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Themain purpose of this study is to establish an effective landslide susceptibility zoningmodel
and test whether underground mined areas and ground collapse in coal mine areas seriously
affect the occurrence of landslides. Taking the Fenxi Coal Mine Area of Shanxi Province in
China as the research area, landslide data has been investigated by the Shanxi Geological
Environment Monitoring Center; adopting the 5-fold cross-validation method, and through
Geostatistics analysis means the datasets of all non-landslides and landslides were divided
into 80:20 proportions randomly for training and validating models. A set of 15 condition
factors including terrain, geological, hydrological, land cover, and human engineering activity
factors (distance to road, distance to mined area, ground collapse density) were selected as
the evaluation indices to construct the susceptibility assessment model. Three machine
learning algorithms for landslide susceptibility prediction (LSP) including C5.0 Decision Tree
(C5.0), Random Forest (RF), and Support Vector Machine (SVM) have been selected and
compared through the Areas under the Receiver Operating Characteristics (ROC) Curves
(AUC), and several statistical estimates. The study revealed that for these three models the
value range of prediction accuracies vary from 83.49 to 99.29% (in the training stage), and
62.26–73.58% (in the validation stage). In the two stages, AUCs are between 0.92 to 0.99
and 0.71 to 0.80 respectively. Using Jenks Natural Breaks algorithm, three LSPs levels are
established as very low, low, medium, high, and very high probability of landslide by dividing
the indices of the LSP. Compared with RF and SVM, C5.0 is considered better in five
categories according to quantities and distribution of the landslides and their area percentage
for different LSP zones. Four factors such as distance to road, lithology, profile curvature, and
ground collapse density are the most suitable condition factors for LSP. The distance to mine
area factor has a medium contribution and plays an obvious role in the occurrence of
landslides in all themodels. The result reveals that C5.0 possesses better prediction efficiency
than RF and SVM, and underground mined area and ground collapse sifnigicantly affect
significantly the occurrence of landslides in the Fenxi Coal Mine Area.
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1 INTRODUCTION

Mine geological hazards are a kind of man-made geological
hazard and caused by geological processes and human
engineering activities. Shanxi Province is a famous coal-
producing area in China. Due to the overexploitation of coal
resources in the area and the special topography of the
environment, Shanxi Province has become one of the most
developed/mined underground areas leading to frequent
ground collapse, which often induced landslides. The
geological hazards have the characteristics of wide distribution,
significant influence, and prominent potential hazards (Uitto and
Shaw, 2016; Su et al., 2020). It is very valuable to recognize and
map those areas where landslides have a high probability of
occurrence for land use plans and hazard controls (Su et al.,
2017a; Huang et al., 2020a), and landslide susceptibility
prediction (LSP) can efficiently achieve this purpose (Borrelli
et al., 2018; Huang et al., 2021b). An LSP involves some important
issues including the extraction of landslide-related environmental
factors and the selection of the LSP model (Tien et al., 2015).

A lot of models such as types of expert-based models,
statistical models, physically-based models, and machine
learning models have been proposed for LSP (Guzzetti et al.,
1999; Huang et al., 2017; Sezer et al., 2017; Reichenbach et al.,
2018; Medina et al., 2021), and it is a crucial step to select an
appropriate model (Marjanović et al., 2011; Tien et al., 2015;
Huang et al., 2020b). Huang et al. (2020c) have compared these
types of models and found that machine learning models can
more accurately reflect the nonlinear relationships between
landslide susceptibility indices; they ignore the complex
physical processes involved in landslide initiation, and have
been considered more accurate than other approaches. For the
machine learning models, (Niu et al., 2012; Chang et al., 2020; Li
et al., 2020) have used Support Vector Machine (SVM) to
quantitatively predict landslide susceptibility and revealed
SVM possesses better prediction efficiency, Li et al. (2014)
has applied Random Forest (RF) to the analysis and
evaluation of the susceptibility of regional landslides and
believed that the method has a low sensitivity to noise and
has good accuracy and stability. Nefeslioglu et al. (2010) have
assessed the LSP of the metropolitan area in Istanbul, Turkey, by
a decision tree; (Guo et al., 2021) present a C5.0 Decision Tree
(C5.0) to generate regional landslide sensitivity map, and found
the prediction accuracy of C5.0 is higher than that of traditional
models.

Most of the existing studies have selected some condition
factors closely related to landslide risk for susceptibility
evaluation based on expert experience (Oliveira et al., 2015;
Guo et al., 2021). The condition factors can be divided into
terrain, geological, hydrological, land cover, and human
engineering activity factors (Qin et al., 2013). To human
engineering activity factors, Lee S, et al. (Lee et al., 2004;
Ayalew and Yamagishi, 2005) have also quantified some
human activity factors as distance to road, road network
density, residential area, and building density. For geological
hazards in coal mine areas, Su et al. (2017) has constructed
the distance to mined area factor as a special human engineering

activity factor, and compared several other methods in the
evaluation of landslide sensitivity in the Huoxi Coal Mine
Area, and found that SVM has higher prediction accuracy and
the mining disturbance behavior has little contribution to all
models (Su et al., 2017a).

It is very important to quantitatively compare the application
results of various models for specific test areas and select the
optimal model and appropriate factors for landslide sensitivity
zoning (Martha et al., 2013; Chen et al., 2019; Huang et al.,
2020a). In order to reveal whether the RF and C5.0 is more fit in a
coal mine area, and better evaluate the impact of coal mining on
landslides, and whether the mining disturbance such as the
underground mined area and ground collapses have some
contribution to the occurrence of mine geological hazards, this
paper takes the Fenxi Coal Mining Area as the research area and
uses three machine learning methods: RF, SVM, and C5.0 to
model landslide sensitivity. Following this, a landslide sensitivity
map of the Fenxi Coal Mine Area was drawn. ROC and AUC are
used to evaluate and compare which model is more accurate and
reliable for LSP. The study can provide decision support for mine
geological hazards monitoring.

