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Carbon dioxide (CO2) storage in deep saline aquifers is a vital option for CO2 mitigation at a
large scale. Determining storage capacity is one of the crucial steps toward large-scale
deployment of CO2 storage. Results of capacity assessments tend toward a consensus
that sufficient resources are available in saline aquifers in many parts of the world.
However, current CO2 capacity assessments involve significant inconsistencies and
uncertainties caused by various technical assumptions, storage mechanisms
considered, algorithms, and data types and resolutions. Furthermore, other constraint
factors (such as techno-economic features, site suitability, risk, regulation, social-
economic situation, and policies) significantly affect the storage capacity assessment
results. Consequently, a consensus capacity classification system and assessment
method should be capable of classifying the capacity type or even more related
uncertainties. We present a hierarchical framework of CO2 capacity to define the
capacity types based on the various factors, algorithms, and datasets. Finally, a review
of onshore CO2 aquifer storage capacity assessments in China is presented as examples
to illustrate the feasibility of the proposed hierarchical framework.
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HIGHLIGHTS

1) The CO2 storage capacity evaluation methods of saline aquifer sites around the world are
reviewed.

2) Major types, algorithms, and related data requirements for capacity evaluation are classified.
3) A hierarchical framework of CO2 storage capacity for the saline aquifer is established with key

descriptions of capacity types, data quality, and related algorithms.
4) Published results of onshore aquifer capacities in China are classified according to the proposed

framework.

1 INTRODUCTION

Carbon dioxide (CO2) geological utilization and storage (CCUS) technology is a vital technology to
reduce emissions of greenhouse gas while utilizing fossil fuels and carbon-based material in the near
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and medium-term (Bui et al., 2018; Alova, 2020). CCUS
technologies can beneficially use CO2 to recover useful
underground resources (i.e., crude oil and saline water) that
can generate incomes to offset the costs associated with CO2

capture, compression, transportation, and geological injection
process, and store the gas in the geological formation
permanently (Damiani et al., 2012; Aminu et al., 2017).
Among various components of CCUS technology, CO2

capture and deep saline aquifer storage provide the largest
identified storage potential to achieve CO2 mitigation in
energy and industrial sectors for at least a century (Kobos
et al., 2011; Davies et al., 2013; Ziemkiewicz et al., 2016;
Kelemen et al., 2019).

A sophisticated evaluation of CO2 storage capacity is necessary
to determine the technically feasible and affordable portion of
total storage capacity or storage resource. Reliable capacity
evaluation is essential in ensuring the acceptance of
stakeholders and successful deployments of CCUS technology
(Bachu et al., 2007; Bradshaw et al., 2007). CO2 storage capacities
in hydrocarbon reservoirs can be straightforwardly assessed
through existing algorithms that use reservoir properties,
recoverable hydrocarbon reserves, and CO2 storage efficiency
(Wei et al., 2015c). However, the CO2 storage capacities face huge
uncertainties because of complex geological reservoirs and
various trapping mechanisms that instantaneously occur at
different rates, spatial volume, and timescales, especially for
CO2 storage in deep saline aquifer formations (Bachu et al.,
2007; Bradshaw et al., 2007; Anderson, 2017). Unlike CO2 in
oil and gas fields with detailed data on on-site characterizations
and site operating data in previous recovery processes, the CO2

aquifer storage is constrained by the data availability and
experience in long-term commercial-scale CO2 storage
projects. Consequently, stakeholders, especially decision-
makers, may face considerable difficulties in ascertaining the
realistic capacity, risk, and related costs (Anderson, 2017;
Elenius et al., 2018).

