
A Machine Learning Approach to
Predict Groundwater Levels in
California Reveals Ecosystems at Risk
Melissa M. Rohde1*, Tanushree Biswas1, Ian W. Housman2, Leah S. Campbell 3,
Kirk R. Klausmeyer1 and Jeanette K. Howard1

1California Water Program, The Nature Conservancy, Sacramento, CA, United States, 2Independent Researcher, Salt Lake City,
UT, United States, 3Contour Group, Salt Lake City, UT, United States

Groundwater dependent ecosystems (GDEs) are increasingly threatened worldwide, but
the shallow groundwater resources that they are reliant upon are seldommonitored. In this
study, we used satellite-based remote sensing to predict groundwater levels under
groundwater dependent ecosystems across California, USA. Depth to groundwater
was modelled for a 35-years period (1985–2019) within all groundwater dependent
ecosystems across the state (n � 95,135). Our model was developed within Google
Earth Engine using Landsat satellite imagery, climate data, and field-based groundwater
data [n � 627 shallow (< 30m) monitoring wells] as predictors in a Random Forest model.
Our findings show that 1) 44% of groundwater dependent ecosystems have experienced a
significant long-term (1985–2019) decline in groundwater levels compared to 28% with a
significant increase; 2) groundwater level declines have intensified during the most recent
two decades, with 39% of groundwater dependent ecosystems experiencing declines in
the 2003–2019 period compared to 27% in the 1985–2002 period; and 3) groundwater
declines are most prevalent within GDEs existing in areas of the state where sustainable
groundwater management is absent. Our results indicate that declining shallow
groundwater levels may be adversely impacting California’s groundwater dependent
ecosystems. Particularly where groundwater levels have fallen beneath plant roots or
streams thereby affecting key life processes, such as forest recruitment/succession, or
hydrological processes, such as streamflow that affects aquatic habitat. In the absence of
groundwater monitoring well data, our model and findings can be used to help state and
local water agencies fill in data gaps of shallow groundwater conditions, evaluate potential
effects on GDEs, and improve sustainable groundwater management policy in California.

Keywords: depth to groundwater, groundwater dependent ecosystems, groundwater depletion, google earth
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INTRODUCTION

Groundwater is a critical water source for humans and ecosystems. However, increasing human
demands for groundwater to support agriculture, industrial expansion, economic development, and
population growth are resulting in the degradation of freshwater ecosystems (Dudgeon et al., 2006;
Albert et al., 2020). Species or ecological communities that rely on groundwater for some or all their
water needs are commonly referred to as Groundwater Dependent Ecosystems (GDEs).
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Groundwater provide GDEs with a reliable supply of water,
thermoregulation, or a unique chemical composition to
support unique habitat conditions for phreatophytes, animals
and microorganisms within terrestrial, aquatic, and coastal
ecosystems (Eamus et al., 2015; Hoyos et al., 2016).

Sustainable groundwater management policies and
regulations to balance human and ecosystem water needs have
been increasing worldwide (Rohde et al., 2017). To achieve
groundwater sustainability, it is imperative that the water
needs of a diverse set of users (including GDEs) are integrated
into water management decisions. However, groundwater
information, particularly depth-to-groundwater data in shallow
aquifers that typically support GDEs, are often limited due to gaps
in groundwater monitoring and the prioritization of monitoring
wells in deeper portions of the basin. This study is focused on
California where GDEs are legally recognized under the
Sustainable Groundwater Management Act (SGMA; State of
California, 2014) and mapped by the State of California
[California Department of Water Resources (CDWR), 2018].
However, long-term shallow depth-to-groundwater data
remains a significant data gap in California. The objectives of
this paper are to: 1) use machine learning algorithms to model
shallow depth to groundwater (DTG) underlying GDEs across
California, 2) analyze long-term and multi-decadal trends in
DTG beneath GDEs, and 3) determine which GDEs in
California are experiencing chronic groundwater level declines.

New remote sensing techniques, cloud computing, and
emerging datasets are helping to fill groundwater data gaps
(Díaz-Alcaide and Martínez-Santos, 2019). For example, the
Gravity Recovery and Climate Experiment (GRACE) satellite
data have been used to detect groundwater storage losses
across large geographies globally, such as in NW India (Rodell
et al., 2009), California’s Central Valley (Scanlon et al., 2012;
Scanlon and Faunt, 2012), and the High Plains Aquifer in the
Central United States (Rodell and Famiglietti, 2002; Strassberg
et al., 2009; Rateb et al., 2020; Scanlon et al., 2021). Although
GRACE-derived groundwater storage changes agree with
groundwater level monitoring data in most U.S. major aquifers
(Rateb et al., 2020), the spatial (> 150,000 km2) and temporal
(monthly) resolution of GRACE data are too coarse to fill in
sparse piezometric data over large areas. Although groundwater
level contour mapping with sparse borehole data can be improved
with Bayesian data fusion approaches (Fasbender et al., 2008),
significant errors around GDEs are likely if borehole data are
tracking deeper regional aquifers instead of shallow or perched
aquifers that have their own water table.

