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The Cenozoic collision between India and Asia promoted the widespread uplift of the
Tibetan Plateau, with significant deformation documented in the Pamir Plateau and West
Kunlun Mountains. Low-temperature thermochronology and basin provenance analysis
have revealed three episodes of rapid deformation and uplift in the Pamir–West Kunlun
Mountains during the Cenozoic. However, there is very little low-temperature
thermochronology age–elevation relationship (AER) data on fast exhumation events in
this area—especially in the West Kunlun Mountains— leading to uncertainty surrounding
how these events propagated within and around the mountain range. In this study, we
produced an elevation profile across granite located south of Kudi, Xijiang Province, China,
to reveal its exhumation history. Apatite fission track AER data show that a rapid
exhumation event occurred at ∼26Ma in the southern West Kunlun Mountains. When
combined with published data, we interpret that the initial uplift events related to the
India–Asia collision began in the central Pamir, southern West Kunlun, and northern West
Kunlun regions during the Late Eocene, Oligocene, and Middle Miocene periods,
respectively. Therefore, the Cenozoic northward growth process occurred from south
to north around West Kunlun.

Keywords: apatite fission track, age-elevation relationship, West Kunlun Mountains, Tibetan Plateau, deformation,
uplift

INTRODUCTION

The Cenozoic collision between India and Asia formed the Tibetan Plateau (TP, Figure 1A), a series
of intracontinental orogenic belts (Tapponnier et al., 2001; Royden et al., 2008), and induced regional
climatic change (Raymo and Ruddiman, 1992). The onset ages of the India–Asia collision in the
western Himalaya syntaxis (WHS), central Tibet and eastern Himalayan syntaxis (EHS) remain
debated (Leech et al., 2005; Hu et al., 2016). The WHS is dominated by the Pamir Plateau, which is
comprised of the northern Pamir, central Pamir, and southern Pamir (Figure 1B) domains. The
northern Pamir has Asian affinity, whereas the central and southern Pamir regions have Cimmerian
Gondwanan affinity (Burtman and Molnar, 1993; Li et al., 2020). The West Kunlun Mountains
(WK), situated in the southeastern Pamir, are divided into the southern West Kunlun (SWK) and

Edited by:
Yibo Yang,

Institute of Tibetan Plateau Research
(CAS), China

Reviewed by:
Tianyi Shen,

China University of Geosciences
Wuhan, China

Jingen Dai,
China University of Geosciences,

China

*Correspondence:
Dongliang Liu

liudl2010@yahoo.com

Specialty section:
This article was submitted to

Structural Geology and Tectonics,
a section of the journal

Frontiers in Earth Science

Received: 28 September 2021
Accepted: 22 November 2021
Published: 06 December 2021

Citation:
Liu D, Li H, Ge C, Bai M, Wang Y,

Pan J, Zheng Y, Wang P, Liu F and
Wang S (2021) Northward Growth of
the West Kunlun Mountains: Insight

From the Age–Elevation Relationship of
New Apatite Fission Track Data.

Front. Earth Sci. 9:784812.
doi: 10.3389/feart.2021.784812

Frontiers in Earth Science | www.frontiersin.org December 2021 | Volume 9 | Article 7848121

ORIGINAL RESEARCH
published: 06 December 2021

doi: 10.3389/feart.2021.784812

http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2021.784812&domain=pdf&date_stamp=2021-12-06
https://www.frontiersin.org/articles/10.3389/feart.2021.784812/full
https://www.frontiersin.org/articles/10.3389/feart.2021.784812/full
https://www.frontiersin.org/articles/10.3389/feart.2021.784812/full
https://www.frontiersin.org/articles/10.3389/feart.2021.784812/full
https://www.frontiersin.org/articles/10.3389/feart.2021.784812/full
http://creativecommons.org/licenses/by/4.0/
mailto:liudl2010@yahoo.com
https://doi.org/10.3389/feart.2021.784812
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2021.784812