Aside from numerous scholars, several organizations, such as
the United States Department of Energy (US-DOE), Carbon
Sequestration Leadership Forum (CSLF), Energy and
Environmental Research Center, US Geological Survey
(USGS), Petroleum Resource Management System, and
International Energy Agency (IEA), have independently
developed various methods and capacity classification systems
that have been applied globally (Co2Crc, 2008; Gorecki et al.,
2009d; Netl, 2010; Bachu, 2015). However, no single, consistent,
and broadly available method for estimating CO2 storage capacity
exists, whereas various studies have used different assumptions,
algorithms, and site data; and given assessment results that are
extremely difficult to compare (Bradshaw et al., 2007; Höller and
Viebahn, 2016). Similarly, even by the same method, the values of
storage efficiency and resulted capacity published in the literature
manifest wide variations, and no complete set of values can be
universally referred to and be accepted by the stakeholders
(Bradshaw et al., 2007; Goodman et al., 2011; Bachu, 2015;
Höller and Viebahn, 2016). The major reasons for difficulties
stem from different capacity assumptions, algorithms, data
quality (data types and details), and other important factors.

These factor can be grouped into follows: 1) clear and accepted
definitions of technical features (e.g., open or closed boundary
conditions, well fields and well structure, pressure buildup
management technologies, site operating strategy, geological
setting, and others); 2) detail levels of site characterization and
data quality (data types and resolution) used; 3) recognition and
proper use of trapping mechanisms at specific temporal and
spatial scales; 4) consistent methodologies with consistent storage
efficiency coefficients; 5) algorithms and analysis tools integrating
data of site characterization; 6) capacity at various spatial and
temporal scales, such as country, basin, and site scales, and
various temporal scales such as different period of site
operating, post-closure, long-term fate of thousands of years
(Szulczewski et al., 2012); 7) capacity with economic
characteristics (Eccles et al., 2009); 8) applicable capacity
satisfying regulation and legislation constraints, such as
maximum pressure for CO2 injection, coverage of minerals in
various geological formations, and area of interest, which is the
areal coverage of the subsurface volume permitted by the
administrative system for CO2 injection; 9) recognition that
storage capacity estimates vary with the emergence of new
available data and technologies, contradictions with any
commodity, and economic, regulatory and legislative
conditions, thereby affecting the uncertainty information
(Bradshaw et al., 2007; Gorecki et al., 2009c; Wennersten
et al., 2015; Höller and Viebahn, 2016). Furthermore,
affordable, applicable or actual capacity depends not only on
the subsurface geological characteristics but also on important
geographic and non-geological factors, such as technical
schemes, legislative and regulatory requirements, social and
economic factors, the proximity of source and sink, incentive
policies, and other supportive policies (Gorecki et al., 2009a;
Szulczewski et al., 2012; Bachu, 2015). The CSLF techno-
economic resource-reserve pyramid, which was first
presented by Bachu et al. (2007), classified CO2 storage
capacity/resource into four types: theoretical capacity/
resource (capacity is herein used as capacity/resource), which
is the maximum amount of CO2 that the geological system can
ultimately store; effective capacity, which represents the CO2

storage capacity constrained by the physical and chemical
characteristics of the system using specific technical schemes;
practical capacity, which means the geological capacity further
constrained by techno-economic, regulatory, and legislative
factors; and matched capacity, which represents possible
CO2 capacity in potential full-chain CCUS projects that
link CO2 sources with suitable geological sites and can be
deployed affordably under market-oriented and supportive
environments (Bachu et al., 2007). Similarly, other
classification systems are established to describe the capacity
results. There is no single system to classify various capacity
methods and corresponding results in a unified framework
(Co2Crc, 2008; Gorecki et al., 2009d; Netl, 2010; Bachu,
2015). Consequently, a necessary task is to develop a CO2

storage resource/capacity evaluation framework that can be
broadly applied and allow comparison of various assessments
(Bradshaw et al., 2007; Gorecki et al., 2009c; Höller and
Viebahn, 2016).
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This study aims to present a unified hierarchical framework of
CO2 storage capacity assessment to harmonize various
methodologies and key factors of capacity assessment and
provide a clearer definition of CO2 storage capacity types
using trapping mechanisms, types and detailed levels of data,
and related algorithms. Meanwhile, data and algorithms can be
screened and selected to satisfy the different requirements for
capacity evaluation at different stages. Finally, as an example, this
hierarchical framework is used to classify the storage capacities of
onshore saline aquifer formations in China in literature.

