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The reconstruction of environmental and climatic changes in the Pleistocene is an essential
contribution to our understanding of human evolutionary and behavioral adaptations. Well
preserved fluvio-lacustrine sediments at Nihewan basin have yielded a rich record of Early
Pleistocene Paleolithic sites and mammalian fossils which provide a unique opportunity for
exploring hominin behavior and paleoecology in North China. Taxonomic studies of
mammalian fossils have provided important clues to the general environmental setting
and landscapes of Early Pleistocene humans in the fluvio-lacustrine basin of Nihewan, but
little is known about their isotopic signatures. In this paper, mammal teeth species at the
Madigou archaeological site (ca. 1.2Ma) were selected for bulk and sequential enamel stable
isotope (C, O) analysis. Results show a variety of ecological environments, including
grassland and sparse forest landscapes, and distinct patterns across taxa. C3-C4 mixed
vegetation predominated, but C4 vegetation was also relevant at times. Madigou early
humans likely experienced cold/warm or dry/wet fluctuations in this northern China basin.
We hypothesize that the environmental fluctuations and diversified landscapes may have
driven flexibility in various aspects of early human technological behaviors, and allowed
hominins to face the environmental challenges of northern latitudes after the initial expansion
from Africa into East Asia at the onset of the Middle Pleistocene Climate Transition.

Keywords: stable isotopes, paleoenvironmental variability, Middle Pleistocene Climate Transition (MPT), human
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INTRODUCTION

Understanding the impact of paleoenvironmental variability on hominin behavioral adaptations is a
key area of research in human evolution (deMenocal, 1995; Ambrose, 2001; Behrensmeyer, 2006),
and is of crucial relevance for understanding the initial dispersal of humans from Africa into Eurasia
(Gabunia et al., 2000; Bar-Yosef and Belfer-Cohen, 2001; Van der Made, 2011) and hominin
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behavioral adaptations during the Middle Pleistocene Climate
Transition (MPT) at ∼ 1.25–0.7 Ma, which is marked by a
progressive increase in the amplitude of climate oscillations
(Ruddiman et al., 1986; Mudelsee and Schulz, 1997; Clark
et al., 2006; Wang et al., 2017). It has been hypothesized that
the MPT triggered substantial hominin dispersals from Africa to
Eurasia (Larick and Ciochon, 1996;Wu and Liu, 2001; Deng et al.,
2007; Abbate and Sagri, 2012), and it may be linked to a more
sustained settlement by Homo erectus in northern latitudes of
East Asia. A more continuous occupation of northern latitudes
would be aided by a diversity of adaptive behaviors, following
patterns observed elsewhere (deMenocal, 2011; Grove, 2012;
Potts, 2012, 2013; Potts and Faith, 2015), in which human
biological evolution and lithic technological innovations were
coupled with a high frequency of climatic fluctuation cycles.

The Nihewan Basin (Figure 1) in North China is well known
for its abundance of archaeological sites through the Lower and
Upper Pleistocene (Schick et al., 1991; Zhu et al., 2001, 2004;

Deng et al., 2006, 2007; Ao et al., 2010, 2013; Zuo et al., 2011).
Nihewan paleoenvironments have been reconstructed through
the analysis of sedimentary features and mammalian enamel
stable isotopes (Deng et al., 2001; An et al., 2005; Ding et al.,
2005; Pei et al., 2009), pollen (Li et al., 1996; Wu et al., 2007; Pei
et al., 2009), magnetic susceptibility (Deng et al., 2007; Pei et al.,
2009, 2019), iron oxides (Pei et al., 2009), soluble salts (Li et al.,
2010), and site formation processes (Jia et al., 2019). Recent
archaeological studies (Pei et al., 2017, 2019; Yang et al., 2017,
2020, 2021) have discussed the links between climatic variability
and human adaptations, suggesting that changes in lithic
technological strategies occurred at the beginning of the MPT.
Such changes would be evidenced by the flexibility in raw
material procurement, diversification of flaking techniques, a
refinement of retouching techniques, and an increase of tool
types. However, the environmental context in which such new
technological patterns emerged has not yet been properly
ascertained.