FIGURE 1 | (A) Location of the western Himalayan syntaxis (WHS) (modified from Tapponnier et al. (2001)). (B) Geomorphology and main faults in the
Pamir–Southwestern Tien Shan. Red stars mark themain sites where magnetostratigraphy was performed in the southwestern Tarim and Tajik basins. Abbreviations are
as follows: T, terranes; S., suture; F, fault; R, river; ZFT, zircon fission track age; ZHe, zircon (U–Th)/He age; AFT, apatite fission track age; AHe, apatite (U–Th)/He age; AK,
Asku section; DA, Dashtijum section; PE, Peshtova section; BK, Baxbulak section; BT, Bora Tokay section; AK, Akqiy section; OT, Oytag section; QM, Qimugen
section; AT, Aertashi section; KY, Kekeya section; and LY, Keliyang section).
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northern West Kunlun (NWK) regions. These three parts of the
Pamir extend to the southeast and correspond to the SWK,
Songpan-Ganzi Terrane, and Qiangtang Terrane (Figure 1B;
Robinson et al., 2004; Cowgill, 2010). Together, these domains
are known as the Pamir–WK. The Cenozoic and pre-Cenozoic
geological evolution of the Pamir–WK has been a topic of
significant scientific focus over the past 20 years (Robinson
et al., 2004; Cowgill, 2010; Li et al., 2020; Cai et al., 2021).

Low-temperature thermochronology is widely used to
constrain the cooling histories of plateaus and mountain
ranges (Reiners et al., 2005; Guenthner et al., 2013). Moreover,
age–elevation relationship (AER) data are extremely valuable for
defining the denudation and relief history in a locality, especially
when an AER has a transform point (Braun, 2002; Valla et al.,
2010). Previous low-temperature thermochronological studies in
the study region have shown that the Pamir–WK experienced
three rapid exhumation events during the Cenozoic at ∼50–40,
∼25–16, and between ∼10 Ma and the present day (Robinson
et al., 2004; Robinson et al., 2007; Amidon and Hynek, 2010;
Sobel et al., 2011; Wang et al., 2011; Carrapa et al., 2014; Li et al.,
2019). Other studies have shown that a provenance change or
increase in sediment flux occurred at ∼40–30, ∼26, and ∼15 Ma
(Jiang and Li, 2014; Tang et al., 2015; Blayney et al., 2016; Sun
et al., 2016; Wang et al., 2019; Zhang et al., 2019; Sun et al., 2020;
Li et al., 2021; Sakuma et al., 2021; Wang et al., 2021). The
Paleogene paleotopography in the WK may therefore represent
an ancient land surface (Li et al., 2019). Despite this work, it is
uncertain how these tectonic events propagated within and
around the mountain range. This uncertainty is exacerbated
by the paucity of low-temperature thermochronology AER
data that constrain the uplift and exhumation rates in this
area, especially in the WK. In this study, we collected samples
of granite profiles situated south of Kudi, Xijiang Province, China,
and used the AER of the apatite fission track (AFT) data to reveal
the exhumation history of the SWK. These data record a
transformation point within the AER, which means an abrupt
tectonic transition in the SWK. We then integrate these results
with those of previous studies to interpret the Cenozoic growth
history of the WK.

GEOLOGICAL SETTING

The Pamir–WK is broadly salient and has been displaced
northward over the Tarim–Tajik basins along the Main Pamir
thrust system and Darvaz fault (Figure 1B). The Pamir–WK can
be divided into four tectonic terranes: the NWK, the northern
Pamir–SWK, the central Pamir–Songpan-Ganzi, and the
Southern Pamir–Karakorum–Hidu Kush–Qiangtang, which are
separated by the Kudi suture, Tanymas-Karakax suture, and
Rushan-Pshart-Jinsha suture, respectively (Figure 1B). The
former two terranes have affinity to Asia, whereas the latter
two terranes previously split away from the Gondwanan
(Burtman and Molnar, 1993; Li et al., 2020). The southwestern
Tien Shan was situated north of the Pamir–WK prior to the
shortening of strata during the Cenozoic, with estimates of
shortening between both domains ranging between ∼50 and

100 km (Chen et al., 2018; Li et al., 2020) and ∼300 km
(Burtman and Molnar, 1993).