Machine learning algorithms have become increasingly
popular for solving complex, non-linear problems in ecology
and earth sciences that are often hindered by heterogeneous
conditions and data gaps (Thessen, 2016; Rajaee et al., 2019).
In contrast to traditional process-based numerical modeling
methods, which require large, observationally based datasets
and input parameters, machine learning approaches are also
increasingly being used in hydrogeological applications since
they are data-driven and require less calibration than process-
based models (Shen et al., 2018). For example, machine learning
is being used to predict temporal groundwater dynamics

(Daliakopoulos et al., 2005; Banerjee et al., 2009; Adamowski
and Chan, 2011; Yoon et al., 2011; Shiri et al., 2013; Gholami et al.,
2015), groundwater availability (Hussein et al., 2020), map the
water table (Fienen et al., 2013; Koch et al., 2019a), model
groundwater quality conditions (Winkel et al., 2011; Nolan
et al., 2015; Erickson et al., 2018; Koch et al., 2019b), and
strengthen traditional physical-based numerical groundwater
models (Shen et al., 2018).

This study employs the ensemble-based Random Forest
machine learning method to model depth to groundwater
beneath GDEs across California. Random Forest integrates
multiple variables into a series of randomly constructed
decision tree models to make a prediction (Breiman, 2001).
Random Forest was selected because it is computationally
efficient, does not overfit, and can handle many predictors,
containing continuous, categorical, or nominal (binary) data,
even from small datasets with a low number of observations
(Belgiu and Drăguţ, 2016;Maxwell et al., 2018). Here, we combine
35 years of 30 m spatial resolution Landsat satellite imagery,
climate data, and field-based groundwater data (n � 55,260
groundwater elevation observations) to model depth to
groundwater in GDEs (n � 95,135 individual GDEs) across
California using a Random Forest algorithm. We used Google
Earth Engine (GEE), an application program interface (API;
Gorelick et al., 2017) that enables complex computing across
large spatial and temporal scales, to run the data processing and
modeling. GEE uses Google’s computing infrastructure which
greatly improves data acquisition, processing speeds and enables
the development of complex algorithms over large datasets in a
manner that was nearly impossible in the recent past. In this
study, we model annual depth to groundwater from 1985 to 2019
for individual GDEs, and then use these data to evaluate depth-
to-groundwater trends in GDEs across California. Finally, we
discuss the implications of our findings in the context of
sustainable groundwater management in California.

MATERIALS AND METHODS

Study Area
The study area includes GDEs located within California’s 515
groundwater basins, as defined by the California of Water
Resources [California Department of Water Resources
(CDWR), 2020a]. California is divided into ten hydrologic
regions that correspond to the state’s major drainage basins
(CNRA, 2021) and they are used to contextualize the study
results. Statewide GDE vegetation data were obtained from the
Natural Communities Commonly Associated with Groundwater
dataset (Natural Communities Commonly Associated with
Groundwater dataset; Klausmeyer et al., 2018) hosted by the
California Department of Water Resources [California
Department of Water Resources (CDWR), 2018], and created
in partnership with the California Department of Fish and
Wildlife and The Nature Conservancy of California. The NC
dataset is a compilation of 48 publicly available state and federal
agency datasets that map vegetation, wetlands, springs, and seeps
associated with groundwater in California, and is the best
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available information for identifying GDEs across California’s
groundwater basins. There are two main habitat classes included
in the NC dataset: 1) wetland features that are commonly
associated with natural, unmodified surface expressions of
groundwater (n � 78,810 mapped polygons); and 2) vegetation
communities dominated by phreatophytes that are commonly
associated with subsurface groundwater (n � 98,275 mapped
polygons). Groundwater-dependent plants (phreatophytes) have
long been used as indicators of groundwater, since their roots can
extend deep beneath the Earth’s surface to access groundwater
(Meinzer, 1927). This study uses only the phreatophytic
vegetation data layer, since changes in groundwater levels can
be detected in the canopy by satellites (Eamus et al., 2015;
Huntington et al., 2016; Kibler et al., 2021; Rohde et al., 2021).

Random Forest Modeling and Analysis
Groundwater Data
For this study, we included vegetation polygons that were
≥900 m2 (1 Landsat pixel) in size and were within a 1 km
radius of a nearby well that met the following well selection
criteria: 1) observed DTG values ≤6.1 m to better reflect
conditions in the rooting zone of most GDEs (Canadell et al.,
1996); 2) a minimum of 5 years of observations within the 35-
years period of interest to reflect temporal trends for model

calibration; and 3) an upper screening interval <30 m to select
for wells that are drawing water from shallow unconfined
aquifers. This resulted in a total of 631 wells and 3,097
vegetation GDE polygons that were associated with those wells
and were then used as the training data to develop and validate
the Random Forest regression model (Figure 1). Some GDEs are
within 1 km of multiple wells, resulting in 4,932 unique well and
GDE combinations. Annual mean (1984–2019) DTG for these
wells were calculated using data from the California Department
of Water Resources SGMA Data Viewer [California Department
of Water Resources (CDWR), 2021]. Each of these well and GDE
combinations have multiple years of DTG measurements,
resulting in a total of 55,614 training samples; each
representing a unique combination of GDE, well, and year.