FIGURE 1 | (A–C) Location of the Nihewan Basin in China and the distribution of key Pleistocene sites in the Cenjiawan Platform. (D) Trenches at the MDG site
complex, viewed from the southwest. Abbreviations: LU � lower unit. TBSU � thick brown sand unit. UU � upper unit (Pei et al., 2019).
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Stable isotope (C, O) analysis of tooth enamel provides direct
evidence of the ecology and habitat of fossil mammals (Quade
et al., 1992; Cerling et al., 1997; Cerling and Harris, 1999; Van der
Merwe, 2013; Rivals et al., 2018; Uno et al., 2018), but is yet to be
applied systematically to the Nihewan Pleistocene sequence. Here
we contribute to this effort by presenting the first analysis of
isotope values to mammalian teeth from the Madigou site
(MDG). Our study includes bulk sampling from the whole
teeth enamel and sequential sampling of several specimens,
which were used to reconstruct paleolandscapes and seasonal
variability in Early Pleistocene Nihewan, and to contextualize
both with dynamics observed in the use of stone tools by early
humans at the site.

PRINCIPLES OF STABLE ISOTOPE (C, O)
ANALYSIS OF FOSSIL ENAMEL

According to different pathways of photosynthesis, terrestrial plants
are generally divided into three categories, C3 (Calvin), C4 (hatch
slack) and CAM (Crassulacean acidmetabolic acid), which cause the
differences of carbon isotopic fractionation during the processes of
carbon fixation. δ13C values of C3 plants, including trees, shrubs and
cold-tolerant herbs (Deng et al., 2001), range from −34‰ to −22‰,
while those of C4 plants, typical of drier and warmer environments
(Raven et al., 1999), range from −17‰ to −9‰ (O’Leary, 1988;
Farquhar et al., 1989; Cerling et al., 1997). Other factors such as
rainfall, altitude, light intensity, atmospheric carbon dioxide
concentration and the canopy effect also affect the δ13C values of
plants (Farquhar et al., 1989). δ13C values of C3 plants become more
negative with the increase of the rainfall, altitude and latitude (Kohn,
2010). Isotopic fractionation takes place from diets to teeth enamel
when plants are eaten by herbivores, and when herbivores are
consumed by carnivores. Compared to those in plants, δ13C

values of teeth enamel from large herbivores and carnivores
increase by ∼14‰ and ∼9‰ respectively (Cerling and Harris,
1999; Tejada-Lara et al., 2018). Following earlier work (Cerling
et al., 1997; Wang et al., 2008; Biasatti et al., 2010; Uno et al.,
2018), the δ13C values in tooth enamel lower than -8‰ are attributed
in this study to animals that only eat C3 food, from -8‰ to −2‰ to
those with a C3-C4 mixed diet, and higher than −2‰ to those
consuming mainly C4 foods.

The oxygen isotope composition in mammalian teeth is
mainly determined by that of body water, which derives
directly from drinking water (Pederzani and Britton, 2019).
Due to evaporation, δ18O values in plant leaves are higher
than those in meteoric water. This results in leaf-eating
herbivores having higher δ18O values than those drinking
meteoric water (Pederzani and Britton, 2019), thus enabling to
distinguish browsers from grazers. Additionally, δ18O values vary
with the altitude, temperature and latitude, which helps to track

FIGURE 2 | Lithostratigraphy and magnetic stratigraphy of MDG-E2, MDG-E3 and MDG-E6, and positions of the samples studied (excluding one sample from
MDG-E7) (Hilgen et al., 2012; Pei et al., 2019).

TABLE 1 | Sampled teeth per taxa and trench at MDG.

Species Location Total

E2 E3 E6 E7

Muntiacus sp. 3 0 0 0 3
Cervidae gen. et sp. Indet 3 0 0 0 3
Moschidae gen. et sp. Indet 1 0 0 0 1
Bovidae gen. et sp. Indet 5 0 0 0 5
Other unidentifiable Cetartiodactyla 4 0 0 0 4
Coelodonta antiquitatis 22 6 1 0 29
Equus wangi sp. Nov. 9 1 0 0 10
Equus qingyangensis sp. Nov. 0 0 0 1 1
Other Equus sp. 11 1 0 0 12
Other unidentifiable ungulates 8 0 0 0 8
Canis chihliensis? 1 0 0 0 1
Total (n) 67 8 1 1 77
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animal movement across different ecozones (Pederzani and
Britton, 2019).