The WK is bordered by the Tarim Basin to the north, the
Pamir Plateau to the northwest, and the Songpan-Ganzi terrane
to the south. It is a mountainous region ∼700 km long,
∼100–130 km wide, and contains peaks up to ∼7,600 m high.
The Tarim Basin has an elevation of <1,500 m, while the frontal
orogenic fold belt between the Tarim Basin and the Tiklik fault
has an elevation of 1,500–2,500 m. To the south of the Tiklik fault,
the WK itself has an elevation of 3,000–6,000 m. The WK can be
divided into the northern and southern parts by the Kudi suture
(Figure 1B), which formed due to the closure of the Proto-Tethys
Ocean (Matte et al., 1996). The WK initially formed during the
Paleozoic-Mesozoic and experienced a complex strike-slip to
compressive evolution (Yin and Harrison, 2000; Arnaud et al.,
2003; Laborde et al., 2019). The WK reached its current elevation
due to reactivation of pre-existing faults during the Cenozoic
India–Asia collision (Matte et al., 1996; Yin and Harrison, 2000;
Jiang et al., 2013; Laborde et al., 2019).

To the north of the WK, the Tarim Basin contains extensive
Mesozoic-Cenozoic deposits and has an average thickness of
∼1,200 m. Today, the Tarim Basin is an endorheic basin
surrounded by mountain ranges: the Pamir–WK to the
southwest, the Altyn Tagh Mountains to the southeast, and
the Tien Shan to the north. These ranges previously provided
abundant sediment that infilled the Tarim Basin, with the
Pamir–WK having been the main sedimentary provenance for
the SW Tarim Basin during the Mesozoic–Cenozoic, especially
during the Cenozoic (Jiang and Li, 2014; Li et al., 2021). The
Mesozoic strata in the SW Tarim Basin include Jurassic
(Shalitashi, Kansu, Yangye and Kuzigongsu Formations) and
Cretaceous (Kezilesu and Yengisar Groups) sediments (Sobel,
1999), and the Cenozoic strata include the Kashi Group
(Aertashi, Qimugen, Kalatar, Ulagen and Bashibulake
Formations), Wuqia Group (Keziluoyi, Anjuan and
Pakabulake Formations), Artux Formation and Xiyu
Formation (Jia et al., 2004; Liu et al., 2017a).

SAMPLING AND METHODS

Geological mapping and sampling were performed over several
years in the WK in collaboration with the China Geological
Survey. Survey routes were situated near the G219 highway,
which runs from Xinjiang to Tibet, and granite samples were
collected from southern Kudi. From north to south, this area
consists of the NWK, SWK, and Songpan-Ganzi (Figure 2). The
NWK includes Carboniferous and Mesoproterozoic rocks of the
Changcheng System and Silurian and Ordovician granites. The
SWK contains Mesoproterozoic rocks of the Changcheng System,
alongside granite of various ages, and other deformed rocks. The
Songpan-Ganzi terrane only shows exposed Silurian rocks. A
topographic profile from the Songpan-Ganzi to the NWK shows
that these three terranes attain maximum elevations exceeding
4,500, 3,000, and 2,700 m (Figure 3). The study regions contain
several types of granite. Five samples (KDW52, KDW55,
KDW60, KDW61, and KDW62) were collected from a
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FIGURE 2 | Geological map of the corridor along the Xinjiang-Tibet Road from Akaz to Heiqia. Abbreviations for stratigraphic units are given by region. Northern
West Kunlun: Pt2, Middle Proterozoic; Jxbb, segment B in the Bochatetage Formation of the Middle Proterozoic Jiexian System; C1

T, Carboniferous Talong Group; C1
Y,

Carboniferous Yishake Group; C2
K, Carboniferous Kuerliang Group; Є-Ox, Cambrian–Ordovician Xiheti Group; SγσβK, Silurian biotite adamellite; SηγβKb, segment B in

