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Soil erosion is one of the serious environmental threats in the Himalayas, primarily
exacerbated by the steep slopes, active tectonics, deforestation, and land system
changes. The Revised Universal Soil Loss Equation was employed to quantify soil
erosion from the Vishav watershed in the Kashmir Himalaya, India. Topography and
land use/land cover (LULC) are important driving factors for soil erosion. Most often, a
Digital Elevation Model (DEM) is used in erosion models without any evaluation and testing
which sometimes leads to erroneous estimates of soil erosion. For the best topographic
characterization of the watershed, four publicly available DEMs with almost identical
resolution (∼30m), were evaluated. The DEMs were compared with GPS
measurements to determine the most reliable among the tested DEMs for soil erosion
estimation. Statistical evaluation of the DEMs with GPS data indicated that the CARTO
DEM is better with root mean square error (RMSE) of 18.2 m than the other three tested
DEMs viz., Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER),
Shuttle Radar Topography Mission (SRTM), and Advanced Land Observing Satellite
(ALOS). Slope length and slope steepness factors were computed from the DEMs.
Crop cover and management factors were generated from the satellite-derived LULC.
Moreover, rainfall data of the nearest stations were used to compute rainfall erosivity and
soil erodibility factor was derived from the soil texture data generated from 375 soil
samples. The simulated erosion estimates from SRTM, ALOS, and CARTO DEMs showed
similar spatial patterns contrary to the ASTER estimates which showed somewhat different
patterns and magnitude. The mean erosion in the study area has almost doubled from 2.3
× 106 tons in 1981 to 4.6 × 106 tons in 2019 mainly driven by the anthropogenic LULC
changes. The increased soil erosion is due to the degradation of forest cover, urbanization,
steep slopes, and land system changes observed during the period. In absence of the
observations, the simulated soil erosion was validated with the land degradation map of
the watershed which showed a good correspondence. It is hoped that the results from this
work would inform policymaking on soil and water conservation measures in the data-
scarce mountainous Kashmir Himalaya.

Keywords: DEM (digital elevation model), soil erosion, LULC (land use land cover), RUSLE, USLE, GIS—geographic
information system, remote sensing, GPS—global positioning system

Edited by:
Dario Gioia,

Istituto di Scienze del Patrimonio
Culturale (CNR), Italy

Reviewed by:
Subodh Chandra Pal,

University of Burdwan, India
Antonio Minervino Amodio,

Istituto di Scienze del Patrimonio
Culturale (CNR), Italy

*Correspondence:
Shakil Ahmad Romshoo

shakilrom@kashmiruniversity.ac.in

Specialty section:
This article was submitted to

Quaternary Science, Geomorphology
and Paleoenvironment,
a section of the journal

Frontiers in Earth Science

Received: 23 September 2021
Accepted: 17 November 2021
Published: 23 December 2021

Citation:
Romshoo SA, Yousuf A, Altaf S and
Amin M (2021) Evaluation of Various

DEMs for Quantifying Soil Erosion
Under Changing Land Use and Land

Cover in the Himalaya.
Front. Earth Sci. 9:782128.

doi: 10.3389/feart.2021.782128

Frontiers in Earth Science | www.frontiersin.org December 2021 | Volume 9 | Article 7821281

ORIGINAL RESEARCH
published: 23 December 2021

doi: 10.3389/feart.2021.782128

http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2021.782128&domain=pdf&date_stamp=2021-12-23
https://www.frontiersin.org/articles/10.3389/feart.2021.782128/full
https://www.frontiersin.org/articles/10.3389/feart.2021.782128/full
https://www.frontiersin.org/articles/10.3389/feart.2021.782128/full
https://www.frontiersin.org/articles/10.3389/feart.2021.782128/full
http://creativecommons.org/licenses/by/4.0/
mailto:shakilrom@kashmiruniversity.ac.in
https://doi.org/10.3389/feart.2021.782128
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2021.782128


1 INTRODUCTION

Soil erosion is a serious global concern mainly caused by land
cover changes, landslides, the collapse of man-made terraces,
steep slopes, and high-intensity rainfall (ICIMOD, 1994). The
erosion rates are very high in Asia, Africa, and South America
varying from 30 to 40 Mg ha−1 year−1 (Barrow, 1991). In India,
Narayana and Babu (1983) have estimated that ∼5,334 million
tons at the rate of 16.4 t/ha−1 year−1 of soil are being detached
annually of which 10% is deposited in reservoirs and 29% is
transported to the sea by the rivers (Narayan and Babu, 1983).
Soil erosion has always been a serious concern in the fragile
mountainous Himalayan region (Jain et al., 2001) with an
increasing tendency in the future (Pal et al., 2021). The impact
of the depleting forest and pasture cover on the steep slopes in
tandem with the high seismicity have been the major factors
driving the soil erosion and sedimentation in the Himalayan
headwaters (Jain et al., 2001; Dar et al., 2014; Romshoo et al.,
2016). Soil erosion, especially by water, is a serious problem in
watersheds and erodes fertile soil from catchment areas and
deposits sediments in rivers, lakes, and reservoirs (Pal et al.,
2021). Moreover, the excess deposition of sediments due to
erosion in rivers and lakes reduces their natural storage
capacity and retention which ultimately leads to bank overflow
and increases the probability of flooding (Meraj et al., 2018).
Apart from these, the erosion processes also lead to the high loss
of fertile soil leading to the dwindling of cultivable lands,
deterioration of water quality, loss of flora and fauna in rivers
and lakes by pollution, eutrophication, and turbidity (Lal, 1998;
Time, 2004).