Two sampling strategies are usually applied to the isotopic analysis
of fossil teeth enamel. Bulk sampling of the whole enamel is used to
reconstruct the average diet and ecological setting during the period
of tooth formation (Feranec and MacFadden, 2000). Sequential
sampling of the enamel along the direction of enamel growth may
reveal the spatiotemporal dietary and environmental changes
throughout the development of the tooth (Balasse, 2002).

MATERIAL AND METHODS

Geological Setting of the Madigou Site
The Nihewan Basin (which includes the Yangyuan Basin and
Yuxian Basin in Hebei Province, and the Datong Basin in Shanxi
Province), is an intermontane basin between the Inner
Mongolian Plateau and North China (Deng et al., 2019; Pei
et al., 2019) (Figure 1A). It is well known for its extensive late
Cenozoic fluvio-lacustrine sequence (the Nihewan Beds),
reliably-constrained geochronology, and abundant
archaeological sites (Schick et al., 1991; Zhu et al., 2001, 2004;
Deng et al., 2006, 2007; Ao et al., 2010, 2013; Zuo et al., 2011).
(Figures 1A–C). The Nihewan Beds contain fluvio-lacustrine
deposits from the Late Pliocene to the late Middle/Upper
Pleistocene (Zhao et al., 2010; Nian et al., 2013; Deng et al.,
2019). These deposits include the Pliocene-Pleistocene boundary
(Liu et al., 2012) and the Nihewan faunas (sensu lato) (Teilhard de
Chardin and Piveteau, 1930; Zhou et al., 1991; Qiu and Qiu,
1995), and are constrained at the bottom by the Pliocene red clay
and overlain by the Late Pleistocene Malan loess (Deng et al.,
2019) at the top of the sequence. Current geochronological and
archaeological research show that early hominins may have

continuously occupied the Nihewan Basin from 1.66 Ma (Zhu
et al., 2004) to the Late Pleistocene (Schick et al., 1991; Zhu et al.,
2001, 2004; Pei et al., 2019).

Madigou (40°13′07–16″N, 114°39′58″–40′18″E) is located
in the northwest margin of the Cenjiawan platform (eastern
part of the Nihewan Basin). Paleomagnetism indicates that
the MDG stratigraphy comprises the early Brunhes normal
chron and the late Matuyama reverse chron, including the
Jaramillo normal subchron (Figure 2). The MDG
archaeological layers are positioned within the pre-
Jaramillo Matuyama chron, with an estimated age of ca.
1.2 Ma, i.e., chronologically within the onset of the MPT.
Stratigraphic correlations of seven trenches excavated at
MDG indicate that the MDG chronostratigraphic sequence
begins with MDG-E2, followed by MDG-E3, MDG-E5 and
MDG-E7, and contains the most recent units at MDG-E6
(Figure 1D) (Pei et al., 2019). A total of 1,517 lithic artifacts
and over 900 fossil remains, including Equus, Coelodonta
antiquitatis, Cervidae, Bovidae, and others, were unearthed
from the lower part of the sequence in each trench, especially
in MDG-E2 and MDG-E3 (Pei et al., 2019). Predominance of
ungulates in the fossil assemblage suggested open grasslands
and a sparse steppe (Pei et al., 2019).

Chert dominates among lithic raw materials, followed by
siliceous dolomite (Pei et al., 2019). MDG knappers showed a
preference for specific rock types, such as siliceous dolomite
cobble for bipolar knapping, brecciated chert blocks for
freehand hard hammer flaking, and high-quality chert for
retouching tools (Pei et al., 2019).

The MDG fossils were spatially associated with stone artifacts,
and preliminary zooarchaeological results suggest human action
over part of the fossil assemblage (Pei et al., 2019). Thus, the
ecological and environmental data retrieved from the isotopic

FIGURE 3 | δ13C and δ18C values of the MDG teeth assemblage.
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analysis of fossil enamel presented herein also informs on the
landscapes occupied by early humans at Nihewan.

Sample Selection
Seventy-seven fossil teeth from archaeological layers at MDG
were selected for isotopic analysis: 67 from trench MDG-E2, 8
from trench MDG-E3, and one from each MDG-E6, and
MDG-E7 (Figure 2). Bulk sampling was made from 71
teeth of Cervidae (Muntiacus sp.), Moschidae, Bovidae,
Rhinocerotidae (Coelodonta antiquitatis), Equidae (Equus
wangi sp. Nov. and Equus qingyangensis sp. Nov.), Canidae
(Canis chihliensis?) and others (Table 1; Supplementary
Table S1).

