly deformation zones, which are the most common
structures in high porosity carbonate rocks (Fossen et al.,
2007; Agosta and Tondi, 2010; Bastesen et al., 2013; Rotevatn
et al., 2016; 2017). However, low to non-porous carbonate rocks
are dominated by shear fracturing, and associated sub-seismic
structures are mainly fractures (Billi et al., 2003; Agosta, 2008;
Woodcock et al., 2008; Bastesen et al., 2009; Michie and Haines,
2016; Panza et al., 2016). No matter what type of carbonate rock,
cementation is also a common phenomenon in the fault zone of
carbonate rock (Cooke et al., 2018).

Characteristics of Reverse Faults Core
From the geological map and stratigraphic relationship on both
sides of the outcrop fault, it can be seen that the Xike’er fault is a
NW trending reverse fault with a certain strike-slip property, and
the fault dip angle is about 83° (Figure 2). The fault core is the
most concentrated part of the rock mass displacement on both

sides of the fault, it absorbs most of the displacement of the fault
and develops sliding surfaces and fault rocks (Caine Saul et al.,
1996; Cooke et al., 2019). The xike’er fault has a typical dual
structure, and its fault core is characterized by multi-layer
structure, which is filled with calcite vein, fault breccia and
fault gouge along the sliding surface (Figure 3A). Multiple slip
surfaces and fault breccias are developed in the fault core, and the
fault plane is relatively smooth; several Calcite veins are
developed along the fault plane, with the maximum width of
5 cm (Figures 3B,E). The fractures are relatively developed in the
damage zone, which have a high permeability with the width of
about 8.5 m (Figure 3C), the fault gouge is characterized by zonal
distribution, with banded calcite vein filling and a small amount
of small-scale breccia, with a width of about 1.3 m
(Figures 3D,F).

Characteristics of Reverse Fault Damage
Zone
The damage zone is located on both sides of the fault core, mainly
secondary structures associated with the formation of the fault
(Chester and Logan, 1986), including minor faults (Choi et al.,
2015) and fractures (Vermilye and Scholz, 1999; Fu et al., 2012;
Laubach et al., 2014; Lingdong et al., 2014; Xiaofei et al., 2014).
There are two main methods for measuring the damage zone in
the outcrop area: one is to measure the fractures density and
compile the fractures density-distance change. The number of

FIGURE 2 | The Xike’er fault pattern and macroscopic characteristics. The location of the section is shown in the geological map on the plane plan. In the profile the
red line is the fault plane and the arrow points to the hanging wall of the reverse fault.
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associated sub-seismic structures in the damage zone gradually
decreases as the distance from the fault core increases. When the
density is consistent with the regional fractures or deformation
zones, it marks the end of the damage zone. The distribution of
the of infection zone (fluid effect damage zone), and a graph of

the distance-distance between the infected zone is compiled. As
the distance from the fault zone increases, the disappearance of
the infected zone marks the end of the damage zone (Walsh et al.,
1998; Shipton and Cowie, 2003; Flodin and Aydin, 2004; Berg and
Skar, 2005; Lubiniecki et al., 2019).

FIGURE 3 | The development characteristics of the Xike’er reverse fault core. (A) A total of 16 samples were selected from the Xike’er fault zone, including fault core,
damage zone, host rock and overlap zone. The blue dot indicates the position of samples and the dotted line indicates the sliding surface. The morphology of the fault
core is different from that of the hostrock. (B) The fault core of the Xike’er fault. (C) The red line indicates a slip plane fault. (D) Fault breccia is mainly developed in the fault
core. (E) The fault core is developed by the fault breccia, calcite veins and fault gouge.
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The damage zone of the Xike’er reverse fault mainly develops
conjugate shear fractures, tensile fractures, mineral veins and
caves, mostly with high-angle fractures. The fractures exposed in
the study area show different orientation, include NE, NEE, SN.
Four groups of fractures are developed in the Xike’er reverse fault
(Figure 4). The macroscopic observation of the damage zone
shows that the farther away from the fault core, the lower the
degree of fracture development (Figure 5). Fractures are
developed in the strongly deformed damage zone near the
fault core, and the density of the fractures can reach nearly 30/
m. The orientation of the fractures is complex and changeable,
and the fractures are interwoven into a network. Far from the
weakly deformed damage zone of the fault core, the degree of
fracture development is relatively high, and the fracture
density is mainly distributed at 5–15 lines/m; the fracture
occurrence is relatively stable and the directionality is
obvious. The degree of fracture development in the host
rock is relatively low, with an average fracture density of
4.2 lines/m; the occurrence of fractures is relatively stable
(Figure 5). Through the two methods mentioned above, as
the distance from the fault core, the degree of fracture
development decreases in a negative logarithmic function,
and gradually stabilizes. Therefore, the width of the damage
zone in the hanging wall of the Xike’er fault is determined to be

FIGURE 4 | Orientation of fracture in the Xike’er reverse fault. Four
groups of fractures are developed in the Xike’er reverse fault.