There are numerous methods used for the assessment of soil
loss from varying land units (Morgan and Nearing, 2002).
Various methods have been used to assess the soil loss,
including empirical erosion models (Boggs et al., 2001; Cerri
et al., 2001), a ranking method based on selected indicators such
as percentage of bare ground, aggregate stability, organic carbon,
percentage clay, and bulk density (Shakesby et al., 2002), and
qualitative erosion risk mapping based on the combination of five
factors (geology, soil, relief, climate, and vegetation) (Vrieling
et al., 2002). The soil erosion estimation in the GIS environment
has become a useful and common tool the world over and uses
remotely sensed inputs (Kalambukattu and Kumar, 2017; Amin
and Romshoo, 2019; Romshoo et al., 2020; Xu et al., 2021).
However, little work has been carried out on the uncertainties
associated with the use of input parameters in erosion estimation.
The uncertainties in the model prediction can be efficiently
minimized with the inclusion of relevant input parameters
related to soil erosion (Pal et al., 2021).

The topography, LULC, drainage system, soil properties, and
climate parameters are the important factors governing the soil
erosion processes (Kolli et al., 2021). The topography in digital
format is represented by DEM which is a two-dimensional array
of height values representing the varying elevation of any terrain
(Zheng et al., 2021). There are several ways of acquiring the
DEMs and one of the most common sources is the satellite stereo
images (Jenson, 1991). The other techniques and tools include
topographic maps, aerial photography, laser scanning, global

positioning systems (GPS), and Interferometric Synthetic
Aperture Radar (InSAR) (Sefercik et al., 2007). Different types
of DEMs possess different levels of accuracies and errors typically
varying with terrain, sensor types, algorithms, grid spacing, and
other characteristics (Thompson et al., 2001; Sharma et al., 2010).

Most often, the publicly available Digital Elevation Model
(DEM) is used in erosion models without any evaluation and
testing which often leads to erroneous estimates of soil erosion.
Numerous studies have shown that the topographic and
hydrological attributes derived from DEM depend upon the
quality of the DEM (Chang and Tsai, 1991; Florinsky, 1998;
Kienzle, 2004; Arabameri et al., 2021). Therefore, the right choice
of the most reliable among the publicly available DEMs is
important to minimize the errors related to the estimation of
topographic attributes and the processes thereof (Chowdhuri
et al., 2021). This study, therefore, evaluated the robustness of
the four publicly available DEMs with similar resolutions for
providing the precise representation of the topographic
parameters for improved estimation of the soil erosion under
changing LULC from 1981 to 2019 in one of the topographically
complex watersheds in the Kashmir Himalayan region viz.,
Vishav using multi-source DEMs, climate, soils, and LULC
parameters. In absence of observed erosion data in the data-
scarce study area, a typical situation throughout the entire
Himalayas, the model estimates were validated with the
remotely-sensed extensively field-validated land degradation
assessment in the watershed.

2 STUDY AREA

The study was carried out in the Vishav watershed of the Kashmir
Himalayan region, India. The watershed is located between the
33°20′N to 33°50′N latitudes and 74°40′E to 75°50E longitudes
(Figure 1). The watershed comprises south-western hilly areas in
the Pir Panjal range (Raza et al., 1978). The topographically
complex watershed covers an area of 994 km2 which is drained by
the Vishav River originating from Kousarnag Lake, situated at
3,500 m. The river descends up to 2,407 m at Sangam, the
confluence point with Jhelum, one of the 24 major tributaries
of the Indus. The Vishav, a high-gradient tributary upstream of
the Jhelum, drains the northern slopes of the Pir Panjal and has a
long river course of about 80 kmwith a dendritic drainage pattern
in the higher reaches and braided pattern towards the planar
areas (Romshoo et al., 2017). The peculiar geomorphic setup of
the watershed makes it prone to recurrent flash floods during
summer (Romshoo et al., 2017). The elevation of the watershed
ranges from 1,400 to 4,600 m and comprises seven sub-
watersheds and 74 micro-watersheds. The higher reaches of
the watershed are mostly covered by exposed rocks and
perennial snow while the middle transition zone is covered
by forests and scrubs. The planar areas of the watershed are
mostly under paddy cultivation, horticulture, and settlements.
The soil texture of the study area varies from sandy to loamy
with generally high organic matter and a pH ranging from
acidic to slightly alkaline in the range of 5.0–8 (Mahapatra
et al., 2000).
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The watershed endures a varied climate as a result of its terrain
with a dramatic decrease in the temperature as we approach the
river source at higher altitudes. The watershed is characterized by
moderate summers and bitterly cold winters, and it is classed as a
temperate alpine climate zone. The watershed mostly receives an
average annual precipitation of 1,057 mm from western
disturbances, but occasionally also from the southwestern
monsoons during a brief period in summer (Zaz et al., 2019).
The average yearly snowfall is approximately 670 mm. The mean
temperature during the hottest month (July) is 24.6°C and that of
the coldest month (January) is 1°C (Zaz and Romshoo, 2013).

Various tectono-geomorphic features, viz, scarp faces, river
terraces, triangular facets, knick points, dissected hills, ridges,
joints, faults, landslides, etc. are present in the watershed (Wadia,
1931). The watershed is tectonically active and as a result the
Vishav River has an asymmetric shape lying more towards the
right of the watershed (Figure 1). The gradient of the tributary is
very steep with numerous Knick points observed all along its
course (Figure 1). Some of the Knick points are very active and
have played an important role in the river channel shifting and
the consequent erosion of the river banks.

The geology of the watershed comprises of the rocks of
Agglomeratic slate, Panjal volcanics, Carbonaceous shale,
Triassic Limestone, Hirpur Formation, and recent alluvium
which varies from Upper Carboniferous to recent in age
(Bhushan et al., 1972). Agglomeratic slates are composed
chiefly of quartz. Panjal volcanics of permo-carboniferous age

cover the major part of the watershed and comprise augites,
andesites, and basalts. Carbonaceous shale comprises fossiliferous
shale. Triassic limestones are highly fossiliferous in nature.
Hirpur formation comprises unconsolidated sediments of
Pleistocene age and preglacial in origin with an estimated
thickness of ∼1,700 m. The Recent alluvium is deposited at a
place along the rivers and streams.