Predictor Variables and Data Processing
Climate Data
Daily-interpolated climate data were acquired from NASA’s
Daily Surface Weather Data (Daymet) and are available daily
from 1980 to present across North America at 1 km spatial
resolution (Thornton et al., 2016). The Daymet dataset is
created by interpolating daily observations from surface
weather stations in the Global Historical Climatology Network
(GHCN; Menne et al., 2012). For this study, daily minimum

FIGURE 1 | Statewide data distribution and training data selection for this study. (A) Groundwater monitoring well distribution statewide. Groundwater elevation
data from 631 wells met the study’s selection criteria to be used as training data. Out of the 42,401 monitoring wells that exist statewide, only 3,097 monitor shallow
groundwater. (B) Groundwater dependent ecosystem (GDE) distribution statewide. GDEs existing within 1 km of a shallow monitoring well were selected to be used as
training data (n � 3,082 GDEs). (C) Hydrologic regions of California.
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temperature, maximum temperature, and precipitation were
averaged over each water year (October 1–September 30) to
create annual composites of the Daymet data from 1985 to
2019 for the entire study area.

Landsat Data
The Landsat data record dates from 1972, with 30 m spatial
resolution data available at least every 16 days since 1984
(USGS, 2021a). We included all USGS Tier 1 Landsat 4 and
Landsat 5 Thematic Mapper, Landsat 7 Enhanced Thematic
Mapper+ (Sayler, 2020a) and Landsat 8 Operational Land
Imager (Sayler, 2020b) surface reflectance corrected
multispectral imagery available within GEE. Surface
reflectance data during the summer months (June
1–September 30) from 1984 to 2019 across California were
selected. The summer months were chosen since phreatophytes
are physiologically active and more likely using groundwater
during that period when surface water and precipitation is
scarce (Huntington et al., 2016). Landsat data from different
sensors were not cross-calibrated, since the calibration models
have intercepts near zero and slopes close to one (Roy et al.,
2016; Chastain et al., 2019). These results indicate that cross-
calibration is not needed to provide temporally consistent
datasets across multiple sensors. Clouds and cloud shadows
were masked using the CFmask algorithm (Zhu and Woodcock,
2012, 2014a; Zhu et al., 2015). We reduced the spectral
observations from the Landsat record to a set of 35 annual
composites from 1985 to 2019 for the entire study area using a
multi-band medoid selection process following (Kennedy et al.,
2018), which provides a smoothed, annualized dataset. The
wavelengths of the Landsat spectral bands used in these
annual composites range from visible to middle infrared
wavelengths (0.45–2.35 nm). We normalized these to each
other to generate a suite of vegetation indices (Table 1) that
have documented relationships to the presence of
photosynthetic chlorophyll or moisture, which potentially
correlates to DTG.

Temporal Segmentation
Various temporal segmentation algorithms have been developed
to monitor changes in vegetation cover using optical remote
sensing data. Each of these algorithms parses spectral time series
into discrete temporal segments to minimize the influence of
noise and to identify changes and trends more easily (Kennedy

et al., 2010; Verbesselt et al., 2010; Zhu and Woodcock, 2014b).
We use the GEE LandTrendr algorithm (Kennedy et al., 2018)
since it is designed to run on an annualized time series.
LandTrendr runs an iterative sequence of linear regressions
and identification of potential vertices using their deviation
from the regression lines to section the time series into discrete
linear segments. The output data includes information about
each segment, including its start and end vertex, its duration,
slope, and magnitude of change. This information can also be
used to infer the fitted values along each of the segments
(Kennedy et al., 2010). Although LandTrendr was originally
developed to detect trends in forest disturbance and recovery
(Kennedy et al., 2010; Cohen et al., 2018), its basic linear
regression approach is appropriate to identify trends and
reduce noise in a wide range of remote sensing and other
environmental time series. The LandTrended temporal stack
of all Landsat bands, vegetation indices and Daymet data was
then used to calculate the annual zonal mean of all satellite-
based predictor variables for each GDE. This helps the model
identify temporal trends at the GDE scale. For this study, we
segment each vegetation index from the Landsat medoid
composite time series, as well as the temperature and
precipitation Daymet times series, at the pixel level using
LandTrendr. We utilize the fitted values for each year as well
as the magnitude of change for each segment as the predictor
layers for the Random Forest model.

Categorical Predictor Variables
In addition to the LandTrended Landsat and Daymet time series
described above, several categorical variables were included as
predictor variables to the Random Forest model. These include
USGS watershed boundaries (HUC 8; USGS, 2021b), biome
(TNC, 2009), ecoregion (TNC, 2009), hydrological regions
[correspond to the state’s ten major drainage basins; (CNRA,
2021)], and vegetation macrogroup {vegetation data from the NC
dataset, grouped using the California Department of Fish and
Wildlife hierarchical natural communities classification
[California Department of Fish and Wildlife (CDFW), 2021]}.

Random Forest Model Development and Analysis
The Random Forest algorithm is a statistical model that trains an
ensemble of classification and regression tree (CART) models
populated by random subsets of the model calibration data and
predictor variables (Breiman, 2001). The trees are created by

TABLE 1 | Vegetation indices used as predictor variables to model depth to groundwater.