Silurian biotite adamellite; SηγβKc, Segment C in Silurian biotite adamellite; and OηγKc, segment C in Ordovician coarse monzogranite. Southern West Kunlun: Q,
Quaternary; ChSta, segment A of the Saitula Group of the Middle Proterozoic Changchengian System; C2

t, Carboniferous Tireaili Formation; J1–2Y, Jurassic Yerqiang
Group; Pz1OφmK, Kudi ophiolitic mélange; Pt2ηcβK, Middle Proterozoic gneissic biotite monzogranite; ЄβμP, Cambrian diabase; OηδoB, Ordovician medium-grained

(Continued )
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Triassic (TγδβJ) intrusion between its highest (4,814 m) and
lowest (3,540 m) points (Figures 2, 3 and Table 1).

All granite samples were crushed and pulverized, and
constituent minerals were concentrated by using standard
magnetic and density separation techniques. Individual apatite
grains were handpicked from the concentrates and used for
fission track dating via the external detector method, following
the procedures documented in our previous publication (Liu
et al., 2017b). Initially, apatite grains were mounted and
polished to expose the centers of as many grains as possible

and were then immersed in 5.5 N HNO3 for 20 s at 21°C to reveal
natural fission tracks. Fission track sample mounts, age standards
(Fish Canyon and Durango) and IRMM540R dosimeter samples
were irradiated together in a thermalized reactor located at
Oregon State University, United States, using a thermal
neutron fluency of 1.0 × 1016 n cm−2. U-free muscovite
external detectors were etched in 40% HF for 40 min at 20°C
to reveal their induced fission tracks. Fission tracks were counted
on a Zeiss microscope at the Chinese Academy of Geological
Sciences, China, using an Autoscan system (produced in

FIGURE 2 | quartz diorite; SξγβS, Silurian medium-grained biotite moyite; SηγβS, Silurian medium-grained biotite monzogranite; TηcJ, Triassic medium-grained
monzogranite; TγδβJ, Triassic medium-grained, porphyritic biotite granodiorite; TηγβS, Triassic medium-grained, porphyritic biotite monzogranite; TηδoJ, Triassic
medium- to fine-grained quartz monzodiorite; Tδo-ηγS, Triassic mixed magmatic granite; Pαμ+ξ, altered andesitic porphyrite and dacite; Pss, sandstone intercalated with
sericitic and silty slate; Cmb, bioclastic dolomitic limestone and marble; S1W

sl, silty slate and phyllite; TSa, segment A in sandstone of the Triassic Sailiyakedaban Group;
and TSb, segment A in conglomerate of the Triassic Sailiyakedaban Group. Songpan-Ganzi Terrane: S1W

b, Formation B of the Silurian Wenquan Group, which contains
gray, medium-bedded, and fine-grained arkosic sandstone intercalatedwith silty,Didymites-bearing slate; and S1W

c, Formation C of the SilurianWenquan Group, which
contains thickly bedded, moderate- to fine-grained quartz sandstone and fine-grained arkosic sandstone intercalated with some silt and slate.

FIGURE 3 | A geological section between the Northern West Kunlun Terrane and the Songpa-Ganzi Terrane. Black stars record the elevations of samples in the
Southern West Kunlun Terrane that were collected for apatite fission track analysis, although the actual locations do not lie within the plane of the section.

TABLE 1 | Apatite fission-track data of the South Kudi section in the Southern West Kunlun Terrane.

Sample Location:
Long.
(E) Lat.