3 MATERIALS AND METHODS

3.1 Datasets Used
The datasets used in this study include four DEMs from
various sources viz., Advanced Space Borne Thermal
Emission and Reflection Radiometer- Global Digital
Elevation Model (ASTER-GDEM), Shuttle Radar
Topography Mission (SRTM), Advanced Land Observing
Satellite (ALOS), and CARTO-DEM for the topographic
characterization. The LULC was generated from the Landsat
satellite imagery dated 1981/10/24 and 2019/09/08. Moreover,
the rainfall data of the nearest stations to the watershed, viz.,
Qazigund, Kokernag, Pahalgam, and Srinagar stations from
1981 to 2010 was procured from the Indian Meteorological
Department for use in this study. The soil texture data were
generated from the analysis of the 375 soil samples collected
from the watershed. Other data, viz., high-resolution Google
Earth images, and ground truth was used for the validation of

FIGURE 1 | (A) Location of the study area in India; (B) Study area (Vishav watershed); (C) Longitudinal river profile of Vishav river.

Frontiers in Earth Science | www.frontiersin.org December 2021 | Volume 9 | Article 7821283

Romshoo et al. Evaluation of Various DEMs

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


the LULC. The details of the datasets used in this study are
provided in Table 1.

3.2 Soil Erosion Modelling
The geospatial modeling in a GIS environment is often used for
the assessment of various land surface processes due to its ability
to integrate inputs from various sources (Moore et al., 1991;
Maidment and Djokic, 2000). For the soil erosion estimation,
various distributed and empirical models have been developed
and applied at various spatial scales like hill slopes, field size,
catchment, and basin level (Altaf et al., 2014; Romshoo et al.,
2016; Borrelli et al., 2021). Among the globally recognized
empirical models for soil erosion estimation, the Universal Soil
Loss Equation (USLE), theModified Universal Soil Loss Equation
(MUSLE), and the Revised Universal Soil Loss Equation (RUSLE)
have been commonly used the world over (Foster et al., 2003;
Hernandez et al., 2012; Saha et al., 2018; Djoukbala et al., 2019).
These models are known to predict soil erosion at the watershed
scale due to their minimal data requirements and ease of
application in the GIS environment. With the additional
research, experiments, use of remotely sensed data, and
computational advancement which became available over time,
the improvement of the USLE led to the development of Revised
Universal Soil Loss Equation which includes some new and
revised iso-erodent maps, a time-varying approach for soil
erodibility factor, a subfactor approach for evaluating the
cover-management factor, a new equation to reflect slope
length and steepness, and new conservation-practice values
(Renard et al., 1997). The model not only provides an
estimation of soil loss at the plot scale but also presents the
spatial distribution of the soil erosion (Renard et al., 1991).
Further, the model is simple, requires fewer data and time to
run, and together with the convenience to be used in GIS, the
RUSLE is a widely used empirical soil erosion model worldwide
(Renard et al., 1991; Bartsch et al., 2002; Dabral et al., 2008;
Shinde et al., 2010) and is therefore well suited to be used in the
data-scarce mountainous watersheds. The detailed methods
regarding the generation of various input parameters, model
operation, and accuracy evaluation of the input parameters
and validation of the model are briefly discussed in the
following sections.

The RUSLE calculates the average annual rate of soil loss (A)
in the watershed using the input parameters which are generated,
stored, and analyzed in the GIS environment. All the parameters
of the RUSLE were converted into raster layers, overlaid, and then
multiplied together using the following equation:

A � R ×K × LS × C × P (1)

where, R �Rainfall erosivity factor;K� Soil erodibility factor; LS �
Slope length and slope steepness factor; C � Cover and
management factor; and P � Supporting conservation practice
factor. The soil loss output was categorized into five erosion
classes following the classification system proposed for soil loss
(Belayneh et al., 2019). The five soil erosion severity classes are;
very slight (0–5 t ha−1 year−1), slight (5–15 t ha−1 year−1),
moderate (15–30 t ha−1 year−1), severe (30–50 t ha−1 year−1),
and very severe (>50 t ha−1 year−1).

3.3 Revised Universal Soil Loss Equation
Input Parameters
3.3.1 Land Use and Land Cover
LULC, by affecting the holding capacity of the soils (Sharma et al.,
2011), has a profound impact on soil erosion. Land cover with high
root biomass will have an impeding impact on the erosion while
the human-induced land-use changes exacerbate soil erosion
(Gyssels and Poesen, 2003). The Landsat remote sensing data of
1981 and 2019 were used for LULC data generation (Lillesand
et al., 1987). Spectral signatures of 13 major LULC classes up to
level II were generated using visual image interpretation (Fu, 1976).
An extensive field survey was conducted and 311 ground-truth
sites for various LULC types were identified and verified with the
support of the high-resolution Google Earth satellite images to
assess the accuracy of the classified LULC map for the year 2019.
The accuracy assessment of various LULCwas done using the error
matrix. The accuracy assessment provides overall accuracy and
overall Kappa (κ). Overall accuracy, the most common error
estimate, summarizes the accuracy of a land cover classification,
while the Kappa coefficient (K) is the measure of agreement of
accuracy. It provides a difference measurement between the
observed agreement of two maps and agreement that is
contributed by chance alone.

TABLE 1 | Datasets used in this study.