Spectral index Equation Source

Normalized Difference Vegetation Index (NDVI) NDVI � NIR−Red
NIR+ Red

Rouse et al. (1973)

Normalized Difference Moisture Index (NDMI) NDMI � NIR−SWIR1
NIR+ SWIR1

Wilson and Sader (2002)

Normalized Difference Water Index (NDWI) NDWI � Green−NIR
Green+NIR Barron et al. (2014)

Normalized Burn Ratio (NBR) NBR � NIR−SWIR2
NIR+ SWIR2

Lozano et al. (2007)

Near Infrared Reflectance of Vegetation (NIRv) NIRv � (NDVI − 0.08)NIR Badgley et al. (2017)
Soil Adjusted Vegetation Index (SAVI) SAVI � 1.5( NIR−Red

NIR+ Red+0.5) Huete (1988)

Enhanced Vegetation Index (EVI) EVI � 2.5( NIR−Red
(NIR+6)(Red−7.5)(Blue+1)) Nagler et al. (2004)

Tasseled Cap (TCAP) derivatives: brightness, greenness, wetness, and angle See publication Crist (1985)

Frontiers in Earth Science | www.frontiersin.org December 2021 | Volume 9 | Article 7844994

Rohde et al. Monitoring Groundwater Dependent Ecosystems

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


drawing a subset of training samples through replacement (a
bagging approach), resulting in some samples that are selected
several times and others never selected, or the out-of-bag fraction.
Since we were predicting a continuous variable (DTG), we ran the
model in regression mode, which also allows for the computation
of model error metrics, such as root mean squared error (RMSE),
using the samples that are not included in the training of each tree
(out-of-bag). Figure 2 shows a flowchart of the full modeling
framework, including the training data, generation of predictor
layers, and final predicted DTG values.

The trained Random Forest model was applied to the 98,275
GDEs that met our selection criteria (see Study Area) and for each
year from 1985–2019, creating a continuous annual time series of
predicted DTG values for each GDE.

Temporal and Spatial Trend Analysis of Model Output
To better understand DTG trends in shallow aquifers linked
to GDEs across California, we summarized the ordinary least
squares (OLS) linear trends over time. These were calculated
using the statsmodels Python package (Seabold and
Perktold, 2010) across three different time periods on the
predicted DTG time series. These periods were 1985–2019
(long-term), 1985–2002 (early period), and 2003–2019 (late
period). The results from the analysis were then spatially
summarized by state, hydrologic region, and groundwater
basin for each of the three study time periods. The hydrologic
region and groundwater basin boundaries are used by the
California Department of Water Resources and many other
state and local agencies to designate management areas in
California.

To determine which GDEs experienced significant long-
term increases or decreases in DTG, we assessed the statistical

significance of the linear trends for modelled DTG within each
GDE by testing whether the OLS slopes were significantly
different from zero using the Mann-Kendall test in the
pyMannKendall Python package (Hussain and Mahmud,
2019) and a p-value of 0.05. For the multi-decadal
comparison, we compared the early period (1985–2002)
and late period (2003–2019) DTG slopes using a t-test to
evaluate whether the trends were significantly different across
decades.

RESULTS

Model Performance and Results
Our final model, which was calibrated with the 55,614 unique
training data observations (GDE-well-year combinations), had an
out-of-bag error of 0.77 m. Themodel used 90 decision trees, each
using an out-of-bag fraction of 0.5 and 7 predictor variables per
split; the latter is approximately the square root of the 47
predictor variables used in the model (Supplementary Figure
S1). The variables with the most predictive power (also known as
variable importance) were primarily the climate-related variables,
followed by the fitted spectral LandTrendr values
(Supplementary Figure S1). Fitted NIR (near-infrared) and
tasseled cap brightness were the top two predictor vegetation
indices. All the top vegetation indices are either sensitive to the
presence of photosynthetic vegetation or moisture. The HUC 8
watershed, hydrologic region, and vegetation macrogroup of each
GDE were more important predictor variables than most
vegetation indices. Supplementary Figure S2 shows an
example of the time series of modeled DTG values plotted
alongside DTG observations from a nearby well.

FIGURE 2 | Overview of the modeling framework used to predict depth to groundwater.
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Temporal and Spatial Groundwater Trends
Statewide
Based on our model, 44% of GDEs statewide experienced
significant declines in groundwater levels, while only 28%
experienced a significant increasing trend in groundwater
levels between 1985 and 2019 (Table 2). When comparing
declining groundwater level trends across the early and late
periods (Supplementary Figure S3), significant groundwater
level declines were more prevalent in the latter half of the
study period (2003–2019; 39% of GDEs) compared to the
preceding decades (1985–2002; 27% of GDEs). These modelled
results are consistent with GRACE-derived groundwater trends
in the Central Valley (Scanlon et al., 2012; Rateb et al., 2020).
These declining groundwater trends suggest that more GDEsmay

have experienced greater water stress in more recent decades
(2003–2019) than in the past (1985–2002).