2 RESEARCH DATA

2.1 Study Area
The Fenxi Coal Mine Area (36°41′20″–37°17′12″N,
111°22′08″–112°21′26″E) belongs to the Huoxi Coalfield
andcovers approximately 2,800 km2 of land, located in the
northern area of the Huoxi Coalfield in Shanxi province, China
(Figure 1). The Huoxi Coalfield is one of the six large coalfields
(Datong, Ningwu, Hedong, Xishan, Huoxi, Qinshui) of Shanxi
province (Su et al., 2017a), which includes the Fenxi Coal Mine
Area andHuozhou CoalMine Area. The landform in the Fenxi Coal
Mine Area is complex. The western part of Fenxi is a low mountain
area on the east wing of Luliang Mountain. The western demarcate
boundaries reach Shuangchi and the Nanyang borderline. The
eastern part of Fenxi is the foothills of Huoshan Mountain,
bounded by the Huoshan fault. The north part is the Jinzhong
rift basin, the north boundaries reach the south of Fenyang City, and
the southern border is the Shilin fault and the Fenhe River Valley
with flat terrain passes through the middle of the research area. The
Fenxi Coal Mine Area belongs to a warm temperate semi-arid
continental monsoon climate, with an annual average
temperature of 8.6°C and about 180 days in the frost-free period
(Su et al., 2017a). Because it is located in the central inland area, the
continental climate is relatively obvious, and the temperature
difference between day and night is larger (Liu, 2015). The
average annual precipitation is 634mm and rainfall is often in
July and August. Slope failures are triggered chiefly by intense and
prolonged rainfall in this period (Su et al., 2017a).

The Fenxi Coal Mine Area is on the east margin of the Qi-
Lv-He epsilon-type structure arc-fold and different forms of
folds compose coal-bearing strata which belong to the
Taiyuan Formation (Upper-Carboniferous System) and the
Shanxi formation (Lower-Permian System). The average
thicknesses of the Taiyuan and Shanxi Formations are
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about 90 m and 50 m, respectively, which are 810 m and
760 m below ground, respectively. There are abundant coal
resources in the study area. The Fenxi Coal Mine Area is in
underground mining regions, with blasting and so on. Due to
over-exploitation, underground goaf is formed in the mining
area, which can easily cause surface damage and form
geological hazards. Mine slag includes coal gangue, waste
slag, fly ash, and tailings, which damages the geological
environment of the mining area and often induces mine
geological hazards.

2.2 Data Sources
In the research, the main data materials collected are 1) Digital
elevation model (ASTER-GDEM), 2) Remote Sensing (RS)

images, 3) Geology hazards inventory, 4) Peak earthquake
acceleration, 5) Average annual rainfall, 6) Geology map, 7)
Road map, 8) Mine area map. Detailed information about the
data materials is listed below in Table 1.

2.3 Landslides Inventory
Landslides are the movement of a mass of rock, debris, or Earth
(soil) down a slope (Wu et al., 2012). The landslide in its widest
sense includes colluvial landslides, rock and colluvial collapse,
and debris flow, causing gravity erosion of the slope and valley
(Qiu, 2012; Wang, 2012; Wu et al., 2012). The formation
conditions, inducing factors and movement mechanisms of
generalized landslides are diverse, changeable, and complex
(Duan, 2010). These kinds of geological hazards are

FIGURE 1 | Location and geological hazards sites distribution of the study area.

TABLE 1 | The source and characteristics of the data materials.

No. Data materials Source (resolution/scale) Specific purpose

1 ASTER-GDEM http://www.jspacesystems./ or jp/ersdac/GDEM/E/2.
Htm (30 m)

Deriving the five topographical parameters: slope, elevation, aspect, curvature,
distance to the river.

2 RS images https://earthexplorer.usgs.gov/ (30 m) Calculating the factor map of land use type and NDVI.
3 Geological hazards

inventory
Department of geological survey (1:50,000) Obtain the landslides inventory and calculate the ground collapse density factor.

4 Peak earthquake
acceleration

Obtain the peak earthquake acceleration factor.

5 Average annual rainfall Calculating the average annual rainfall factor.
6 Geological map Department of land resource (1:50,000) Obtain the stratum lithology and distance to fault factor.
7 Road map Calculate distance to road factor.
8 Mined area map Calculate distance to mined area factor.
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commonly linked in time and space in an interdependent whole,
and have the characteristics of chain generation (Ma, 2011).
Therefore, the evaluation of these hazards can be represented
by a unified whole, and the generalized landslide concept is
adopted in the landslide sensitivity evaluation of this paper.

In the Fenxi Coal Mine Area there are 639 geological hazards
which include ground collapse (371), unstable slopes (132),
colluvial landslides (69), rock and colluvial collapses (36),
debris flows (28), ground fissures 2) and land subsidence 1)
respectively, obtained from the Geological Environment
Monitoring Center of Shanxi Provincial Natural Resources
Department. All seven kinds of geological hazards data are
converted into certain data formats and finally generate spatial
point site data, and shown In Figure 1. The X, Y coordinates of
the central point of the geological hazards represent their sites.