S. No. Parameters Data source Year Resolution (m) Sources

1 Soil type Soil map — Interpolated to 30 m Field sampling
2 LULC Landsat 1981 and 2019 60 and 15 http://earthexplorer.usgs.gov/

(Resampled to 30 m)
3 LS and slope DEMs

ALOS 2016 30 https://www.eorc.jaxa.jp
ASTER 2011 30 http://earthexplorer.usgs.gov/
CARTO 2014 30 http://bhuvan.nrsc.gov.in/bhuvan_

links.php
SRTM 2014 30 http://earthexplorer.usgs.gov/

4 Precipitation Annual
Rainfall

1980–2010 3 Neighboring stations of Srinagar, Pahalgam, Kokernag and
Qazigund

Indian Meteorological Department (IMD)
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3.3.2 Cover and Management Factor (C Factor)
The C-factor accounts for the effect of cropping andmanagement
practices on soil erosion (Wischmeier and Smith, 1978) and is
derived from LULC which has a direct impact on the rate of
erosion (Roose, 1977) and directly impacts several land surface
processes including surface hydrology (Romshoo et al., 2011;
Badar et al., 2013). The C-factor indicates how the conservation
and management plans will affect soil loss. The C-factor reduces
the soil loss according to the effectiveness of vegetation and
mulch at preventing detachment and transport of soil particles
during a rainfall event. Vegetation cover protects soil by
dissipating the raindrop energy before it reaches the soil
surface. The C-factor values vary between 0 and 1 based on
the type of LULC. The C-factor values were calculated from the
literature based on the LULC generated for the watershed in
this study.

3.3.3 Supporting Conservation Practice Factor (P
Factor)
The value of P-factor depends on vegetation type, stage of growth,
and cover percentage as soil loss is very sensitive to vegetation
cover (Renard et al., 1997). It is the ratio of soil loss from lands
with contouring and/or strip cropping to that with straight row
farming up-and-down slope. The P-factor varies between 0 and 1
based on the type of land cover with the highest value of 1
assigned to the areas covered by bare soil, built-up areas, and bare
rocks where the possibility of erosion rate is very high due to lack
of conservation practices. While lower P-factor values were
assigned to the rest of the land cover types which represent
vegetal cover with some conservation measures in practice.
P-factor values were generated from the available literature
with the highest value assigned to the areas with no
conservation practice and the lowest value of 0.6 was assigned
to agriculture in the planar areas of the watershed with moderate
slopes and certain conservation practices like contour farming
etc. were already in place.

3.3.4 Rainfall Erosivity Factor (R)
The rainfall erosivity factor (R) is a climate factor used to
determine the impact of rain on soil erosion (Wischmeier and
Smith, 1978). It has been observed that surface runoff is one of
the major reasons for the movement of sediments from the
topsoil (Saha et al., 2020). The R-factor is calculated from the
long-term summation of annual rainfall energy and maximum
30 min intensity rainfall (Renard et al., 1997; Morgan, 2009).
It is one of the important factors in any soil erosion model due
to its ability to detach soil particles from one another. Rainfall
triggers erosion by the action of runoff and rainfall on the soil
surface in MJ mm ha−1 h−1 yr−1. An inverse distance
weighting (IDW) interpolation method was used to
generate an annual rainfall raster map from four
neighboring observation stations around the Vishav
watershed. The distribution of the rainfall erosivity factor
was calculated using Eq. 2 (Singh et al., 1981). Mean annual
precipitation data from 1981 to 2010 was used for the
calculation of R-factor by keeping in view the fact that

there are no significant changes in precipitation in the
region (Murtaza and Romshoo, 2017).

R � 79 × 0.363 × r (2)

where R is the rainfall erosivity and r is the annual average rainfall
in millimeters.

3.3.5 Soil Erodibility Factor (K)
The soil erodibility factor (K) signifies the susceptibility of
different soils to erosion (Renard et al., 1997) and is a
function of the vulnerability of soil to erosion, the
transportability of the sediment, the amount of rainfall, and
the rate of runoff. Generally, soils with higher permeability,
high levels of organic matter, and improved soil structure have
a greater resistance to erosion than the soils having high silt
content (Meraj et al., 2018). Erodibility factor map of the study
area was generated from the interpolated soil data (Khan S.,
2008), based on 375 soil samples collected from the field. The soil
erodibility factor (K) was calculated using percent of sand (ms),
clay (mc), silt (msilt), organic matter (orgc), soil permeability class,
and soil structure class as follows (Williams, 1995):

K � 0.1317 × fcsand × fcl−si × f0rgc × fsand (3)

where,

fcsand � {0.2 + 0.3p exp[ − 0.0256pmsp(1 − msilt

100
)]} (4)

fcl−si � msilt

mc −msilt
(5)

forgc � 1 − 0.25porgC
orgC + exp[3.72 − 2.95porgC] (6)

fsand � 1 − 0.70p(1 − ms
100)(1 − ms

100) + exp[−5.51 + 22.9]p(1 + ms
100) (7)

3.3.6 Slope Length and Slope Steepness Factors (LS
Factor)
Topography is an important factor influencing soil erosion. The
slope length factor L computes the effect of slope length on
erosion and the slope steepness factor S computes the effect of
slope steepness on erosion. Values of L and S are relative and
represent how erodible a parcel of land with the specific slope
length and steepness is relative to the reference plot. The LS factor
is computed on the basis of the constant slope exponent (m � 0.5)
using the Eq. 8 (Morgan, 2009) and the LS factor estimation was
repeated for all the four DEMs.

LS � [QaM
22.13

]y

p(0.065 + 0.045pSg + 0.0065pS2g); (8)

where LS is slope length and slope steepness factor, Qa is flow
accumulation grid, Sg is grid slope (%), M is grid or pixel size
(x−y) and y is a dimensionless supporter that assumes the value
from 0.2 to 0.5. The value of y varies from 0.2 to 0.5 depending on
the slope and slope gradient value, 0.5 is used for the slopes
exceeding 4.5%, 0.4 for 3–4.5% slopes, 0.3 for 1–3% slopes, and
0.2 for slopes less than 1%.
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3.4 Evaluation of Digital Elevation Models
The selection of an appropriate DEM for studying land surface
processes plays a very important role in minimizing the errors
associated with the imprecise topographic characterization
extracted from a DEM (De Vente et al., 2009; Coveney and
Fotheringham, 2011). In this study, the vertical accuracy of the
four-open source DEMs, with the horizontal resolution of ∼30 m
viz., ALOS, ASTER, CARTO, and SRTM, was evaluated using the
GPS data from 176 ground control points collected from across
the watershed (Figure 2). For that purpose, the differences
between the elevation values of the DEM and GPS
measurements were compared at a pixel level. The GPS
measurements were collected using the handheld GPS model-
Trimble GCX 6000, mostly from the planar part of the watershed
within the elevation range of 1,500–2,200 m. The GPS
measurements were projected to the WGS84 horizontal datum
in the UTM coordinate system zone 43°N. The point
measurements were overlaid upon the four DEMs in order to
extract corresponding DEM values for statistical evaluation. The
DEM evaluation was done using different statistical measures like
mean bias error (Willmott., 1982), root mean square error (Xue
et al., 2013), and Nash-Sutcliffe efficiency (Nash and Sutcliffe.,
1970). Mean bias error tells us whether the set of measurements
consistently underestimate or overestimate the true value and is
expressed by the following equation:

MBE � 1
n
∑n

i�1(pi − oi) (9)

where oi is the observed value and pi is the predicted value.
RMSE indicates how far the observed values differ from the

true value (Mukherjee et al., 2012) and is expressed as follows:

RMSE �
������������������∑n

I�1(Xobs,i −Xmodel,i)2
n

√
(10)

where Xobs,i is the observation value and Xmodel,i is the
forecast value.

Nash-Sutcliffe efficiency (NSE) was used to determine the
match between the GCPs and the DEM values. The NSE value � 1
corresponds to a perfect match between the observed and
assumed value (McCuen et al., 2006). NSE is expressed as follows:

NSE � 1 − ∑n
i�1(OBSi − SIMi)2∑n
i�1(OBSi − OBS)2 (11)

where OBSi is the observation value and SIMi is the forecast value
and OBS is average of observation values.

Apart from the above statistical evaluation, a visual assessment
of the erosion pattern and distribution derived from the DEMs
was done by comparison with the erosion features and patterns
present on the high-resolution satellite data.

3.5 Model Output Validation
Validation of the soil erosion estimated from the RUSLE model is
important to ascertain the accuracy of the model output.
However, due to the lack of soil erosion observations in the
Himalayas, we are constrained to quantitatively assess the
accuracy of the soil erosion estimates from the RUSLE model.
Therefore, the model output was evaluated and correlated with
the land degradation indicators prepared at 1:30 k scale and
generated using three-season Landsat-8 OLI data for the year-
2017–18 (ISRO, 2016; 2018). The land degradation map showing
vegetal degradation, water erosion, and waterlogging at three

FIGURE 2 | Distribution of GPS measurements in the study area used for DEM evaluation.
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FIGURE 3 | LULCmap of the study area during (A) 1981 and (A9) 2019; Crop management factor (C) map during (B) 1981 and (B9) 2019; Conservation practices
factor (P) map during (C) 1981 and (C9) 2019.
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different severity levels, was correlated with the modeled soil
erosion maps.

4 RESULTS AND DISCUSSION

4.1 Model Input Parameters
4.1.1 Land Use and Land Cover
The spatial distribution of LULC observed in the study area
during 1981 and 2019 is shown in Figures 3A,A9 and the data is
provided in Table 2. Analysis of the data shows that there are
significant changes in LULC over the study area during the last
38 years. The maximum LULC change is observed in agriculture
which has reduced from 38% in 1981 to 9.1% in 2019.
Correspondingly, the horticulture lands show an increasing
trend from 7.6% in 1981 to 26.6% in 2019. Forest land has
decreased from 22.7% in 1981 to 13.7% in 2019 which has led to
the expansion of degraded forests from just 0.9–10.8% during the
same period. The built-up area in the watershed has increased
from 0.4 to 3.9% during the period. Barren land (0.3%) shows no
significant change between the two dates. Plantation shows an
increasing trend from 2.7% in 1981 to 9% in 2019. The river bed
shows a slight increase from 2.3 to 2.4% during the period. The
watercourses have shrunk from 0.9% in 1981 to 0.4% in 2019.
However, the changes in the water could be due to the
fluctuations in the water levels between 1981 and 2019 as the
streamflow has significantly depleted in the Jhelum over time
(Romshoo et al., 2015). Scrublands show a slight increase from
12.8% in 1981 to 13.7% in 2019. Pasturelands decreased in extent
from 2% in 1981 to 1.1% in 2019. For the accuracy assessment of
the LULC of the year 2019 using 311 sample points, the overall
accuracy of the LULC delineated from 2019 satellite data is 91%
and the Kappa coefficient is 0.85.

4.1.2 Cover and Management Factor (C)
Crop management factor represents the relative effectiveness of
soil and crop management systems in preventing soil loss (Roose,
1977) and is considered as the most important factor in
management programs in erosion vulnerable areas for proper

land practices (Teh, 2011; Saha et al., 2021). Figures 3B,B9 shows
the C factor distribution derived from the LULCmap of the study
area in 1981 and 2019. The C-factor values spatiotemporally
varied due to the variability of the LULC in the watershed, such as
the higher C factor values were often widespread along the valley
plains in 1981, and then declined due to the decreased agricultural
activities in the year 2019. Nevertheless, the values in the
mountainous areas, tended to decrease, resulting from the
presence of forests and semi-natural areas like pasturelands. In
the case of the degraded forests and scrublands, the increased soil
erosion risk was observed, primarily, because the P-factor values
for these LULC classes have typically shown a decreasing trend
over the years due to their Spatio-temporal variability. The
resulting maps illustrate an increasing trend in artificial
surfaces and horticulture and a decreasing trend in agricultural
areas and forests.

4.1.3 Supporting Conservation Practice Factor (P)
The factor represents the effect of practices that reduce the runoff
rate and check the soil loss (Stone and Hilborn, 2000). Figures
3C,C9 shows the P-factor distribution estimated from the LULC
maps of 1981 and 2019. P-factor values vary from 0 to 1 where the
highest value is allocated to LULC zone with no management
practices (scrub and barren land) and the lowest values are
assigned to LULC type like built-up-land and agriculture with
contour cropping. More effective the conservation and
management practices, the lower the p-value.