FIGURE 5 |Width of damage zone of the Xike’er reverse fault. Fractures in the hanging wall of the fault are developed obviously and footwall fluid acted obviously.
The blue dots indicate fracture densities at different locations in the hanging wall of the Xike’er fault, and the green dots indicate the width of the infection zone due to fluid
action. The yellow area is the scope of damage zone.
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91.5 m, and the width of the damage zone in the footwall is
determined as 41 m (Figure 5).

Microscopic Characteristics of Reverse
Fault
From the perspective of the microstructure of different fault zone
locations, the fault core, damage zone and undeformed host rock have
completely different characteristics, all of which are mainly fractures,
and the characteristics of fracture density distribution are: fault gouge >
breccia > damage zone > host rock (Figure 6).The interparticle pore is
developed in the fault breccia. The fault core has undergone significant
faulting and the particle size has been significantly reduced, forming a
fault gouge (Figure 6D). In terms of the mineral composition of
different parts, the composition of the fault core is somewhat different
from the host rock and damage zone, mainly dolomite, calcite, and
quartz are developed. However, but the fault core is developed with
foreignminerals such as analcite, barite, quartz, and gypsum(Figure 7).

Source of Fluid in the Xike’er Reverse Fault
Zone
The practice of oil and gas exploration shows that the reservoir
properties of matrix of Ordovician carbonate rocks in the Tarim
Basin are low, and the porosity is generally less than 5%.
Therefore, the Ordovician carbonate rocks belong to non-
porous (tight) reservoirs. Fault breccia and cataclastic rocks
are widely developed in the Xike’er fault core, and fractures of
various origins are developed in damage zone. However, some
fault cores and fractures in damage zone are cemented by calcite.
Through the analysis of REE curve, it can be seen that the REE
distribution curve of fault core calcite in the Xike’er section has
obvious positive uranium (EU) anomaly, and the uranium
isotope is between 2.22 and 9.14, with an average value of
6.52, which is very similar to that of hydrothermal fluorite,
indicating that calcite in the fault plane is of hydrothermal
fluid transformation origin. The REE curves of fault gouge,

FIGURE 6 |Microstructure characteristics of host rock, fault core and damage zone. (A) Host rock (XKE 1) sample wafer microstructure. (B) Damage zone (XKE 8)
sample, and the fractures are well developed, and sometimes the fractures are cemented by the calcite. (C) Fault breccia (XKE 7), more visible fractures and intergranular
pore are developed under microscopic. (D) Fault gouge (XKE 9) in the fault core, embedded in a fine-grained matrix, develops intergranular pore.
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damage zone and host rock are basically consistent with those of
buried calcite, reflecting the genesis of atmospheric fresh water.
Minerals such as analcite, barite, quartz and gypsum are
developed in the fault core, which indirectly reflects effect of
the hydrothermal fluid (Figure 8). Therefore, the fault core is
strongly affected by the hydrothermal fluid, while the damage
zone is mainly affected by atmospheric fresh water.

DISCUSSION

Implications for Across Fault Fluid Flow
The deformation mechanism of fracture in rock mainly depends
on rock porosity and buried depth (temperature and pressure)
conditions. When the burial depth of non-porous rocks is less
than 3 km, the fault is dominated by fracturing mechanism,

which produces a large number of intergranular and
intragranular fractures, forming non-cohesive fault breccia and
fault gouge (Blenkinsop, 2000; Braathen et al., 2004), which
evolve with the formation of fractures, and the permeability
of rock.

Has increased significantly (Xiaofei et al., 2014). When the
buried depth is more than 3 km, friction sliding along the faults
and rolling of the particles is called cataclasis, which generates
fragmentation flow, and the deformation results in the formation
of fault gouge, cohesive fault breccia and fragmentation. Faults
zones localize shear deformation and are made up of intensely
deformed fault cores encompassed within the fault damage zones
(Wibberley et al., 2008; Faulkner et al., 2010). The fault core has
been transformed from the host into new rock types, such as
mudstone, cataclastic rock, breccia and mylinite, due to high
strain processes such as crushing, cataclastic and brecciation

FIGURE 7 |Mineral composition of fault gouge and breccia zone. All four samples are located in the fault core, where XKR 9 and XKR 14 are fault gouges and the
rest are fault breccias. (A,B) are mainly composed of calcite, dolomite and quartz, and contain a variety of hydrothermal minerals. (C,D) fault breccia has few mineral
compositions, mainly calcite, but also contains a small part of hydrothermal minerals.
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(Agosta and Aydin 2006; Mort andWoodcock 2008; Mitchell and
Faulkner 2009; Faulkner et al., 2010; Michie 2015; Michie et al.,
2021). From the microscopic characteristics (Figure 6), the

particle size of fault core has been significantly reduced,
forming a fault gouge. At the same time, these fault core
permeability reductions are due to the pervasive cementation

FIGURE8 |Distribution characteristics of rare earth elements in different parts of fault core. (A) The REE curves of the parent rock samples show little fluctuation. (B)
The REE curves of the samples in the damage zone are basically consistent with those of the late buried calcite. (C,D) REE curves of fault gouge and slip plane calcite
show obvious positive Eu anomaly.