Six additional teeth were serially sampled: 2 of Coelodonta
antiquitatis, 3 of Equus wangi sp. Nov., and 1 of Equus
qingyangensis sp. Nov. (see details in Supplementary Tables

S2–7). No first molars were included, to prevent the
breastfeeding effect on isotopic data.

Sample Preparation and Isotopic
Measurements
Bioapatite pretreatment was undertaken at the Institute of
Vertebrate Paleontology and Paleoanthropology, Chinese
Academy of Sciences (IVPP), and followed the protocols
described in Lee-Thorp et al. (1989), Bocherens et al. (1994),
Koch et al. (1997), and Wright and Schwarcz (1999). Before
sampling, any contaminations on the enamel surface were
removed with a dental drill. For the 71 teeth selected for bulk
sampling, 15–30 mg enamel powder were extracted evenly from
different parts of the enamel and grinded to below 200 meshes
with agate mortar. Sequential samples of six additional teeth were

FIGURE 4 | Sequential isotopic profiles fromMDG teeth (A). MDG10:Coelodonta antiquitatis, Frag; (B). MDG11:Coelodonta antiquitatis,M3; (C). MDG16: Equus
wangi sp. Nov., m3; (D). MDG19: Equus wangi sp. Nov., P4; (E). MDG22: Equus wangi sp. Nov., P4; (F). MDG23: Equus qingyangensis sp. Nov., p4).

TABLE 2 | Serial sampling data of MDG teeth.

Taxa Lab code n δ13C (‰) δ18O (‰)

Median SD Max Min Median SD Max Min

Coelodonta antiquitatis MDG10 12 −7.9 0.5 −7.1 −8.5 −9.0 0.9 −7.6 −10.1
MDG11 11 −7.8 0.3 −7.4 −8.3 −9.8 0.6 −8.6 −10.4

Equus wangi sp. Nov. MDG16 16 −5.5 1.3 −3.4 −7.5 −8.4 1.5 −5.9 −10.3
MDG19 15 −7.2 0.4 −6.2 −7.8 −8.2 1.1 −6.2 −9.2
MDG22 14 −8.1 0.5 −7.0 −8.5 −6.9 0.9 −5.2 −8.0

Equus qingyangensis sp. Nov. MDG23 7 −5.5 1.7 −3.0 −7.6 −9.7 0.5 −9.1 −10.7
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collected from crown to neck along the enamel growth axis. The
average sampling interval was 5 mm, and 15–20 mg of each
sample was collected.

To remove the organic matter, about 1.5 ml of 2.5% sodium
hypochlorite was added into the 2.0 ml tubes for each sample.
After full reaction, samples were centrifuged and washed to
neutrality with distilled water. Subsequently, 1.5 ml of 1 M
acetic acid was added for 20 h to each sample to remove the
secondary carbonate. Samples were subsequently cleaned with
distilled water, freeze-dried and ground into powder again.

Isotopic measurements were undertaken in an Isotope Ratio
Mass spectrometer (MAT-253) combined with a Gas bench
system in the Laboratory for Stable Isotope Geochemistry,
Institute of Geology and Geophysics, Chinese Academy of
Sciences. The isotopic results were expressed as δ13C and
δ18O, relative to the VPDB. The isotopic standards used for
isotopic calibration were NBS 18, NBS 19 and GBW04405
(δ13CVPDB � 0.57 ± 0.03‰, δ18O VPDB � −8.49 ± 0.14‰;
Certified reference material approved by the State Bureau of
Technical Supervision, the People’s Republic of China). The
precisions of δ13C and δ18O values are better than 0.15‰ and
0.20‰ respectively. Isotopic data are listed in Supplementary
Tables S1–7.

RESULTS

Isotopic Analysis of Bulk Samples
Figure 3 shows large isotopic variations among specimens that
suggest different niches. The δ13C values range from −13.0‰ to
−2.1‰ and average −7.3 ± 2.7‰ (n � 77), while the δ18O values
range from −12.5‰ to −1.1‰ and average −8.8 ± 1.9‰ (n � 77).

Artiodactyls
The δ13C value of Moschidae (n � 1) is −13.0‰, indicating a
closed C3 environment. This sample shows the highest δ18O
value (−1.1‰).