2 REVIEW ON KEY FACTORS AND
ALGORITHMS OF CAPACITY EVALUATION

The CO2 capacity/resource assessment processes are analogous to
those used in the hydrocarbon industry through a classification of
resource types and assessment stages until project commencement
(Doe-Netl, 2018). Geologic uncertainties and assessment
algorithms cause significant uncertainties in the storage
capacity. Geologic complexity can affect site performance (such
as injectivity rate, ultimate capacity, and risk) and related storage
costs as much as an order of magnitude (Middleton et al., 2012b).
High requirements of storage mechanisms, types and detail levels
of site characterization data, and related algorithms cause
considerable challenges in the reliable estimations of CO2

capacity in deep saline aquifers. Additionally, the reliability of
CO2 capacity assessment depends not only on the geological
characteristics but also on other important non-geological
factors, such as technical schemes (engineering design),
legislation and regulation requirement, risk minimization, social
and economic aspects, source-sink matching, administrative
permitting and verification, and policy systems (Middleton
et al., 2012a; Gale et al., 2015; Middleton and Yaw, 2018).

Accordingly, the reliable storage capacity of CO2, including
capacity magnitude, geographical distribution, technical
feasibility, risk, and cost range, is the key to deploying and
scaling up the CO2 aquifer storage projects to achieve
affordable CO2 mitigation. The affordable or feasible capacity,
deployed at scale under certain conditions, depends on several
important factors. These factors include technical readiness,
suitable storage volume, cost competitiveness, risk level,
environmental policies, incentives or subsidies for carbon
mitigation, administrative procedures, financial support, and
legislation and regulation system. These factors of capacity
should clearly illustrate the follows: 1) trapping mechanisms of
CO2 act in heterogeneous formations at multiple spatial scales
(country, regional, site, and core scale) and time frameworks of
assessment (e.g., long-term geological era and cessation of
injection), 2) various detail levels or stages of site
characterization, including basin scale and site scale data, and
even core-scale site properties (De Silva and Ranjith, 2012;
Issautier et al., 2014); 3) algorithms and analysis tools
integrating site characterization data; 4) technical scheme, such
as fluid properties of CO2 stream containing impurities, well
fields, and injection strategy including injection control, injection
rate and duration, water production, conformity control, risk

management scheme, and other technical schemes (Popova et al.,
2012); 5) economic features: levelized cost of CO2 storage or net
mitigation cost of full-chain CCUS projects; 6) source–sink
proximity: characteristics of potential source–sink pairs for
deployments (Dahowski et al., 2012; Edwards and Celia, 2018;
Middleton and Yaw, 2018); 7) properties of CO2 emission sources
affect the overall cost and feasibility of full-chain CCUS projects
dramatically, such as high-purity CO2 from industrial separation
process in coal chemical and biochemical factories, and low-
concentration CO2 from burning and chemical reaction
processes, such as coal power plants, iron and steel, cement
factories, and CO2 directly captured from air (Wei et al., 2014;
Leeson et al., 2017; Porter et al., 2017; Edwards and Celia, 2018);
8) social, economic, legislation, regulation, policy, administrative
procedures, and environmental constraints such as maximum
down-hole injection pressure, proximity to area with high
population density, risk acceptance levels, permitting and
supervision procedures in the administrative system, support
or incentive policy environment.

The factors causing uncertainties of CO2 capacity evaluation
mainly come from two parts: data quality (available data types
and data resolution) and related algorithms are handling multiple
factors and various data types. In terms of algorithms, the key
factors that affect capacity evaluation can be grouped into storage
mechanisms considered and constraint conditions (technical,
economic, risk, regulation, legislation, and social factors). The
algorithms integrate available data types with different detail
levels and then assess capacity with selected factors. Because of
the data scarcity, the uncertainties of CO2 capacity evaluation
decrease with higher data precision and additional evaluation
factors or data types.

2.1 Data Compilation With Various Types
and Resolution
The most common ways to integrate massive data are geological
model building tools, GIS software, image processing tools, and
data processing tools. Various types and detailed levels of
available site data and corresponding algorithms can be
integrated into a data compilation system.