According to the definition of landslides mentioned
previously, landslides in this paper are including colluvial
landslides, rock and colluvial collapses, and debris flows.
Unstable slope is a kind of geological hazard site that is prone
to landslides. Thus the spatial distribution of landslides in the
Fenxi Coal Mine Area with a total of 265 landslide sites has been
mapped by applying the remote sensing (RS), geographic
information system (GIS), and spatial data analysis method.

2.4 Condition Factors
Geological hazards destroy the ecological environment, and
their occurrence is affected by various internal and external
dynamic forces. According to the geological, topographical and
survey data of the Fenxi Coal Mine Area, as well as the existing
expert experience (Chau et al., 2004; Peart et al., 2005;
Domínguez-Cuesta et al., 2007; Xiang et al., 2010), the
condition influence factors of landslide hazards including
topography, geology, hydrology, land cover, and human
engineering activities (Youssef and Pourghasemi, 2021) were
selected to explore the mechanism and characteristics in the
Fenxi Coal Mine Area. Topography factors are expressed by
terrain factors: elevation, slope, aspect, and curvature (plane and
profile curvature). ASTER-GDEM with 30 × 30 m spatial
resolution was used to extract terrain factors. Geological
structural factors include stratigraphic lithology, distance to
fault, and peak earthquake acceleration. Many scholars have
analyzed the influence of geological structure on the sensitivity
of geological hazards and explored it. They believe that strata
and strata lithology play a more significant role in ground
hazards, and the distance to the fault also directly or
indirectly affects them. Stratum lithology is the basis of
geological hazards, and some geological hazards occur
directly on the stratum. The Hydrology factors contain
average annual rainfall and distance to river factors, while
land cover factors involve land use type and NDVI. The
three human engineering activities factors include distance to
road, distance to mined area, and ground collapse density. In the
Fenxi Coal Mine Area, the mining area accounts for 55.57% of
the total area of the district, and the average density of ground
collapse geological hazards points in the Fenxi Coal Mine Area is
0.07 (place/km2), so it is very necessary to construct distance to
mined area and ground collapse density factors for the LSP.

Through the condition factors and the comprehensive analysis
of ArcGIS software, the relationship between landslide hazards
and the geological ecological environment was studied, and its
sensitivity was classified and evaluated. In the Fenxi Coal Mine
Area the whole landslides condition factors involved are
described and mapped below:

2.4.1 Elevation
The east and west sides of the Fenxi Coal Mine Area are the
Huoshan and Luliang Mountain Uplift Belt, and the middle is the
Jinzhong rift basin, which is dominated by hills and low
mountains. The middle and south sections are relatively flat,
while the east and west sides are high mountains, which incline
toward the Fenhe River Valley. The overall terrain is low in the
middle and high on both sides of the east and west part, with great
relief (Liu, 2015). According to ASTER GDEM with the
resolution of 30 m, based on ArcGIS platform statistics, the
elevation of the Fenxi Coal Mine Area is 625–1951m, with an
average value of 987 m, as shown in Figure 2A.

2.4.2 Slope
Slope is an important breeding factor of geological hazards in
mining areas, which reflects the degree of slope inclination (Li
et al., 2018; Huang et al., 2021a). On the one hand, with the
increase of slope, the component force of gravity on the slope also
increases. On the other hand, the greater the slope, the stronger
the anti-weathering ability of slope rock (Guo, 2014). Using DEM
data, extract the slope of the Fenxi Coal Mine Area to generate a
slope map, as shown in Figure 2B.

2.4.3 Aspect
Aspect is an important factor affecting the surface distribution of
solar radiation (Alghamdi and Abdel-Mottaleb, 2021). The
eastern, southern, southeastern, and southwestern sections in
the northern hemisphere are sunny slopes, while the shady slopes
are the western, northern, northeastern, and northwestern
sections. Slope aspect affects regional surface evaporation,
weathering degree of weathering crust, vegetation soil, and
slope erosion. Based on the ArcGIS platform, the thematic
map of aspect is generated through DEM, and the aspect is
divided into nine levels: flat, true east, true west, true north, true
south, northeast, southeast, northwest, and southwest, shown in
Figure 2C.

2.4.4 Curvature
The unevenness of the slope is reflected by the curvature of the
surface. The greater the unevenness, the more uneven the force of
the slope, and the more likely to occur geological hazards.
Curvature is the second derivative of the surface. If the
curvature is greater than zero, the pixel is convex upward; if
the curvature is less than zero, the pixel is concave upward; if the
curvature value is zero, the pixel is flat. Surface curvature can be
divided into two types: 1) profile curvature, and 2) plane
curvature. The former is the slope along the direction of the
maximum slope, and the latter is the value perpendicular to the
direction of the maximum slope. These two curvature maps of the
Fenxi Coal Mine Area are extracted, as shown in Figures 2D,E.
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FIGURE 2 | Landslide condition factors. (A) Elevation, (B) Slope angle, (C)Slope aspect, (D) Plan curvature, (E)Profile curvature, (F) Stratum lithology, (G)Distance
to fault, (H) The seismic peak acceleration, (I) Distance to river, (J) Rainfall, (K) Land-use type, (L) NDVI, (M) Distance to road, (N) Distance to mined area, (O) Ground
collapse density.
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2.4.5 Stratum Lithology
Xiang et al. (2010) believe that the type of rock and the structure
of the rock layer are significant factors that determine the Land
slope stability. Lithology principally is reflected in the
mechanical composition of the land surface weathering
layer and sediments. We vectorized the 1:50,000 geological
map of Shanxi province by counties, and reclassified it
according to stratum age and the mechanical composition
of the surface weathering layer, and divide the lithology of
the Fenxi Coal Mine Area into 10 categories, respectively: 1)
massive rock mass, 2) sandy shale, 3) limestone sandstone, 4)
dolomite, 5) coal shale, 6) mudstone, 7) clay, 8) clay, 9) sub-
sand, (10) sand. The formation lithology factor of the Fenxi
Coal Mine Area is constructed, as shown in Figure 2F.