(N)

Elevation
(m)

N Rho-S
(10−5 cm−2) Ns

Rho-I
(10−5 cm−2) Ni

Rho-D
(10−5 cm−2) Nd

P(χ2) (%) Central
age (Ma)
(±1σ)

Mean
Dpar
(μm)

KDW52 36.69767°

77.01437°
4,814 23 1.955 (98) 13.047 (654) 12.5 (16,059) 89.25 25.5 ± 3.1 1.27

KDW55 36.69469°

77.01894°
4,445 24 2.568 (212) 20.376 (1,682) 13.3 (16,059) 0.01 26.7 ± 3.2 1.36

KDW60 36.70085°

77.04183°
3,869 23 2.554 (190) 20.637 (1,535) 14.0 (16,627) 0.06 25.8 ± 3.3 1.36

KDW61 36.70045°

77.04486°
3,715 22 1.776 (148) 21.282 (1,773) 13.9 (16,627) 4.73 16.4 ± 2.0 1.26

KDW62 36.70360°

77.04749°
3,540 24 2.592 (231) 31.026 (2,765) 12.9 (16,059) 36.69 14.8 ± 1.4 1.38

The zeta (ζ ) value is 272.78 ± 15.99. Abbreviations are as follows:N, number of individual grains dated; Rho-S, spontaneous track density (×105 tracks cm−2); Ns, number of spontaneous
tracks counted; Rho-I, induced track density in external detector (muscovite) (×105 tracks cm−2); Ni, number of induced tracks counted; Rho-D, induced track density in external detector
adjacent to dosimeter glass (×105 tracks cm−2); Nd, number of tracks used to determine Rho-D; P(χ2) (%), Chi-square probability (Galbraith, 1984); Mean Dpar, arithmetic mean diameter
of fission-track etch figures parallel to the crystallographic c-axis.
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Australia) in manual mode, set to a magnification of ×1,000. The
zeta (ζ) value of 272.78 ± 15.99 was obtained using Durango and
Fish Canyon apatite standards (Hurford and Green, 1983; Naeser
and Cebula, 1985). More than 20 grains were chosen from each
sample. All ages were determined to be within an error of 1σ using
the computer code “Trackkey” (Dunkl, 2002).

RESULTS

Between 22 and 24 grains were analyzed for AFT in each sample,
and the results are listed in Table 1 and shown in Figure 4. For
this measurement, the value of Zeta (ζ) is 272.78 ± 15.99. Three
samples (KDW55, KDW60 and KDW61) show low AFT P (χ2)
values (<5%), although the highest and lowest elevation samples
(KDW52 and KDW62) show high P (χ2) values (>5%) (Table 1).
The AFT central ages are 25.5 ± 3.1, 26.7 ± 3.2, 25.8 ± 3.3, 16.4 ±
2.0, and 14.8 ± 1.4 Ma for KDW52, KDW55, KDW60, KDW61,
and KDW62, respectively. The mean Dpar varied from 1.26 to
1.38 μm. Because the AFT ages determined for these samples are
younger than 30 Ma, we did not measure the full track lengths.

FIGURE 4 | Apatite fission track results displayed on radial plots (Galbraith, 1990) for the Kudi section. The plots were drawn using Radialplotter (Vermeesch, 2009).
The color code displays uranium concentrations (left) or chlorine concentrations (right) for each sample.

FIGURE 5 | Age–elevation relationships for apatite fission track data
from the South Kudi section, with 1σ analytical uncertainties shown as
error bars.
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Figure 5 shows AER data using the central ages. The ages of
samples with the three highest elevations are near ∼26 Ma
(KDW52, KDW55 and KDW60), while the ages of the two
low-elevation samples are near ∼15–16 Ma (KDW61 and
KDW62). A clear transition point in AER data can be seen in
Figure 5 at ∼26 Ma.