4.1.4 Rainfall Erosivity Factor (R-Factor)
The spatial distribution of the rainfall erosivity factor (R) is
provided in Figure 4A. It was observed that the values of R in
the Vishav watershed range from 457 to 512 MJ mm/ha-h-yr.
Around 300 km2 (30%) of the Vishav watershed has R ranging
from 495 to 512 MJ mm/ha-h-yr, 407 km2 (41%) is covered by the
range 477–494 MJ mm/ha-h-yr and 289 km2 (29%) has R ranging
from 457 to 476 MJ mm/ha-h-yr. Since the R-factor is a function
of the amount of rainfall, therefore, the more the rainfall the more
soil will get detached from the land (Wischmeier and Smith,
1978).

TABLE 2 | LULC change observed from 1981 to 2019 in the study area.

Class name Area (ha) Overall variation (%)

1981 1981 (%) 2019 2019 (%)

Agriculture 37,292 38.4 8,844 9.1 −29.3
Barren 266 0.3 246 0.3 0
Exposed rock 7,444 7.7 2,180 2.2 −5.5
Pasture 1930 2.0 1,068 1.1 −0.9
Degraded forest 855 0.9 10,492 10.8 9.9
Plantation 2,584 2.7 8,760 9.0 6.3
Snow 1,483 1.5 6,551 6.7 5.2
River bed 2,270 2.3 2,325 2.4 0.1
Forest 22,083 22.7 13,302 13.7 −9
Scrub 12,437 12.8 13,347 13.7 0.9
Horticulture 7,343 7.6 25,897 26.6 19
Built up 381 0.4 3,764 3.9 3.5
Water 855 0.9 430 0.4 −0.5
Total 97,223 100 97,205 100 0
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4.1.5 Soil Erodibility Factor (K)
The distribution of the soil erodibility factor (K) is provided in
Figure 4B. It is observed that around 37% of the watershed is
covered by sandy soils which are prone to erosion. K-factor varied
from 0.063 to 0.361 T ha−1 yr−1. The values of K-factor decreased
from plains to the higher altitudes due to the presence of rocky
outcrops and seasonal snow cover at high altitudes. K-factor was
found to be lower in the cultivated areas due to the application of
chemical fertilizers and single-crop cultivation activity (Ayoubi
et al., 2012).

4.1.6 Slope Length and Slope Steepness Factor (LS
Factor)
The slope of the study area ranges from 0 to 72.8° (324.3%) with
the steepest slopes located in the south-western part of the
watershed which is usually susceptible to soil erosion
compared to the flatter areas on the northern side. LS factor
values were also higher along the flow path, with a rapid
increase at zones of flow concentration. The LS value was
estimated by using a multiple flow direction approach which
showed significant variability among different DEMs used in

this study. The higher values of the LS factor characterize steep
slopes (Moore and Wilson, 1992; Prasannakumar et al., 2012)
which were found on the higher south-western reaches of the
watershed facing severe erosion problems. The CARTO,
SRTM, and ALOS DEMs possess comparably similar LS
factor values as shown in Table 3. It is pertinent to
mention that all other parameters of the RUSLE equation
were kept constant while the LS factor varied with the
changing DEM to determine the impact on DEM quality on
soil erosion.

4.2 Evaluation of Digital Elevation Models
The DEMs were compared with the 176 GPS measurements in
terms of the elevation and the absolute differences in elevation
were calculated and evaluated using various statistical measures
(Table 4). The Root Mean Square Error (RMSE) of CARTO,
ASTER, SRTM, and ALOS DEMs was 18.2, 35, 35.7, and 36.9 m
with the mean bias of −9.11, 33.65, 32.33, and 30.88 m,
respectively. The CARTO DEM showed a negative bias
which suggests underestimation of the elevation values but
the other three DEMs showed a positive bias,
i.e., overestimation of the elevation values. The RMSE for
ALOS, SRTM, and ASTER observed in this study is higher
compared to that reported in other studies (Team, 2009; Jarvis

FIGURE 4 | (A) Rainfall erosivity factor (R) map of the study area; (B) Soil erodibility factor (K) map of the study area.

TABLE 3 | Mean LS-factor values for different slope categories derived from
different DEMs in the study area.

Slope˚ Mean LS

ALOS ASTER CARTO SRTM

0–3 0.01 0.00 0.00 0.00
3–15 0.28 0.09 0.24 0.21
15–25 0.88 0.40 0.94 0.90
25–35 1.40 0.63 1.49 1.49
>35 1.92 0.89 2.07 2.41

TABLE 4 | Statistical evaluation of different DEMs on basis of comparison with the
GPS measurements over the study area using ground control points.

ALOS DEM ASTER DEM CARTO DEM SRTM DEM

MBE (m) 34.1 30.8 −8.2 32.5
RMSE (m) 36.9 35 18.2 35.7
NASH 0.95 0.96 0.99 0.95
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et al., 2012; Takaku et al., 2014). In the case of the NSE, the GPS
measurements showed the best agreement with the elevation
values in case of the CARTO DEM followed by the ASTER,
SRTM, and ALOS DEMs yielding NSE values of 0.99, 0.96, 0.95,
and 0.95, respectively.