2.4.6 Distance to Fault
Faults significantly affect the stability of the surface of the mining
area, and fault structures control the distribution, number, and
scale of geological hazards. Based on the ArcGIS platform, the
geological structure map of the 1:50,000 coal mine area in Shanxi
Province is vectorized, and after correction, clipping, and
stitching, the fault cites map is obtained. The fault cites map
of the Fenxi Coal Mine Area is shown in Figure 2G.

2.4.7 Peak Earthquake Acceleration
The seismic peak acceleration represents the maximum absolute
value of the acceleration of the Earth’s surface particle motion in
the process of earthquake shaking. The larger the intensity of
seismic peak acceleration, the easier the damage to the land
surface. The seismic peak acceleration data is obtained from
the Geological Environment Monitoring Center of Shanxi
Provincial Natural Resources Department. The seismic peak
acceleration factor constructed using ArcGIS is shown in
Figure 2H.

2.4.8 Distance to the River
Drainage networks were aquired from ASTER-GDEM with 30 ×
30 m spatial resolution. The river system also has a great impact
on the occurrence of surface hazards, mainly in that different
water systems can weaken the resistance of rock fronts and
increase the free face, thus affecting the stability of the surface
slope. Based on DEM, the river network of the Fenxi Coal Mine
Area is extracted, and the 1:50,000 river system map of Shanxi
Province is vectorized. After correction, splicing, and cutting, the
water system distribution map of Fenxi Coal Mine Area is
obtained by combining the two methods, Figure 2I.

2.4.9 Average Annual Rainfall
The results show that the ground deformation tends to be
stable during a certain period of time after completion in the
mine area under natural conditions, and the occurrence of
landslides is significantly affected by average annual rainfall.
According to the precipitation of ground stations in Shanxi
Province within the past 30 years, the precipitation
distribution map was obtained by using the ArcGIS
platform and is shown in Figure 2J.

2.4.10 Land-Use Type
The area of mining disturbance in the Fenxi Coal Mine Area
accounts for 37.31% of the total region. On the one hand,
mining disturbance does great damage to the surface,
affecting the occurrence of landslide hazards; and on the
other hand, single land use modes, or the reuse of land and
light maintenance, gradually reduces the land-use rate,
accumulates over time, and part of the land is barren and
bare, which provides certain conditions for the occurrence of
geological hazards. In this paper, according to the second
national land survey land classification (with 12 new
categories), there were found 12 first class and 56 s class
norms. Land-use types were interpreted, based on the Landsat
TM images, and shown in Figure 2K.

2.4.11 NDVI
Land subsidence damages the land cover and the habitat of forest
and grassland vegetation. NDVI (normalized vegetation indices)
are important indices reflecting the distribution of regional
surface vegetation, which reflects the sensitivity of geological
hazards. NDVI is calculated by using Landsat remote sensing
images. The value of NDVI is distributed in (−1, 1). Zero
represents rock or bare soil; negative value means water; a
positive value means vegetation, and the larger the NDVI
value, the higher the vegetation coverage (Su et al., 2017a;
Huang et al., 2020c). The NDVI of the Fenxi Coal Mine Area
is shown in Figure 2L.

2.4.12 Distance to Road
The construction of road networks destroys surface morphology
and stability, which is closely related to geological hazards and
ecological environment sensitivity in mining areas. There are
many Earth filling and excavation and culvert projects caused by
road network construction, which easily leads to geological
hazards. The 1:50,000 road traffic map of Shanxi Province is
vectored, and the road distribution map is obtained through data
processing. The distance from each landslide cites to its nearest
road is extracted, and the road network density factor is
constructed, as shown in Figure 2M.

2.4.13 Distance to Mined Area
Human mining engineering activities cause great disturbance
and damage to the land surface. Based on the ArcGIS
platform, the distance from the landslide sites to the
mining area can be calculated. If the point falls inside the
mined area, the distance is zero. The smaller the distance, the
more vulnerable it is to mining area disturbance; on the
contrary, the greater the distance the less it affected by
mining disturbance. It can be shown in Figure 2N.

2.4.14 Ground Collapse Density
The density of ground collapse theoretically plays a decisive role
in the occurrence of geological hazards. Ground collapse
significantly affects the stability of the surface of the mining
area. Based on the ArcGIS platform, the ground collapse density
factor is obtained and shown in Fig. 2o.
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3 METHODOLOGY

3.1 Random Forest Model
RF is the most commonly used machine learning algorithm. It is a
combined model that integrates multiple decision trees. By
combining multiple weak classifiers, the final result is voted or
averaged, which makes the result an overall model with high
accuracy and generalization performance (Maxwell et al., 2020).
The working principle of RF is shown in Figure 3. RF involves
two concepts: 1) random sampling of data points; 2)
Segmentation of nodes based on feature subsets. Random
sampling: Each tree is trained on a sample of data points
drawn at random. These samples are drawn repeatedly;
random subset of features: At each node, the decision tree will
consider segmentation based on a part of the feature, and the
number of this part of the feature is the square root of all of the
elements features. The best conditions for predictors are given by
log2 (M+1), where M represents the number of inputs to the
algorithm, and the mean square error is given by (Sevgen et al.,
2019):

ε � (v1 − v2)2 (1)

Among them, ε represents the mean square error, V1 is the
variable of the observation data, and V2 is the result variable
(Sevgen et al., 2019). The calculation formula of the mean is:

S � 1
K

∑Kthv2 (2)

In the formula, S is any forest prediction value, while K is used
to a single tree in RF, V2 is the result variable too. Through this
algorithm, on the basis of determining the simple tree set and
random predictor variables (Band et al., 2020), edge functions are
defined.