Cervidae (n � 6) includes Muntiacus sp. and other
unidentifiable Cervidae taxa. Their δ13C values range

from−12.9‰ to −10.0‰, with a mean of −12.0 ± 1.1‰.
δ18O values range between −11.4‰ and −4.5‰, averaging
−6.9 ± 2.7‰ (n � 6). However, given the abnormally low δ18O
values of MDG13 (−8.3‰), MDG55 (−7.4‰) and MDG57
(−11.4‰), which might be due to the fact that the individuals
come from other regions, the isotope data from those teeth are
excluded from the following statistical analysis and
discussion. The mean values of δ13C and δ18O in remaining
Cervidae (n � 3) are −12.6 ± 0.5‰ and −4.7 ± 0.1‰
respectively, which indicates that MDG Cervidae fed in a
pure C3 environment.

Bovidae (n � 5) show δ13C values from −6.6‰ to −2.1‰,
averaging −4.2 ± 1.9‰ and δ18O values from −11.5‰ to −7.4‰
(average of −9.4 ± 1.9‰). This suggests that they consumed
mixed C3-C4 plants. It is notable that one specimen (MDG61) has
the highest δ13C value (−2.1‰) among the entire assemblage,
indicating a nearly neat C4 environment.

FIGURE 5 | Niche reconstruction of the MDG fossil assemblage, based on δ13C diets and δ18Oenamel values.

FIGURE 6 | Reconstructed δ13Cdiets and δ18Oenamel values from
sequential samples of MDG teeth. MDG10 and MDG11: Coelodonta
antiquitatis. MDG16, 19 and 22: Equus wangi sp. Nov. MDG23: Equus
qingyangensis sp. Nov.
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Perissodactyls
The δ13C values of Coelodonta antiquitatis (n � 29) differ from
those of carnivores and artiodactyls, ranging from −11.7‰ to
-5.5‰ (mean � −7.9 ± 1.4‰). This indicates that the habitat of
Coelodonta antiquitatis ranged between closed forest and open
grassland landscapes. MDG Coelodonta teeth yield the lowest
average δ18O value [−10.0 ± 1.2‰, (n � 29)] in the entire
assemblage, which could be related to consumption of
meteoric water.

The δ13C values of Equus (n � 23) range from −8.7‰ to
−3.4‰ (average of −6.0 ± 1.8‰) and their δ18O values range
from −9.7‰ to -5.3‰ (mean � −8.3 ± 1.0‰). This indicates their
preference for more open environments compared to Coelodonta
antiquitatis.

Carnivores
The δ13C value of a sole specimen of Canidae is −12.2‰. Its δ18O
value is −5.3‰, higher than those from Coelodonta, Equus, and
Bovidae.

Isotopic Analysis of Sequential Samples
The δ13C profiles from sequential samples of Coelodonta
antiquitatis, Equus wangi sp. Nov., and Equus qingyangensis
sp. Nov., suggest considerable variations of the diet
throughout the life history of these specimens. Pure C3 or
nearly pure C4 vegetation predominated occasionally, but C3-
C4 mixed vegetation dominated. Variations observed in δ13C
profiles could indicate an oscillation between dry and wet seasons,
while variability in δ18O profiles may indicate periodic or
seasonal fluctuations in precipitation (Figure 4; Table 2).

DISCUSSION

Niche Reconstruction in the Nihewan Basin
at the Beginning of the MPT
Considering the fractionation of carbon isotope from diet to
enamel bioapatite (with an enrichment of 14‰ in large
herbivorous and of 9‰ in carnivores) (Tieszen et al., 1983;
Cerling and Harris, 1999; Tejada-Lara et al., 2018), the niches
of the MDG fauna can be reconstructed on the basis of isotopic
data from bulk samples (Figure 5). We conclude that the fauna
accumulated at the MDG site occupied a relatively broad niche,
from open grassland to closed forest.

In terms of δ13Cdiets values, Moschidae and Cervidae have the
highest negative δ13Cdiets values, indicative of a closed forest. On
the other end, Equus and Bovidae have the most positive δ13Cdiets

values, typical of open environments. The large standard
deviations in Bovidae (δ13Cdiets: 1.9‰) and Equus (δ13Cdiets:
1.8‰) suggest that they had a more flexible dietary breadth.
Conversely, the smaller standard deviations in Coelodonta
antiquitatis (δ13Cdiets: 1.4‰) may indicate a more
specialized diet.