Hydrologic Regions
The statewide results obscure interesting patterns in modeled
shallow groundwater levels on a regional scale. To reveal some of
these regional patterns, we summarized the proportion of GDEs
with significant increasing and decreasing groundwater level
trends by the ten hydrologic regions in California (Figure 3;
Supplementary Table S1). In eight of the ten hydrologic regions,
the proportion of GDEs with long-term declining groundwater
level trends was greater than the proportion of GDEs with
increasing groundwater level trends (Figure 3A). Several
hydrologic regions (i.e., Sacramento River, Central Coast,

TABLE 2 | The percent of all California GDEs by count (n � 95,135) with decreasing, insignificant, or increasing ordinary least square linear trends in groundwater levels, as
well as the median trend (cm/yr), across the long-term, early, and late time periods. Significance is at 0.05.

Time period Decreasing trend (%) Insignificant trend (%) Increasing trend (%) Median trend (cm/yr)

Long-term (1985–2019) 43.7 28.5 27.7 −0.274
Early Period (1985–2002) 27.4 43.0 29.7 0.061
Late Period (2003–2019) 39.0 34.3 26.7 −0.366

FIGURE 3 | The proportion of GDEs with significant declining and increasing groundwater level trends by hydrologic region across three temporal time periods: (A)
long-term trend (1985–2019) and (B) early period (1985–2002; solid) and late period (2003–2019; hatch).
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North Lahontan, and San Joaquin River) have over 50% of GDEs
with significantly declining groundwater levels in the long-term.
The Sacramento River hydrologic region contains over 20,000
GDEs (the highest number of GDEs compared to all the other
hydrologic regions) and also has the highest proportion of GDEs
with significant declining trends (60%), indicating increasing
stresses on these important ecosystems. The median trend for
all GDEs in the Sacramento River was −0.92 cm/year, indicating a
median drop in groundwater levels of 0.3 m over the 1985–2019
period.

In addition to the long-term (1985–2019) trends, the trends
from the early (1985–2002) and late (2003–2019) time periods
indicate changes over the years (Figure 3B and Supplementary
Table S1). For example, in the early period, a greater proportion of
GDEs in some regions (e.g., San Joaquin River and San Francisco
Bay regions) had increasing groundwater level trends but
transitioned towards declining DTG in the late period.
Conversely, GDEs in other regions (e.g., Central Coast and
Tulare Lake regions) had declining groundwater levels for a
majority of GDEs in the 1985–2002 period but transitioned to
increasing trends in the 2003–2019 period. A more detailed time
series view of the changes in the modeled DTG for each hydrologic
region is available in Supplementary Figure S4. Supplementary
Figure S4 also shows how the median DTG is different in each
region with more shallow groundwater in San Francisco Bay and
the San Joaquin River hydrologic regions, and deeper groundwater
in the Sacramento River and South Coast regions.

Groundwater Basins
Because groundwater basins are important geospatial units for
groundwater management in California, we examined the
groundwater level trends within these spatial units. We
identified 457 basins with at least one GDE that meets the

minimum size requirement (> 900 m2), and then mapped the
count of GDEs by basin (Supplementary Figure S5). The
statewide long-term median temporal groundwater level trend
(Figure 4A) shows additional spatial detail on groundwater level
trends not evident in the hydrologic region summaries. For
example, the long-term median trend for the San Joaquin
hydrologic region is decreasing (−0.62 cm/yr, Supplementary
Table S1), but within that hydrologic region, some
groundwater basins show a general increasing trend in
modeled groundwater levels. In contrast, the Colorado River
hydrologic region has an increasing long-term median trend
(0.35 cm/yr), but some basins within the region are
experiencing long-term groundwater level declines. Figures
4B,C show the median trends by groundwater basins in the
early and late periods; respectively. As with the hydrologic region
summaries (Figure 3), these maps show greater declines in the
Sacramento and San Joaquin regions in the 2003–2019 period,
and some increasing trends in the Tulare Lake and Central Coast
regions.

To explore the spatial trends in groundwater levels further we
mapped the percent of GDEs with significant increasing or
decreasing groundwater level trends by groundwater basin
(Figure 5). We focused this analysis on basins with at least
ten GDEs (n � 357 groundwater basins; Supplementary
Figure S5). Across the state there are more groundwater
basins with >50% of its GDEs experiencing a significant
decline in groundwater levels (n � 191 groundwater basins;
37% of all groundwater basins) than significant increases in
groundwater levels (n � 103 groundwater basins; 20% of all
groundwater basins) over the past 35 years (Supplementary
Table S2). The declining trends are more apparent in the late
period (Figure 5F) than the early period (Figure 5D). In the late
period, 22% of groundwater basins (n � 77) had >50%GDEs with

FIGURE 4 |Median temporal groundwater level trends by groundwater basin for the (A) long-term (1985–2019), (B) early period (1985–2002), and (C) late period
(2003–2019). Hydrologic regions are delineated with the black outline (see Figure 1C for hydrologic region names).
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a significant decline in groundwater levels compared to only 18%
(n � 64) in the early period. The trends are not uniform across the
state, and groundwater levels increased in some basins while
decreased in others. Over the long-term, we found evidence of
widespread declines in 54 basins, where >90% of the GDEs have
experienced significant declines in shallow groundwater levels
(e.g., Paso Robles, Upper Ventura River, Carpinteria, San Luis
Obispo Valley), and in ten basins where >90% of the GDEs have
experienced significant increases (e.g., Santa Margarita).
However, the majority (89%) of basins with >90% of GDEs in
the basin experiencing long-term groundwater declines were in
the unregulated basins (non-SGMA or adjudicated).