3.2 C5.0 Decision Tree Model
C5.0 is a decision tree generation algorithm (Tobi and Duncan,
2019). It divides the sample data in the light of the field that
provides the maximum attribute of information gain rate as a
critical method to determine the arithmetic performance, at the
same time cuts and merges the leaf nodes of the decision tree to
raise the classification accuracy, ultimately determine the optimal

threshold for every leaf. The core of the C5.0 algorithm is to select
the characteristic variables of each branch by using the speed of
information entropy reduction (Guo et al., 2021). The calculation
formula of information entropy is as follows (Liu et al., 2017):

H(U) � ∑
i

P(ui)log2
1

P(ui) (3)

In the formula, ui (i � 1,2, . . .r) represents information, and P
(ui) represents the probability of occurrence of information ui (i �
1,2, . . .r). When encountering too much or insufficient sample
data, the C5.0 will automatically eliminate and adjust the weights
to obtain an optimal decision tree model. C5.0 possess the
advantages of high reliability, fast running speed, small
memory usage, and high fault tolerance (Tobi and Ducan,
2019; Guo et al., 2021).

3.3 Support Vector Machine Model
On the basis of the structural risk minimization principle and VC
dimension theory of statistical learning theory, Vapnik et al.
developed another machine learning method: SVM. The SVM
model is based on a variety of basic functions to transform
linearly inseparable data into high-dimensional space, and find
hyperplanes in that high-dimensional space to realize linearly
separable data patterns (Chen et al., 2016; Su et al., 2017b; Liu
et al., 2017). SVM is able to turn a nonlinear problem into a linear
one in a high-dimensional space by nonlinear transformation,
and then find the optimal classification surface in the transformed
high-dimensional space (Su et al., 2017a). SVM skillfully solves
the problem of mapping from low dimensional input space to
high dimensional feature space by introducing kernel function
(Huang et al., 2018; Guo et al., 2021). In this paper, the kernel
function of the Radial basis function (RBF) is used, and the
algorithm formula is as below:

K(xi, xj) � e−c(xi−xj)2 (4)

Among them, the γ of the kernel function is a parameter,
which needs to be optimized when building the model to increase
the fitting accuracy.

3.4 Modelling Procedure
After determining the landslide inventory map and influencing
factor maps (Guo et al., 2021), RF, SVM, and C5.0 algorithms
were integrated to generate the final landslide susceptibility map.
The Fenxi Coal Mine Area has a total of 265 landslides, which
equaled to non-landslide sites that were built, and changed to
pixels according to (Su et al., 2017a), for the sake of offering the
essential knowledge about stable or unfavorable conditions of
landslide occurrence (Guo et al., 2021). Through the Geostatistics
analysis means the pixels are separated entirely into two parts in a
random manner: 1) The first part contains 80% of the data,
participated in the model training stage; 2) The second part is the
validation data set, including the remaining 20% of the data
adopted to verify these three models and confirm their accuracy.

The three measures of Accuracy, Specificity, and Sensitivity
were adopted to evaluate the performance after applying a dataset

FIGURE 3 | The working principle of RF.
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of 5-fold cross-validation. Also, the Receiver Operating
Characteristics (ROC) of each model were plotted, and the
Areas Under the ROC Curves (AUC) of every model were
obtained. An SLP map has the ability to predict future
landslide sites. RF, SVM, and C5.0 are used to model and
verify in the two (training and verification) phases, which can
be adopted to obtain the landslide sensitivity of all pixels in the
Fenxi Coal Mine Area. Jenks Natural Breaks algorithm was used
to divide the probability range of landslide into five grades: very
low, low, medium, high, and very high, and the three landslide
susceptibility maps were obtained. Two aspects are listed below in
which the landslide sensitivity zoning performance is able to be
illustrated: 1) the surveyed landslide sites mainly scatter in the
very high and high LSP zone, and it shows that the performance
accuracy of the LSP zone is relatively higher; 2) the sites in the
very high and high sensitivity zone in all the surveys ought to
account for lower portion correspondingly, which can effectively
reduce the redundancy and improve the LSP accuracy
(Gokceoglu et al., 2005; Su et al., 2017a).

4 EVALUATION RESULTS

4.1 Factor Correlation Test
In this paper, a total of 15 condition factors–slope, elevation,
aspect, curvature (plane curvature, profile curvature), lithology,
distance to fault, peak earthquake acceleration, land use type,
NDVI, distance to river, annual average rainfall, distance to road,
distance to mined area and ground collapse density—were
selected as the susceptibility evaluation indices. In order to
ensure the objectivity and independence of the evaluation
indices, we adopted the Pearson correlation analysis method
to analyze the correlation among the 15 indicators. The SPSS
software was used to import the matrix of 15 indices factors, and
the correlation analysis was carried out. The correlation between
condition factors is displayed in Table 2, and Table 2 indicates
that all indices condition factors meet the requirements of
independence. Combined with the actual situation of the Fenxi
Coal Mine Area, we use these 15 condition factors as the
evaluation indices of LSP in the study area.