Regarding δ18Oenamel values, Figure 4 shows that Moschidae
(−1.1‰) and Cervidae (−4.7 ± 0.1‰) have more positive average
δ18Oenamel values than Equus (−8.3 ± 1.0‰), Bovidae (−9.4 ±

1.9‰) and Coelodonta antiquitatis (−10.0 ± 1.2‰). This
indicates a preference in Moschidae and Cervidae for more
18O-enriched foods (such as leaves). Overall, the standard
deviation in Coelodonta antiquitatis (δ13Cdiets: 1.4‰,
δ18Oenamel: 1.2‰) suggests more limited foraging flexibility,
habitat and narrower ecological adaptability than Equus
(δ13Cdiets: 1.8‰, δ18Oenamel: 1.0‰) and Bovidae (δ13Cdiets:
1.9‰, δ18Oenamel: 1.9‰).

As shown in Figure 6, the isotopic profiles from Coelodonta
antiquitatis and Equus indicate seasonal changes. MDG23 (Equus
qingyangensis sp. Nov.) (δ13Cdiets: 1.7‰) andMDG16 (Equus wangi
sp. Nov.) (δ13Cdiets: 1.4‰) have the largest variation in the δ13Cdiets

standard deviation, which suggests their adaptability to varied
landscapes in nearly pure C4, mixed C3-C4 and nearly pure C3

vegetation. In contrast, the low standard deviation in MDG11
(Coelodonta antiquitatis) (δ13Cdiets: 0.3‰) indicates a relatively
fixed niche and narrow ecological adaptability for this individual.
On the other hand, standard deviations of MDG16 (δ18Oenamel:
1.5‰),MDG19 (Equus wangi sp. Nov.) (δ18Oenamel: 1.1‰),MDG10
(Coelodonta antiquitatis) (δ18Oenamel: 0.9‰) and MDG22 (Equus
wangi sp. Nov.) (δ18Oenamel: 0.9‰) are large, which reflects a
seasonal variation of regional temperature and precipitation.

Changing Landscapes and Human
Behavioral Adaptations in the Nihewan
Basin at the Onset of the MPT
It has been proposed that human occupation of the Nihewan
Basin during the Early Pleistocene was discontinuous and that the
area would only be populated during interstadial periods and in
the warm seasons (Dennell, 2003, 2013). While systematic testing
is still needed through multiple proxies and across the
archaeological sequence (de la Torre et al., 2020), our
contribution on the isotopic analysis of the MDG faunal
assemblages does not seem to support such hypothesis.
Variability of patterns in δ18O and δ13C values (Figure 4)
strongly suggests input of mammal carcasses to the site during
various seasons. In addition, considering other archaeological
evidence in the Nihewan Basin, it has been suggested that Early
Pleistocene humans in North China could have adopted flexible
technological strategies as a response to environmental
fluctuations (Pei et al., 2019).

In the case of MDG, early humans preferentially used
preferentially siliceous dolomite cobbles in the bipolar technique,
breccia chert blocks for freehand hard-hammer percussion, and
selected high-quality chert for retouching tools (Pei et al., 2017,
2019). This suggests a structured procurement of raw materials
based on the technological requirements of each knapping activity.

CONCLUSION

Mammal fossils unearthed in archaeological sites play an
important role in assessing the impact of environmental
instability in human behavioral adaptations. This paper
analyzed stable isotope ratios of fossil tooth enamel at the
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recently discovered Early Pleistocene site of MDG, in the
Nihewan Basin. Isotopic data from bulk teeth enamel shows
that the MDG fauna occupied a wide niche, including pure C3,
C3-C4 mixed, and nearly pure C4 environments. The δ13C and
δ18O profiles of tooth sections indicate substantial regional dry/
cold and warm/wet fluctuations and seasonal variations.

Most likely, changing environments had an impact on human
behavioral adaptations archaeologically detectable through stone
tool technological variability. Previous studies (Pei et al., 2019) have
discussed the technological plasticity of MDG hominins in raw
material procurement strategies, knapping techniques, tool
preferences and lithic reduction sequences, all of which might
potentially be linked to environmental fluctuations such as those
reported in this study. Further studies should explore other
paleoenvironmental proxies and their application to other
archaeological assemblages at the Nihewan Basin, in order to
test how early humans coped with the instability characteristic
of the MPT, and to portrait more accurately dynamics of hominin
occupation in north China during this period.
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