FIGURE 9 | | The evolution model of the reverse fault controlling the reservoir. (A) At the early stage of reverse fault formation, the fault core is narrow and the
damage zone of certain width is developed. (B) Both fault cores and damage zones are further widened to form highly permeable formations. (C) Atmospheric water and
hydrothermal fluid enter the fault zone, in which the fault core with high permeability is mainly cemented by fluid, and the damage zone forms dissolution fractures. It can
be seen from the microstructure that the fault core is mainly cementation of non-cohesive breccia and calcite, and the damage zone is mainly developed by the
fractures.
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in the fault rocks reported here. Therefore, the fault core may
contain fault rocks with permeability that are sufficiently low to
act as barriers to flow. The fault gouge and breccia effect the
overall across-fault fluid flow potential. Nevertheless, it is
important to be able to predict the properties of fault rock
that are present within a fault zone.

Fault Zone Evolution
Field and laboratory analyses support a three-stage evolutionary
model of reverse fault. At the early stage of reverse fault
formation, the fault core is narrow and the damage zone of
certain width is developed (Figure 9A). As a consequence of
progressive consolidation, deformation, cementation, and the
increase of confining stress during deformation (Marone and
Scholz, 1989), Fault core and damage zone thicknesses continue
increasing and porosity and permeablity is reduced. Fault core is
dramatically reduced by mechanical compaction and the
production of finer particles during grain fracturing and
abrasion, favouring sealing behavior (Figure 9B). In the
damage zone, intergranular extensional fractures and dilation
bands start to develop. So, damage zones are further widened to
form highly permeable formations. Development of fractures
results in an effective network of secondary fracture porosity
(Laubach and Ward, 2006) which strongly increases
macroporosity and secondary pore connectivity. At the third
stage, atmospheric water and hydrothermal fluid enter the fault
zone, in which the fault core with high permeability is mainly
cemented by fluid, and the damage zone forms dissolution
fractures. Comprehensive testing and analysis of REE(rare
earth elements) show that the fault core is sheared strongly,
leading to relatively lower reservoir properties. At the same
time, it is easy to be cemented by calcite under the dual action of
hydrothermal and atmospheric fresh water, which is not
conducive to the development of the reservoir; while the

damage zone is dominated by fractures, forming a large
number of high-angle fractures are conducive to the
formation of fractured reservoirs. The damage zone is
dominated by fracture development, forming a large number
of high-angle fractures, which is conducive to the formation of
fracture reservoirs (Figure 9C). The heterogeneous occurrence
of intergranular extensional fracturs in the damage zone are
possibly favoured by faulting and fracturing during fault history.
Fault zone Evolution lead to the hydraulic differentiation
between low-permeable fault core and high permeable
damage zone.

Fault Zone Hydraulic Behavior and
Petroleum Reservoir Formation
The proposed evolutionary model implies that, the permeability
of fault gouge is lower, while the permeability of cohesive fault
breccia zone and cataclastic rock zone is higher than that of
surrounding rock. As low porosity, low permeability fault core
rocks develop, they provide increasingly efficient barriers to
cross-fault fluid flow, and the hydraulic behaviour of fault
zones progressively changes to conduit-barrier systems. The
porosity of matrix limestone shows dense physical
characteristics and indicates that the primary pores were
almost lost by the strong compaction. High permeability
damage zones are expected to form in low permeability
carbonate that faults in such rocks can channelize fluid flow
by fractures. Similarly, substantial numbers of fractures or vugs
and relatively high porosity in the carbonate indicating that
hydrothermal alteration may play positive roles in improving
the quality of the reservoir (Figure 9C). Due to the release of
pressure, a large number of fractures developed, and the fracture
deformation formed non-cohesive fault breccia and fault gouge
(Figure 3), forming a high permeability damage zone. The Xike’er

FIGURE 10 | The reservoir development rule is controlled by fracture of Xike’er reverse fault zone. The typical Xike’er profile shows that fractures are generally not
developed in the host rock. The damage zone is seriously damaged, and a large number of fractures are developed, and calcite cementation and dissolution coexist. The
shape of fault core changes greatly, and fault gouge, fault breccia and calcite cement are mainly developed.
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fault has a large number of fault-related fractures, which is a
favorable fracture area for carbonate reservoirs (Figure 10). The
damage zone is a “sweet spot” area where carbonate oil and gas
are enriched, and it generally appears to be distributed along the
fault in a strip.

CONCLUSION

1) The reverse faults in the low permeability carbonate rock are
mainly fractured, and fault cores and damage zones are
developed. The fault cores are developed and filled with
calcite veins, fault breccia and fault gouge along the sliding
surface. Damage zones are mainly developed with fractures,
and some fractures are cemented by calcite.

2) The fault is the main pathway of fluid migration, and the fault
core is mainly transformed by hydrothermal fluid and
atmospheric fresh water, which is easy to be cemented by
calcite; while the damage zone is dominated by atmospheric
fresh water, which is easy to form high angle fractures and is
partially cemented. Therefore, the damage zone is the “sweet
spot” area of carbonate oil and gas accumulations, which
generally shows strip distribution along the fault.
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