(In Table 2 the 15 Landslide condition factors (elevation,
slope, aspect, plan curvature, profile curvature, lithology, distance
to fault, peak earthquake acceleration, distance to river, annual
average rainfall, land use type, NDVI, distance to road, distance to
mined area and ground collapse density) are shorted and
represented by Elev, Slop, Aspe, Pl-c, Pr-c, Lith, Faul, Peak,
Rive, Rain, Land, Ndvi, Road, Mine and Coll, respectively).

4.2 Model Accuracy Evaluation
For the use of the three models, the input and output variables,
the training and testing data are all determined as shown in
Section 2.4. Cross-validation estimation of the predictive
performance of a model is a crucial step in predictive
modeling, and spatial cross-validation is recommended for
spatial data, which may be subject to spatial autocorrelation
(Su et al., 2017a), so the 5-fold cross-validation mean is
adopted to calculate these LSP indices. In the training process
of C5.0, the redundant nodes of the tree are pruned along with the
tree growth, and the child nodes are created 10 times (Huang
et al., 2020c), and the other model parameters are given as default.
During the training process of RF, the maximum number of
nodes is selected as 10,000, the maximum tree depth is set to 10,
and the Minimum node size is 5. The model will stop building
when the accuracy is no longer improved. All the parameters of
SVM, Epsilon is 0.1, cost constant is 10, and RBF-γ, γ, and degree
is 0.1, 3, respectively. Through cross-validation of the model, the
confusion matrix was obtained, and based on this, the fitting
accuracy is calculated and shown in Table 3.

Table 3 indicates that the average accuracy rates of C5.0, RF,
and SVM in the training stage are 97.36, 93.87, and 84.24%,
respectively. The standard deviation of C5.0, RF, and SVM in the
training stage is 2.85, 3.11, and 0.81. C5.0 has the highest accuracy
and lowest standard deviation in the training stage, so C5.0
performs better in the training stage. In the validating phase,
their average accuracy rates were 69.81, 65.47, and 67.17%,
respectively. Therefore, C5.0 has the highest accuracy rate in
the verification phase, followed by the SVM accuracy rate, and the
RF accuracy rate is the lowest. Their standard deviations in the
validating phase are 3.34, 2.17, and 3.97, respectively. Obviously,
RF has the lowest standard deviation in the verification phase, the

TABLE 2 | The correlation between 15 condition factors.

Elev Slop Aspe Pl-c Pr-c Lith Faul Peak Rive Rain Land Ndvi Road Mine

Slop 0.24 1 — — — — — — — — — — — —

Aspe 0.25 0.25 1 — — — — — — — — — — —

Pl-c −0.03 0.03 0.00 1 — — — — — — — — — —

Pr-c −0.05 −0.02 0.00 −0.54 1 — — — — — — — — —

Lith −0.45 −0.35 −0.30 0.01 −0.04 1 — — — — — — — —

Faul 0.06 −0.14 −0.16 −0.02 0.00 0.10 1 — — — — — — —

Peak −0.19 0.05 −0.02 0.00 −0.02 0.26 −0.10 1 — — — — — —

Rive 0.32 −0.10 0.02 0.05 −0.07 −0.12 0.13 −0.19 1 — — — — —

Rain 0.01 0.15 0.09 0.03 0.02 −0.27 −0.06 −0.25 −0.02 1 — — — —

Land 0.08 0.16 0.12 −0.06 0.03 −0.11 −0.08 0.07 −0.07 0.05 1 — — —

Ndvi 0.23 0.26 0.12 0.06 −0.02 −0.39 0.08 −0.17 0.10 0.25 −0.02 1 — —

Road 0.05 −0.06 −0.05 0.02 −0.02 0.04 0.13 0.13 0.25 −0.09 −0.06 0.05 1 —

Mine −0.19 −0.22 −0.19 −0.02 0.00 0.12 0.20 −0.32 0.13 0.20 −0.06 −0.11 −0.06 1
Coll 0.10 0.15 0.21 −0.01 0.01 −0.14 −0.23 0.00 0.01 0.09 0.10 0.10 −0.08 −0.28
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standard deviation of C5.0 is the second, and the standard
deviation of SVM is the highest.

4.3 AUC and ROC Analysis
Using a 5-fold cross-validation dataset for C5.0, RF, and SVM
algorithms the ROC curves and their corresponding AUC values
of the LSP are illustrated in Figure 4. The results of AUC in the
training stage are shown in Figure 4A. The estimation of the
training set is always too optimistic (Brenning, 2005; Su et al.,
2017a). In accordance with AUC obtained from the training
stage, wholly, the AUC indices values are indeed much higher
than 0.9, indicating that C5.0, RF, and SVM algorithms
completely obtain a successful performance. C5.0 has much
better prediction results (0.99), compared with RF (0.96) and
SVM (0.92). Prominently, C5.0 is much more successful than RF
and SVM in the training stage. This means that the current three
models (C5.0, RF, and SVM) are all capable of solving complex
questions.

In the validating stage, the values of AUC correspondingly are
illustrated in Figure 4B. The values of AUC range from 0.71 to
0.80 in the validating stage, the same as in the training stage, C5.0

is the highest one with 0.80, followed by RF, and SVMwhich both
have the performance of 0.71. With an AUC value of more than
0.7, all the three models are capable of modeling the LSP in Fenxi
Coal Mine Area in this study. Nonetheless, C5.0 appears to be
more accurate and promising than RF and SVM.