DISCUSSION

Rapid Oligocene Uplift in the Southern West
Kunlun Mountains
Low-temperature thermochronological data are highly effective
for deciphering the cooling history of a region, with techniques
including apatite (U–Th)/He (AHe, ∼30–120°C), apatite fission
track (AFT, ∼60–110°C), zircon (U-Th)/He (ZHe, ∼130–200°C),
and zircon fission track (ZFT, ∼220–260°C) (Reiners et al., 2005;
Guenthner et al., 2013). The cooling rates, especially from the AER
data, derived from these minerals have been widely used to identify
rapid uplift events in the eastern (Wang et al., 2012; Tian et al.,
2013; Zhang et al., 2016; Liu-Zeng et al., 2018; Cao et al., 2019;
Replumaz et al., 2020), northern (Liu et al., 2017b, 2021; Wang
et al., 2017; Zhuang et al., 2018; Lin et al., 2021), andwestern (Wang
et al., 2003; Amidon and Hynek, 2010; Sobel et al., 2011; Cao et al.,
2013; Thiede et al., 2013; Cao et al., 2015; Li et al., 2019) Tibetan
Plateau. Unfortunately, the rapid cooling rates derived from AER
data do not always imply rapid exhumation rates (Stüwe et al.,
1994; Burbank, 2002). However, the break-in-slope point or zone
in an AER should record a significant tectonic transformation
(Braun, 2002; Valla et al., 2010), which is used to correlate with a
rapid uplift event within the Tibetan Plateau (Zheng et al., 2006;
Ouimet et al., 2010; Zheng et al., 2010; Lease et al., 2011; Wang
et al., 2012; Tian et al., 2015). In this study, the three lowest-
elevation samples yielded a mean exhumation rate of ∼0.041 km/
Ma. The three highest-elevation samples yield very similar central
ages of ∼26Ma (Figure 5), indicating that the adjacent area has
undergone rapid exhumation at ∼26Ma. As our samples were
collected from the SWK (Figure 1B), the SWK is interpreted to
have undergone rapid uplift at ∼26Ma, followed by a period of
slow uplift that continued to at least ∼15Ma (Figure 5).

Based on source-to-sink theory, sedimentary provenance
analysis in a basin can effectively decipher the evolutionary
history of adjacent ranges (Fedo et al., 2003; Najman, 2006;
Kimbrough et al., 2015; Koshnaw et al., 2018; Coutts et al.,
2019; Nordsvan et al., 2020; Resentini et al., 2020). Basin
analysis has been applied to several mountain fronts in the
Pamir–WK region, which has constrained the evolutionary
history of its adjacent ranges. The dominance of Cenozoic
northward-directed paleocurrents in the SW Tarim Basin
indicates that the basin sediments were mainly derived
from its southern margin (Sobel, 1999; Bershaw et al.,
2012; Cao et al., 2014; Zhang et al., 2019; Li et al., 2021).
Interestingly, an ∼45 Ma peak in detrital zircon U/Pb ages is
documented only in the central Pamir and first appears in
Eocene strata in the SW Tarim and Tajik basins (Blayney et al.,
2016; Sun et al., 2016; Wang et al., 2019; Zhang et al., 2019;
Sun et al., 2020; Wang et al., 2021). Previous documents

indicated that this magmatic activity represented the Late
Eocene rapid uplift in the central Pamir region, based on late
Eocene detrital apatite fission track ages and regional tectonic
movements (Wang et al., 2019; Zhang et al., 2019; Wang et al.,
2021). Moreover, detrital zircons with an age peak of ∼45 Ma
are absent in sedimentary rocks that formed at ∼26 Ma in the
Oyitag and after ∼26.5 Ma in the Aertashi sections of the SW
Tarim Basin (Figure 6; Blayney et al., 2016; Sun et al., 2016),
indicating that the influx of sediments from the central Pamir
region was hindered by the growth of the mountains to the
northern side of the basin. Based on our new data, we interpret
that the SWK experienced rapid uplift at ∼26 Ma, which
restricted sediment flux into its northern basins.

Both the low-temperature thermochronology performed
herein and previous basin sedimentary provenance analyses
confirm that the SWK experienced rapid uplift at ∼26 Ma,
which restricted sediments sourced from central Pamir region
from being transported into its northern basins. Paleomagnetic
data show an abrupt increase in mean magnetic susceptibility at
∼26 Ma in the Baxbulak section of the Alai Valley, although this
has previously been interpreted as recording tectonic activity in
the southwestern Tien Shan (Tang et al., 2015). Nonetheless, this
rapid exhumation event (∼25–16 Ma) is also documented in the
northern Pamir region (Amidon and Hynek, 2010), indicating
that this event may record regional-scale movement on the
northwestern Tibetan Plateau.