Case Studies
Our results show that while shallow groundwater trends in GDEs
throughout California have mostly been in decline over the long-

term and particularly in recent decades, groundwater trends are
location specific. Spatial differences in groundwater trends are
likely due to varying water management regimes and other
confounding factors such as surface water flow, dam releases,
or wastewater treatment plant discharges (Rohde et al., 2021). To
illustrate how these confounding factors can affect groundwater
trends, we provide three case study examples of groundwater
basins from three hydrologically distinct regions with various
groundwater management histories: Santa Clara River Valley,
Owens Valley and Mojave River Valley (Figure 6).

Santa Clara River Valley
The Santa Clara River Valley was selected as a case study
(Figure 6B), since it contains five groundwater basins that are
subject to SGMA regulations and because sustainable
groundwater management has been absent in the previous
decades. The Santa Clara River is the largest river system in
southern California, originating in the northern slopes of the San
Gabriel Mountains in Los Angeles County and flowing southwest
through Ventura County towards the Pacific Ocean. Extensive
patches of high-quality riparian habitat, many of which are
groundwater-dependent, are present along the river. Native
cottonwoods (Populus spp.) and willows (Salix spp.) are
common along the Santa Clara River, however, invasive non-
native Arundo donax is increasingly prevalent particularly along
river reaches with deep groundwater (Cal-IPC, 2011). Native
riparian woodlands along the Santa Clara River support
important threatened and endangered species, such as Least
Bell’s Vireo (Vireo bellii pusillus) and Willow Flycatcher
(Empidonax traillii) that are protected under the federal and
state Endangered Species Acts and are actively undergoing
recovery efforts by state and federal agencies such as the US
Army Corps of Engineers, US Fish and Wildlife, and California
Department of Fish and Wildlife.

Over the long-term period (1985–2019), modelled DTG
trends within GDEs along the Santa Clara River have
predominantly been in decline with 55% of the GDEs (n �
632 GDE polygons; 26 km2) having experienced significant
decreases in groundwater levels (Supplementary Table S3).
Groundwater declines have been more pronounced in the late
period (45% of GDEs; 24 km2) compared to the early period (32%
of GDEs; 14 km2). These modelled trends are consistent with
available monitoring well data, which are only available from
2010–2016 (Figure 7).

During the last drought, GDEs along the river have exhibited
strong physiological responses to groundwater level declines.
Recent research has found that depth to groundwater
increased up to 15 m in some parts of the Santa Clara River
floodplain during the 2012–2016 drought, triggering widespread
mortality for native riparian vegetation (Kibler et al., 2021).
When groundwater remained within 4 m from the surface, the
riparian woodlands were resilient throughout the drought. When
groundwater levels are too deep to support native riparian
woodlands, such as willows and cottonwoods, the ecosystem
can shift to an Arundo-dominated system that has very little
habitat value and results in excessive evapotranspiration water
losses and wildfire risk to the basin. With SGMA implementation

FIGURE 5 | Percentage of GDEs within each groundwater basin (with
more than 10 GDEs) with significantly increasing (A,C,E) and decreasing
(B,D,F) groundwater level trends for the long-term (1985–2019); (A,B), early
period (1985–2002); (C,D), and late period (2003–2019); (E,F).
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recently underway in the Santa Clara River groundwater basins,
failing to prevent groundwater conditions in the basin from
causing adverse impacts to GDEs, such as widespread riparian
woodland mortality that provides critical habitat for these listed
species, is not only a “significant and unreasonable” impact to
GDEs under SGMA, but is also subject to these other state and
federal laws such as state and federal Endangered Species Acts
(State of California, 2014; State of California, 2016; Rohde et al.,
2019).

Owens Valley
Owens Valley was selected as a case study (Figure 6C) since it is
the only groundwater basin in California, prior to SGMA, that has
been explicitly balancing groundwater use for humans and
ecosystems for multiple decades. The Owens Valley
groundwater basin is located east of the Sierra Nevada
Mountains, west of the White and Inyo Mountains, and north
of the Mojave Desert. Owens Valley is an arid valley that provides
water to the Los Angeles Aqueduct under the 1991 Inyo County
and Los Angeles Long-Term Water Agreement (County and
Angeles, 1991). The Agreement was established to manage
groundwater pumping to avoid substantial groundwater
declines for phreatophytes in Owens Valley. Under the
Agreement, baseline vegetation conditions are used to control

future groundwater pumping, and routine and comprehensive
monitoring is required to prevent impacts to groundwater-
dependent vegetation. The Agreement also prescribes
mitigative measures to reconcile some of the adverse effects of
past pumping. If there is sufficient soil water provided by the
shallow groundwater to satisfy plant water requirements (grass-
dominated phreatophytes are assumed to have a 2 m root zone
and shrubs a 4 m root zone), then production wells can pump
groundwater into the Los Angeles Aqueduct.

Over the long-term period (1985–2019), modelled
groundwater levels within GDEs within Owens Valley have
predominantly (62% of GDEs) been increasing or stable, with
22% of GDEs (n � 1,047 GDE polygons; 165 km2) having
experienced significant increases in groundwater and 40% of
GDEs (n � 1,228 GDE polygons; 299 km2) having experienced
no significant groundwater trends (Supplementary Table S4).
Groundwater declines have been more pronounced in the late
period (42% of GDEs; 311 km2) compared to the early period
(32% of GDEs; 241 km2). These modelled trends are consistent
with available monitoring well data (Figure 8).