4.4 Relative Contributions of Condition
Factors
The same as the fact that different models have different
performances, different condition factors cannot make equal
contributions to the evolution of regional landslides (Chen
et al., 2018; Guo et al., 2021). The contributions of condition
factors in the Fenxi Coal Mine Area are determined through
calculating the mean value of relative contributions of each
condition factor under all the three different models (Guo
et al., 2021), and the contributions of each cross variable
condition factors of these fitting algorithms are shown in
Figure 5. Figure 5 mainly shows that the median
contributions of the condition factors of the variables are
classified as distance to road, lithology, profile curvature,

TABLE 3 | Accuracy of cross-validation of the three LSP models.

Model Stage k = 1 k = 2 k = 3 k = 4 k = 5 Average Standard
deviation

C5. 0 Training 99.29 99.29 98.35 97.41 92.45 97.36 2.85
Validating 65.09 67.92 71.70 73.58 70.75 69.81 3.34

RF Training 95.75 94.81 94.34 88.44 95.99 93.87 3.11
Vlidating 68.87 65.09 63.21 66.04 64.15 65.47 2.17

SVM Training 83.96 84.20 85.61 83.49 83.96 84.24 0.81
Validating 62.26 71.70 65.09 66.04 70.75 67.17 3.97

FIGURE 4 | ROC and AUC for the three landslide susceptibility models in different models stages. (A) Training stage (B) Validating stage.
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ground collapse density, land use type, average annual rainfall,
slope, distance to mined area, NDVI, aspect, peak earthquake
acceleration, distance to river, and so on in descending
contribution order, from highest to lowest. Hence, it is
obvious that distance to road, stratum lithology, profile
curvature, and ground collapse density are principal condition
factors in the Fenxi Coal Mine Area for the evolutions of
landslides. The distance to mined area factor has a medium
contribution, and the ground collapse density factor plays an
obvious role in the occurrence of geological hazards.

4.5 Susceptibility Map Analysis
The study area contains 3,597,447 pixels, converted into point
type and mapped by ArcGIS platform. Using Jenks Natural
Breaks algorithm, the three landslide susceptibility indices
were reclassified into five susceptibility levels, shown in Table 4.

In accordance with the Classification standard for
susceptibility of landslides in the Fenxi Coal Mine Area, Three
landslide sensitivity maps are obtained and converted into a grid
format, and the three LSPmaps using the threemodels are plotted
in Figure 6. Figure 6 indicates that the three algorithms
consistently have given the northern zone in the Fenxi Coal
Mine Area a low or moderate record score of LSP. It is realistic
that this zone has a lower elevation, and rarely slope instabilities
generate in Jinzhong Basin. On the contrary, areas with the value
of ground collapse density increasing was given higher scores in
LSP in the Fenxi Coal Mine Area.

In order to compare the three spatial LSP indices, the
characteristics of landslides distribution and their area
percentage under each susceptibility range are shown in Table 5.

It is obvious from Table 5 that regions with high and very high
landslide sensitivity degrees possess 193, 173, and 176 landslide
sites, when considering the area percentage, they also possess
17.55, 23.45, and 23.44% for the three models for C5.0, RF and
SVM respectively in the Fenxi Coal Mine Area. Because the
surveyed landslide hazard sites are mostly distributed in the
regions with high landslide sensitivity, and in all the surveys,
the sites with high sensitivity grades account for a very low
portion (Gokceoglu et al., 2005; Su et al., 2017a). Therefore,
C5.0 is the best one of all the models for the LSP algorithms.

5 DISCUSSION

5.1 Analysis of Model Building
The three typical models are widely used in many studies and
can well embody the basic features of their corresponding
model types (Huang et al., 2020c; Guo et al., 2021). RF has the
advantages of fewer restrictions on variables involved in the
evaluation, no need to consider the data scale and data
distribution, high computational efficiency, high precision,
and low debugging cost compared with other deep learning
models (Su et al., 2017b; Huang et al., 2018). SVM is capable
of solving some matters with nonlinearity, small samples,
over-learning, dimensionality curse, and local minima, and
has strong generalization ability. But for many types of
problems, SVM is not efficient (Wu et al., 2014). C5.0
possesses some superiorities in modeling the SLP

FIGURE 5 | Contributions of each condition factors under different
models.

TABLE 4 | Landslide susceptibility classification standards in Fenxi Mine Area.

Models Very low Low Medium High Very high

C5. 0 0–0.11 0.11–0.25 0.25–0.81 0.81–0.89 0.89–1
RF 0–0.11 0.11–0.22 0.22–0.77 0.77–0.83 0.83–1
SVM 0–0.11 0.11–0.25 0.25–0.83 0.83–0.92 0.92–1

FIGURE 6 | Landslide susceptibility maps using the three models. (A) C5. 0 (B) RF (C) SVM.
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(Alkhasawneh et al., 2014; Park and Lee, 2014; Wu et al.,
2014). C5.0 is a good model which is easy to understand and
explain, training needs less data, and the modeling processes
includes tree nodes grown, tree nodes pruning, feature
selection, and so on. The other machine learning models
usually need the advantages of data normalization, but the
results of C5 are easy to overfit. Hence, through the
comparison of these algorithms, C5.0 can be understood to
have the ability to overcome the shortcomings that the
traditional machine learning models possessed. The C5.0 is
the best performing model of all machine learning
algorithms.