Cenozoic Northward Growth of West
Kunlun Mountains
TheWK is divided into southern and northern domains, with the
former extending to the northern Pamir region (Figure 1B).
Sedimentary provenance analysis indicates that the WK and
northern Pamir region had certain paleoelevations prior to the
Cenozoic (Cao et al., 2015; Blayney et al., 2016; Li et al., 2020),
which supports rapid uplift in the northern Pamir region during
the late Paleocene–early Eocene (∼50–40 Ma) (Amidon and
Hynek, 2010; Carrapa et al., 2015; Chen et al., 2018). As the
sedimentary provenance in the SW Tarim and Tajik basins did
not change between the Late Cretaceous and the Early Eocene, the
topography of the nearby ranges must also not have changed
during this time. The first quasi-synchronous rapid uplift of the
central Pamir region occurred in the Late Eocene (40–30 Ma),
and provided a new sediment flux into the SW Tarim and Tajik
basins (Blayney et al., 2016; Wang et al., 2019; Zhang et al., 2019;
Sun et al., 2020; Wang et al., 2021), although this occurred at the
earliest time of ∼47 Ma in the Oytag section of the Tarim Basin
(Sun et al., 2016). The second regional-scale rapid uplift in the
SWK (this study) and northern Pamir region (Amidon and
Hynek, 2010) occurred during the Oligocene; this lasted at
least ∼9 Ma (from 25 to 16 Ma) in the northern Pamir region,
but there are no geochronological data to constrain its duration in
the SWK. The >1,000-km-long Karakorum Fault developed
during this Oligocene uplift event (Lacassin et al., 2004; Li
et al., 2007; Valli et al., 2007; Valli et al., 2008) and
subsequently played a vital role in the evolution of the WHS
(Cowgill, 2010). Finally, a third episode of rapid uplift began in
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FIGURE 6 | U-Pb detrital zircon data shown as normalized kernel density plots for rocks from the Oytag (Sun et al., 2016) and Aertashi (Blayney et al., 2016)
sections in the SW Tarim Basin. The shaded bar represents the populations diagnostic of the central Pamir provenance with a detrital zircon U-Pb peak age of ∼45 Ma.
The ages in the brackets after the sample ID represent the sedimentary ages. N indicates the number of measured detrital zircon grains.
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the WK and northern Pamir during the Middle Miocene, with
this event continuing to the present day and shaping the current
landscape (Cao et al., 2013; Thiede et al., 2013; Cao et al., 2015;
Blayney et al., 2019).

Our new data combined with published results show that at least
three rapid uplift events occurred in the Pamir–WK during the
Cenozoic (Figure 7), but how did each of these events influence the
tectonic evolution of the WK? The ∼45Ma peak of detrital zircon
U/Pb ages indicates that the central Pamir region experienced the first
uplift event, although no equivalent ages are recognized in the WK,
despite its northward extension (i.e., the northern Pamir) recording
this event. Moreover, if the WK had experienced this uplift at this
time, the sediments from the central Pamir region would not have
been deposited in the SW Tarim Basin. Therefore, we believe that the
first uplift event only took place south of the WK. Our AFT data
confirm that the second uplift event occurred in the SWK, which
restricted sediments derived from the central Pamir region from
entering the SW Tarim Basin. Prior to this study, no Oligocene
thermochronological data were reported from the NWK, which
implied that this second major uplift event did not affect the
NWK. Furthermore, while thermochronological data confirm that
the third uplift event occurred in theNWK(Sobel andDumitru, 1997;
Sobel et al., 2011; Chapman et al., 2017) and northern Pamir region
(Sobel et al., 2011; Thiede et al., 2013; Figures 1, 7), no previous data
have shown that this event affected the SWK.Our data from theKudi
profile indicate that the phase of relatively slow exhumation lasted
from ∼26 to ∼15Ma (Figure 5). Furthermore, as the SWK
currently has higher elevation than the NWK (Figure 7), the
southern domain likely experienced a prolonged period of uplift