4.3 Soil Erosion Estimates
4.3.1 Impact of Digital Elevation Model on Soil Erosion
The soil erosion estimates based on the use of four DEMs vary
significantly due to the varying topographic characterization
provided by the DEMs, mainly a variation of slope gradient and
therefore the variation in the LS factor. It was observed that the
erosion estimate derived from the CARTO, SRTM, and ALOS
DEMs have a similar spatial pattern while the soil erosion
estimates derived from the ASTER DEM show a
comparatively slightly different pattern. This variation in the
amount and distribution of erosion from the four DEMs is due
to the inherent errors associated with the DEMs observed both
in the planar and undulating areas of the watershed. As evident
from Figure 5, the soil erosion is observed to be higher along the
higher regions of the Pir Panjal range in the southern and south-
eastern part of the watershed, having steep slopes as compared
to the planar areas of the watershed. The erosion estimates
generated from the SRTM DEM and the ALOS DEM show a
good correlation with each other in the plain areas of the
watershed. The erosion estimates from the CARTO DEM
show a close correlation to those derived from the SRTM
and ALOS DEMs in the higher reaches of the watershed.
Among the four erosion prediction estimates, the erosion
from the 30-m ASTER underestimates the erosion rate by
∼90% over the flat and moderate slope terrains due to lower
observed mean LS values. The mean annual soil loss estimates
derived from the watershed using ALOS and SRTM DEMs are
approximately 2.8 tons/ha/yr. The CARTO and ASTER DEM
estimates are around 2.9 tons/ha/yr and 1.2 tons/ha/yr
respectively (Figure 5). The total estimated soil loss from the
watershed based on the use of the four DEMs is shown in
Table 5which indicates a significant variation of the soil erosion
estimates attributed to the differences in the topographic
characterization of the watershed extracted from the four

DEMs. It was observed that the soil erosion estimates from
the ASTER DEM significantly vary (underestimation) from the
estimates obtained from the other three DEMs. This
demonstrates the importance of and need for making the
right choice of the DEM for accurate assessment of the soil
erosion at the watershed scale.

4.3.2 Land Use and Land Cover Impacts on Soil
Erosion
The LULC plays a significant role in controlling soil erosion by
reducing the direct impacts of raindrops on the soil, enhancing
the organic matter content, increasing the infiltration rate of
water, reducing the velocity of runoff, and reducing the
transportation of sediments on the soil surface (ICIMOD,
1994). Therefore, any change in the LULC, whether driven
by natural or anthropogenic activities, would significantly affect
the rate of soil erosion (Borrelli et al., 2013). The LULC of 1981
and 2019 along with the other parameters related to climate,
soils, and topography was used to determine the impact of
LULC on soil erosion. The soil loss estimates from the
watershed for 1981 and 2019 are shown in Table 6. As can
be seen from the analysis of the data provided in the table, there
is an overall increase in the mean soil erosion from the
watershed due to the LULC change observed between 1981
and 2019. The soil erosion has increased by almost double from
23.93 t ha−1 year−1 in 1981 to 46.24 t ha−1 year−1 in 2019. A
decrease in erosion is observed in some LULC classes from
1981 to 2019 due to the shrinkage in the LULC type. For
example, the erosion from the agricultural lands in the
watershed decreased by 18.6% during the period due to the
conversion of them and of paddy lands to other land classes.
Similarly, the pasturelands show lower erosion indicating a
decrease of 3.9% (Table 6). Contrarily, the soil erosion under
the degraded forests, scrublands, and horticulture is showing a
significant increase due to the increase in the area under these
LULC classes in 2019. The maximum soil erosion is observed
from the degraded forest which has increased from 6% in 1981
to 57% in 2019. The degraded forest LULC type is mostly
situated on denudated and steep slopes with little tree cover
directly exposed to the raindrop impact which accelerates the
detachment, removal, and transportation of soil particles. The
LULC based soil loss estimates from the watershed for the two
periods is presented in Figures 6A,B, 7A,B and Table 6 which
provides information about the soil erosion changes as a
function of the land system changes in the watershed
observed from 1981 to 2019.

The estimated soil erosion from the study area was
classified into five severity classes. The results for the year
1981 showed that ∼85% (829 km2) of the study area is under
very slight soil erosion, followed by 12% (118 km2) of the
watershed area falling under the slight soil erosion class and
only 2% (20 km2) under moderate erosion class. The
watershed area categorized under severe to very severe
erosion was a meager 0.37% (4 km2) and 0.33% (3 km2) as
given in Table 7. In the year 2019, 84% (820 km2) of the area
comes under the very slight erosion class followed by 8%
(82 km2) under slight erosion risk. While 3.07% (30 km2) of

FIGURE 5 | Comparison of the mean soil erosion rates under various
slope categories using the four DEMs used in this study.
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the watershed is facing moderate soil erosion. Watershed
areas under severe and very severe soil erosion classes in
2019 increased by 1.5 and 1.9%, respectively due to LULC
changes observed during the period which showed an increase
in the area under these two erosion classes from 14 km2 in

1981 to 19 km2 in 2019. The two classes are characterized by
steep slopes with little or no vegetal cover. There is an increase
in the area under the moderate, severe, and very severe soil
erosion classes in 2019 due to the increase in the area under
horticulture and degraded forest observed from the LULC

TABLE 5 | Area under different slope categories provided by the four DEMs and the total soil loss thereof.

Slope˚ ALOS ASTER CARTO SRTM

Soil loss (tons/yr) Area (km2) Soil loss (tons/yr) Area (km2) Soil loss (tons/yr) Area (km2) Soil loss (tons/yr) Area (km2)

0–3 40,238 313 7,939 239 16,230 298 15,380 293
3–15 702,811 219 294,629 309 748,320 246 715,098 256
15–25 1,315,543 133 599,019 142 1,663,338 155 1,429,744 139
25–35 1,499,410 118 609,300 110 1,757,747 121 1,591,546 109
>35 719,253 72 259,735 56 488,118 35 875,026 58
Total 4,277,255 855 1,770,622 856 4,673,753 855 4,626,795 855

TABLE 6 | Soil erosion estimated under each LULC type in the study area during 1981 and 2019 using CARTO DEM.