5.2 Analysis of Accuracy Comparison
The accuracy of the LSP model is decided by the algorithm
selected (Su et al., 2017a; Huang et al., 2020c). The average
precision of C5.0, RF, and SVM in the training stage is 97.36,
93.87, and 84.24% respectively, and their accuracy in the
validating stage is 69.81, 65.47, and 67.17%. The standard
deviation represents the stability of the model, and the higher
the accuracy is, the more unstable the algorithm is. The standard
deviation of C5.0, RF, and SVM is 2.85, 3.11, and 0.81 in the
training stage, and is 3.34, 2.17, and 3.97 in the validating stage
respectively. Therefore, C5.0 is more moderate for LSP in this
study. The algorithms which have a high AUC value usually
possess higher and more successful prediction indices (Huang
et al., 2020c). The ROC curves of the three models suggest that in
the training stage C5.0 has a much higher prediction index (0.99)
than that of RF (0.96) and SVM (0.92), while in the validating
stage C5.0 has the highest AUC with 0.80, followed by RF (0.71)
and SVM (0.71), the same as the performance in the modeling
process. Therefore, considering the fitting accuracy, ROC curve,
and AUC value of C5.0, RF, and SVM, C5.0 is more moderate
than the other two algorithms.

5.3 Analysis of Landslide Susceptibility
Zone
The attribute data in Fenxi Coal Mine Area is introduced into the
C5.0, RF, and SVM to obtain the landslide susceptibility indices.
Taking ArcGIS as the sensitivity indices, Jenks Natural Breaks
algorithm is adopted to divide the probability indices of landslide
into five levels that are very low, low, medium, high, and very high
in indices ascending order, and three landslide sensitivity maps
are obtained respectively. The results indicated C5.0, RF, and

SVM have 193, 173 and 176 landslide sites in the high and very
high areas respectively, and the high and very highly prone areas
account for 17.55, 23.45, and 23.44% of the study area. Because
the surveyed landslide hazard sites are mostly scattered in which
the high and very high landslide sensitivity levels are distributed,
while in the whole process, the landslide sites with high sensitivity
levels account for a low proportion (Su et al., 2017a). Therefore,
C5.0 is the best of all the models. These three models also predict
that the landslide sensitivity of the Jinzhong basin is low or
moderate, and predict that the landslide sensitivity of the
mountains lies in the central section, the northeast part, and
the east part of the Fenxi Coal Mine Area and increases with the
value of ground collapse density.

5.4 Analysis of Condition Factors
Generally, the factors such as Topography, Hydrology, Geology,
land use type, and so on are extensively accepted as condition
factors in many LSP models (Su et al., 2017a). Distance to road
and lithology factors are the two important factors. The highest
contribution of distance to the road may be that the road
constructions have changed the slope, formed an escarpment,
and led to slope instability. On the mechanical properties, the
lithology factor can affect the slope instability, it has been proved
that the hard and dense rock mass hardly has any sensitivity to
slope instability (Huang et al., 2020a).

Profile curvature and ground collapse density are relatively
important factors too. The curvature factors represent the
unevenness of the land surface. The greater the unevenness,
the more uneven the force of the slope, and the more likely
geological hazards are to occur (Su et al., 2017a). The ground
collapse density theoretically plays an obvious role in the
occurrence of geological hazards. Ground collapse significantly
affects the stability of the surface of the mining area. Abundant
ground collapse destroys the surface morphology and stability,
which is closely related to geological hazards and ecological
environment sensitivity in mining areas.

Then the factor contribution importance of the land use type,
average annual rainfall, slope, distance to mined area, NDVI,
Aspect, peak earthquake acceleration, and so on are listed in
descending order of contribution. It is obvious that the distance to
mined area factor has a medium contribution to all the models.

In the Fenxi Coal Mine Area the mining area accounts for
55.57% of the total area of the district, and the average density of
ground collapse geological hazards points is 0.07 (place/km2).
Mining disturbance has great damage to the surface, and ground
collapse density affected the occurrence of geological hazards.

TABLE 5 | Distributions of landslides and area percentage under different susceptibility standards.

Models Very low Low Medium High Very high

C5. 0 Number of landslides 4 28 40 79 114
Area percentage/% 37.19 32.22 13.05 10.63 6.92

RF Number of landslides 2 42 48 68 105
Area percentage/% 15.70 41.64 19.21 13.12 10.33

SVM Number of landslides 13 35 41 52 124
Area percentage/% 41.52 24.05 11.00 11.99 11.45
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Thus the mining disturbance such as the underground mined
area and ground collapse have prominently affected the slope
instability of the Fenxi Coal Mine Area.

6 CONCLUSION

This current research has contributed to comparison and
evaluation of three machine learning methods (C5.0, RF,
and SVM) for landslide susceptibility zoning in the Fenxi
Coal Mine Area, so as to reveal whether the RF and C5.0 is
more fit in a coal mine area, and better evaluate the impact of
Mine on landslides, and whether the mining disturbance
activities such as the underground mined area and ground
collapses have some contribution to the occurrence of mine
geological hazards. The Fenxi Coal Mine Area is used as the
study area with 265 recorded landslides and 15 condition
factors, the LSP maps of the Fenxi Coal Mine Area are
zoned and plotted by the C5.0, RF, and SVM algorithms,
respectively. The results show that C5.0 is more suitable for
landslide susceptibility evaluation in Fenxi Coal Mining Area,
through the analysis of AUC accuracy and landslides
distribution features. Of all the 15 condition factors, the four
factors including distance to road, lithology, profile curvature,
and ground collapse density are the most suitable condition
factors for LSP. The distance to mined area factor has a medium
contribution to the three algorithms and plays an obvious role
in the occurrence of geological hazards. Hence the mining
disturbance activities have prominently affected the slope
instability in Fenxi Coal Mine Area. In the zoning of LSP,
landslides often include different types of sub-landslides as
colluvial landslides, rock and colluvial collapse, debris flow, and
unstable slope. To the characteristics of the different types of

sub-landslides, further consideration is needed to reflect their
different characteristics in the landslide susceptibility zones.
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