The Owens Valley groundwater basin contains 11,275 GDEs
which represents the second largest acreage of GDEs out of all
California’s groundwater basins (Death Valley groundwater basin
contains the largest acreage of GDEs statewide). While Owens

FIGURE 6 | Case Study locations across California (A) to compare long-term (1985–2019) modelled groundwater level trends (increasing, no trend, decreasing)
with monitoring shallow groundwater level data for GDEs within the (B) Santa Clara River Valley, (C) Owens Valley, and (D) Mojave River Valley.
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Valley is also voluntarily subject to SGMA regulations, the high
GDE acreage in Owens Valley is most likely due to the multiple
decades of ongoing water management in the basin, and more
specifically due to quantitative thresholds established for
phreatophytes to inform pumping rules.

Mojave River Valley
The Mojave River Valley was selected as a case study (Figure 6D)
because prior to being subject to SGMA regulations it was
adjudicated under the California Supreme Court. The Mojave
River is an intermittent river that flows northeast mostly
underground from the eastern San Bernardino Mountains
towards the Mojave Desert. The GDEs mapped along the
Mojave River consist primarily of riparian phreatophytes such
as cottonwood (Populus fremontii) and Tamarisk (Tamarix sp.).

Over the long-term period (1985–2019), modelled groundwater
levels within GDEs in the Mojave River Valley basins have
predominantly been in decline with 48% of GDEs (n � 444
GDE polygons; 136 km2) having experienced significant declines

in groundwater (Supplementary Table S5). Groundwater declines
have been more pronounced in the early period (52% of GDEs;
149 km2) compared to the late period (28% of GDEs; 81 km2).
These modelled trends are consistent with available monitoring
well data (Figure 9) and a recent study that found wastewater
treatment discharge and recharge increased groundwater levels for
some GDEs along the Mojave River (Rohde et al., 2021).

GDEs experiencing increasing groundwater trends in the upper
river reaches are adjacent to the Victor Valley Wastewater facility,
which was founded in 1978 (VVWRA, 2021). Wastewater
treatment discharge and recharge is likely creating more
consistent year-round shallow groundwater conditions for the
native cottonwood woodlands in the area (Rohde et al., 2021).
Over the past several decades, groundwater trends have been
increasing along the upper reaches of the river (in the south)
and relatively stable or decreasing along the lower reaches of the
river (in the north). Groundwater levels in the upper river reaches
adjacent to the wastewater treatment facility are shallower than
groundwater levels downstream in the lower reaches of the river

FIGURE 7 | Santa Clara River Valley case study comparison of (A) long-term groundwater level trends (1985–2019), (B) shallow groundwater levels from
monitoring wells nearby GDEs with long-term decreasing trends, and (C) shallow groundwater levels from monitoring wells nearby GDEs with no significant long-term
trends. There were no monitoring well data near GDEs with long-term increasing trends.
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where no significant trends in groundwater have been observed.
Along these northern reaches where groundwater is deeper,
invasive tamarisk is the dominant phreatophyte with roots that
can reach as deep as 22 m below the ground surface (Gries et al.,
2003). Tamarisk is an invasive shrub or small tree that favors
conditions that are inhospitable to native phreatophytes, such as
high salinity, low water availability, and altered streamflow regimes
created by dams (Shafroth et al., 2000; Stromberg et al., 2007).

DISCUSSION

Despite the importance of shallow groundwater for ecosystem health,
surface water users, and drinking water wells (especially domestic
rural wells), this crucial resource is often overlooked, poorly
understood, and rarely monitored. We found that of the over
42,000 groundwater monitoring wells in California, only
approximately 3,000 (7%) have consistent records of shallow
groundwater levels near GDEs. By using GDEs as pseudo-
monitoring wells and leveraging 35 years of freely available
satellite and climate data, we have developed a novel approach to
estimate the depth of shallow groundwater for all GDEs in California.
Our dataset not only fills in chronic data gaps by providing a spatially

explicit map of shallow groundwater levels for GDEs, but also enables
us to reconstruct past groundwater conditions, which would not be
possible with the installation of new wells. Our results provide not
only an insight into broad temporal and spatial groundwater trends,
but also a screening tool for monitoring groundwater levels within
GDEs without nearby monitoring wells.