LULC type 1981 2019

Area (ha) Area (%) Tons/yr Erosion (%) Area (ha) Area (%) Tons/yr Erosion (%)

Agriculture 37,292 38.4 464,039 19.6 8,844 9.1 48,499 1.0
Barren 266 0.3 6,414 0.3 246 0.3 16,309 0.3
Exposed rock 7,444 7.7 71,396 3.0 2,180 2.2 7,361 0.2
Pasture 1930 2.0 122,113 5.2 1,068 1.1 59,405 1.3
Degraded forest 855 0.9 141,769 6.0 10,492 10.8 2,681,592 57.4
Plantation 2,584 2.7 15,831 0.7 8,760 9.0 59,234 1.3
Snow 1,483 1.5 86 0.0 6,551 6.7 11,089 0.2
River bed 2,270 2.3 35,122 1.5 2,325 2.4 33,976 0.7
Forest 22,083 22.7 1,327,298 56.0 13,302 13.7 1,325,735 28.4
Scrub 12,437 12.8 163,911 6.9 13,347 13.7 333,643 7.1
Horticulture 7,343 7.6 21,816 0.9 25,897 26.6 92,120 2.0
Built up 381 0.4 61 0.0 3,763 3.9 3,724 0.1
Water 855 0.9 888 0.0 430 0.4 1,066 0.0
Total 97,223 100 2,370,746 100 97,205 100 4,673,753 100

FIGURE 6 | Soil erosion under different LULC classes during 1981 and 2019.
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data during 1981–2019. Similarly, the watershed area under
severe and very severe soil erosion classes has increased from
0.37 to 1.82% and 0.33–2.23% respectively from 1981 to 2019
which implies a loss of the forests and other land degradation
processes in the watershed.

4.3.3 Validation of Soil Erosion
In absence of the observed soil erosion data in the watershed,
the validation of the simulated soil erosion estimates obtained
in this study was done using the land degradation maps
generated for the study area. The simulated soil erosion
estimates showed an overall good correlation with the land
degradation map generated at 1:30 k scale for the watershed
(Figure 8). The watershed areas under low and very low soil
erosion class (0–2 t ha−1 yr−1) correlate well with the lowest
level of the land degradation severity classes, like {Fv1(Forest,

vegetal degradation, low severity), Sv1(Land with scrub,
vegetal degradation, low severity), Dw1(unirrigated-
agriculture, water erosion, low severity)} or no apparent
land degradation class (NAD). The watershed areas where
the rate of simulated soil erosion is >5 t ha−1 yr−1 but
<10 t ha−1 yr−1 correspond well with the moderate or severe
degradation severity classes like {Fw2 (Forest, water erosion,
moderate severity), Fv2 (Forest, vegetal degradation, moderate
severity); Sv2 (Land with scrub, vegetal degradation, moderate
severity)}. The watershed areas that showed the highest rate of
soil erosion i.e., >10 t ha−1 yr−1 showed high correspondence
with the land degradation indicator map classes having the
high severity, like {Fw3 (Forest, water erosion, moderate
severity), Fv3 (Forest, vegetal degradation, severe severity)
and Sv3 (Land with scrub, vegetal degradation, severe
severity)}.

FIGURE 7 | Spatial distribution of soil erosion in the study area during (A) 1981 and (B) 2019 using CARTO DEM.

TABLE 7 | Total annual soil loss under various soil erosion severity classes during 1981 and 2019 using CARTO DEM.

Severity classes Soil loss (t/ha/yr) Area (ha) Total annual soil loss (t/ha/yr)

1981 2019 1981 2019

Very slight 0–5 82,948 81,986 453,731 404,217
Slight 5–15 11,774 8,232 1,073,194 868,573
Moderate 15–30 2011 2,983 434,538 691,540
Severe 30–50 358 1770 158,560 761,571
Very severe >50 273 2,166 250,723 1,947,852
Total area 97,365 97,138 2,370,746 4,673,753
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5 CONCLUSION

The Revised Universal Soil Loss Equation (RUSLE) was used in
this study to quantify soil erosion from the data-scarce Vishav
watershed in the Kashmir Himalaya. Since the topography is a
major contributor to the transport of the soil from a watershed, it
was therefore thought necessary to choose the best of the publicly
available digital topographic datasets for accurate topographic
characterization of the watershed so that the errors associated
with soil erosion estimates due to the imprecise representation of
the topography are minimized. The evaluation of the DEMs with
respect to the GPS observations using various statistical tests
showed that the CARTO DEM has better accuracy among the
four evaluated topographic datasets. The soil erosion estimates
using CARTO DEM and 2019 LULC showed good validation
with the land degradation indicator maps. The study also
revealed that the LULC changes observed in the watershed
from 1981 to 2019, mainly driven by anthropogenic factors,
have led to the doubling of the soil erosion from
23.93 t ha−1 year−1 in 1981 to 46.24 t ha−1 year−1 in 2019.
Degradation of forests and the expansion of cultivation on
the degraded lands on steep-slope in the mountainous areas
of the watershed and other land system changes observed during

the past 28 years together with the anthropogenic pressures
and the consequent land degradation processes are the root
cause of the observed soil erosion from the watershed. Use of
the precise set of topographic characteristics from the most
reliable publicly available DEM remotely sensed and
extensively validated LULC, and lab-observed soil properties
in the GIS framework facilitated the quantification of soil
erosion estimates at the watershed scale. However, the
inadequate representation of the precipitation record in the
watershed affects the precise quantification of two important
factors; rainfall erosivity and soil erodibility, and thus adding
uncertainty to the soil erosion estimates simulated in
this study.

Choosing the most appropriate publicly available DEMs
provided in this study would help researchers in the selection
of the precise topographic characteristics to model various
land surface processes at watershed scale in the data-scarce
mountainous terrains where the topography is the dominant
factor controlling various processes. However, the DEMs need
to be validated with a larger set of ground control points from
a wide range of topography and the study needs to be
replicated in different topographic settings to draw more
valid and universal conclusions about the suitability of the

FIGURE 8 | Validation of the estimated soil erosion for the year 2019 generated using the land degradation map.
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publicly available DEMs for characterizing land surface
processes.

It is further believed that the findings from this research shall
inform the policymaking on land use planning, soil and water
conservation, and environmental degradation so that the
appropriate strategies are devised for the sustainable
development of land and water resources in the ecologically
fragile Kashmir Himalaya and other mountainous regions in
the Indian Himalaya and beyond.
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