than the northern domain. Therefore, we suggest that the SWK
possibly also experienced the third documented uplift event. Based
on these data, three Cenozoic uplift events should first occur to the
south of the WK, SWK, and NWK during the Eocene, Oligocene,
andMid-Miocene (Figure 7). Therefore, northward growth should
take place around the WK, possibly caused by the stepwise growth
(Tapponnier et al., 2001) or continuous deformation (Molnar et al.,
1993) of the Tibetan Plateau.

Sedimentary provenance analysis in the SW Tarim Basin also
supports the interpreted northward growth of the WK. Detrital
zircons with age peaks of ∼45 Ma are absent in sedimentary rocks
that formed at ∼26–15 and ∼14–11 Ma in the Aertashi section of
the SW Tarim Basin (Figure 6; Blayney et al., 2016), which
indicates that sediments from the central Pamir region could not
freely enter its northern basin. The reason for this limited
movement is most likely due to being restricted by uplift of
the WK. These events are shown in Figure 8 as a tectonic model
for the WK. During the Late Cretaceous, the central
Pamir–Songpan–Ganzi region had not experienced uplift,
whereas the WK had a greater elevation, allowing the
paleorivers (e.g., the Pishan River, the Yarkang River and
others) to erode headward toward the Songpan–Ganzi terrane.
During the Eocene, the Paratethys Ocean transgressed into and
retreated from the Tarim Basin, and the central Pamir region
experienced initial Cenozoic uplift, which allowed the paleorivers
(e.g., the Pishan River and the Yarkang River) to supply new
detrital zircon grains with ∼45 Ma peak ages. During the
Oligocene, the SWK experienced abrupt uplift, which
restricted the sedimentary flux from the central Pamir region

FIGURE 7 | Tectonic events that have affected the West Kunlun Mountains. Yellow, red and green lines indicate the maximum, average and minimum elevations of
selected area, which showing in the Figure 1B with red frame. Pick dots and dots with error bars indicate the elevations and AFT cooling ages from Chapman et al.
(2017). Red dots and dots with error bars indicate the elevations and AFT cooling ages from Thiede et al. (2013). Green dots and dots with error bars indicate the
elevations and AFT cooling ages from Sobel et al. (2011). Blue dots and dots with error bars indicate the elevations and AFT cooling ages from Cao et al. (2013).
Yellow dots and dots with error bars indicate the elevations and AFT cooling ages from Li et al. (2019). Black dots and dots with error bars indicate the elevations and AFT
cooling ages from this study.
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into the SW Tarim Basin. From the middle Miocene to the
present day, the NWK and SWK both experienced abrupt
uplift, which restricted the transport of eroded material from
the central Pamir region into the Tarim Basin, although the head
of the paleo-Yarkang River eroded through the central Pamir
region at ∼26–15 and ∼14–11 Ma.

CONCLUSION

1) The age–elevation relationship (AER) of the apatite fission
track (AFT) shows that rapid exhumation occurred at ∼26 Ma
in southern West Kunlun.

2) Combining these data with those of previous studies shows
that West Kunlun and its adjacent region experienced
northward initial Cenozoic growth during the Late Eocene,
Oligocene, and Middle Miocene in the central Pamir,
southern West Kunlun, and northern West Kunlun
regions, respectively.
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FIGURE 8 | Growth model for the region surrounding the West Kunlun Mountains. Gray value represents the paleo-altitude. During the Late Cretaceous, although
the Kunlun Mountains have certain elevations, the paleorivers eroded headward toward the Songpan–Ganzi terrane (A). During the Eocene, the central Pamir region
experienced initial Cenozoic uplift (B). During the Oligocene, the SWK experienced abrupt uplift, which was higher than the NWK and Central Pamir–Songpan–Ganzai
terrane (C). From the Mid-Miocene to present, the NWK and SWK both experienced abrupt uplift (D).
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