Statewide, our model estimates that more GDEs are
experiencing decreases in shallow groundwater levels than are
experiencing increases, and that this pattern has intensified in the
past couple decades. GDEs are more likely to be stressed in
groundwater basins with large decreasing trends. These declining
trends are more significant in some hydrologic regions and in
some groundwater basins, but in most areas, there is a mix of both
increasing and decreasing trends within GDEs. These differences
are likely due to a combination of climatological drivers and the
existing patchwork of water management regimes across
California, as illustrated in the case studies. For more than a
century, groundwater has largely been unregulated in California,
despite its significance in meeting California’s water needs. In the
past, groundwater water management has been voluntarily
practiced in a small subset of basins under AB3030, local
ordinances, management by Special Act Districts, or mandated
under court decree in adjudicated areas because of water rights

FIGURE 8 | Owens Valley case study comparison of (A) long-term groundwater level trends (1985–2019), (B) shallow groundwater levels from monitoring wells
nearby GDEs with long-term decreasing trends, (C) shallow groundwater levels from monitoring wells nearby GDEs with long-term increasing trends, and (D) shallow
groundwater levels from monitoring wells nearby GDEs with no significant long-term trends.
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FIGURE 9 | Mojave River Valley case study comparison of (A) long-term groundwater level trends (1985–2019), (B) shallow groundwater levels from monitoring
wells nearby GDEs with no significant long-term trends, (C) shallow groundwater levels from monitoring wells nearby GDEs with long-term increasing trends, and (D)
shallow groundwater levels from monitoring wells nearby GDEs with long-term decreasing trends.

FIGURE 10 | Long term (1985–2019) modeled groundwater level trends for GDEs within SGMA regulated basins, adjudicated basins, and non-SGMA basins (A)
by GDE count (B) and total GDE area (C).
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disputes. However, in 2014, California took a major step towards
achieving sustainable groundwater by passing the Sustainable
Groundwater Management Act (SGMA), which requires a subset
of basins to develop groundwater sustainability agencies and
groundwater sustainability plans to achieve sustainability
within a 20-years planning horizon. While only 18% of the
515 groundwater basins fall under these SGMA regulations
(Figure 10A), these 94 basins account for most of the
groundwater pumping, population, and irrigated acres across
the state’s groundwater basins [California Department of
Water Resources (CDWR), 2021] and are assumed to be the
basins most susceptible to chronic groundwater level declines and
other undesirable results (e.g., land subsidence, seawater
intrusion, surface water depletions).

Our results show that within SGMA basins, half of the GDEs (n �
25,895 GDE polygons) exhibited significant long-term declining
groundwater levels, compared to 36% of GDEs in non-SGMA
(n � 12,665 GDE polygons) and Adjudicated (n � 1,986 GDE
polygons) basins (Figure 10B). While the number of GDEs with
declining groundwater trends is nearly twice asmuch in SGMAversus
non-SGMA basins, the total acreage of GDEs exhibiting declining
groundwater trends in non-SGMA basins is double (2,196 km2) that
of GDEs with declining trends within SGMA basins (1,156 km2). One
explanation for this juxtaposition is that GDEs are more fragmented
and on average smaller in area within SGMA basins (0.05 km2 per
GDE) than in the non-SGMA basins (0.16 km2 per GDE). Higher
GDE fragmentation within the SGMA basins are due to more than a
century of native habitat conversion to agriculture and urban land
uses, streamflow alteration, and groundwater depletion (Moyle and
Williams, 1990; Seavy et al., 2009).

Under SGMA, local agencies are required to bring
groundwater basins into balance and prevent adverse impacts
to GDEs (State of California, 2014; State of California, 2016).
SGMA specifically requires that groundwater sustainability
agencies identify and consider GDEs in their groundwater
sustainability plans. To do this effectively, agencies need to
understand groundwater conditions under GDEs (Rohde et al.,
2017, 2018). However, many agencies lack sufficient shallow
monitoring well data in and around GDEs to properly map
and consider groundwater impacts to GDEs. To fill this
critical data gap, we created a web-based application to share
the groundwater trends from our model. This freely available tool
is called “SAGE (Shallow Groundwater Estimation Tool)” and
provides a user-friendly interface to visualize and download
groundwater level trend data (https://igde-work.earthengine.
app/view/sage). The intention of this tool is to help flag areas
with consistent declines and inform sustainable groundwater
management across the state. In the absence of monitoring
well data, groundwater managers can use the GDE level trend
data from SAGE to identify hotspots of shallow groundwater
decline near important GDEs, evaluate whether groundwater
conditions are impacting ecosystems, and prioritize new well
installation locations. If the declines are confirmed and the
ecosystems are in decline (e.g., crown dieback, recruitment
failure, mortality, invasive species abundant), steps should be
taken to 1) reduce groundwater pumping that affects the shallow
aquifer, and/or 2) increase recharge to the shallow aquifer.

The most concerning trends from our analysis are the
widespread declining groundwater trends in areas not
regulated by SGMA. These results show that despite lower
populations and lower pumping rates, shallow groundwater
levels are declining nearly twice as much as in SGMA
regulated areas. The vast majority of these non-SGMA areas
are in Southeastern California’s desert basins, where precipitation
is low and surface water bodies are primarily groundwater-fed
springs that are disconnected from the large order streams
draining snowmelt from the Sierras. Without groundwater
management regulations in place, GDEs and the critical status
species that reside within these basins, which are often entirely
dependent upon groundwater and endemic to the region, remain
vulnerable to ongoing groundwater level declines resulting from
unfettered pumping (Rohde et al., 2019; Thompson et al., 2021).
Given these trends, sustainable management guidelines should be
considered statewide to conserve these critical ecosystems. In the
absence of groundwater monitoring well data, our results can be
used to help state and local water agencies fill in data gaps of
shallow groundwater conditions, evaluate potential effects on
GDEs, and improve sustainable groundwater management
policy in California.
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