2.1.1 Data Types
Data types can be grouped into subsurface data (underground
geological data) and surface data (geological and non-geological
data). The data types and spatial scales for storage capacity are
shown in Table 1. Aquifer formations have substantial spatial
variations of physical and chemical properties due tomultiple-scale
heterogeneity, leading to significant uncertainty in the storage
assessment (Lv et al., 2015; Han and Kim, 2018; Jayne et al.,
2019; Wen and Benson, 2019). Consequently, the uncertainties of
storage capacity evaluation are always defined on the basis of the
deep underground data or site characterization.

Subsurface Geological Data
The subsurface geological data can be classified into several types
at various spatial scales: 1) properties of reservoir-seal pairs,
geographic sequence, and spatial distribution of sedimentary
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facies system and lithology with different physical and chemical
properties, such as lithology, pressure, temperature, porosity, and
permeability, entry pressure, compressibility, thermal
conductivity, and other properties; 2) boundary conditions
(open, semi-open, or closed systems), tectonic setting (active/
inactive faults with/without vertical communication among
different geological stratum), and sedimentary facies system
(continuity at a regional scale); 3) geo-fluid properties (water
salinity, viscosity, phase behavior, density, capillary pressure,
solubility, empathy, and dynamic thermal properties) (Dewers
et al., 2018). The characterization data of reservoir-seal pairs
mainly include spatial distribution of physical and chemical
properties, such as porosity, permeability, relative permeability,
capillary pressure, geochemistry, minerals, in-situ pressure,
temperature, lithology, salinity, rock compressibility, fracture
pressure, and mechanical properties of rock. The boundary
conditions mainly focus on the open or closed boundary, such
as outcrops of aquifer formations, low-permeable facies,
impermeable or permeable faults, and other potential leakage
pathways. The regional geological data focuses on the
sedimentary system, tectonic, and diageneses process at a
basin- and sub-basin scales.

The various types and detailed levels of geological data should
be assimilated into data collection and evaluation tools. The most
common methods to incorporate massive data are geological
models, geographic information system (GIS) data, image
processing models, data stacks, and other geological models or
software. In most scenarios, these geological data can be compiled
into GIS systems, such as ArcGIS, MapGIS, MapInfo, QGIS, and
reservoir modeling software used by the petroleum industry, such

as CMG by Computer Modeling Group, Schlumberger’s Petrel
software, landmark, Geostatistical Software Library, and GoCAD
(Iea-Ghg, 2009; Jiao and Surdam, 2013; Li et al., 2015). Using
reservoir modeling tools, various algorithms based on geological
models can calculate storage efficiency coefficients and CO2
storage capacity.

Similar to deterministic and stochastic methods, two types of
geological models, homogeneous and heterogeneous, are used in
capacity evaluation. Homogeneous models can be generated
using the average properties of reservoirs derived from the
database. The storage coefficient factor in a homogeneous
model can be calculated using the algorithms above. A
heterogeneous model can be built considering the spatial
distribution of lithology, structural settings, geochemical
environment, and mineral composition. The properties can be
derived from site characterization or dataset extrapolated from
the well-known nearby site by theoretical reservoir engineering
analysis. The resolution of the heterogeneous model depends on
the resolution of site characterization and data extrapolation.
With sufficient data and extrapolation tools, the results of the
heterogeneous model can cover a more comprehensive
uncertainty range than that of the homogeneous model.
However, homogeneous models for large-scale evaluation are
more plausible than heterogeneous ones because they are time-
saving, efficient, and available in building models, and efficiently
perform with limited data, especially in the stochastic analysis
that requires large computation capacity.

These site-scale data usually contain well drilling and logging,
2D/3D seismic investigation, micro-gravity investigation, site
operating data, geodetic survey, and other sources (Birkholzer

TABLE 1 | Various data types and spatial scales for storage capacity evaluation.

Data types Components of data types Data resolution

Sub-surface geological data (geological
model)

Stratigraphic sequence and tectonic units at various levels; Sub-basin to basin
scale

Spatial distribution of sedimentary facies and lithology Sub-basin to site scale
Site characterization data include well drilling, 2D/3D seismic investigations, electromagnetic
investigation, micro-gravity, down-hole geo-physical and chemistry sampling, core samples, and
others
Physical and chemical properties of rock reservoir-seal pairs such as porosity, permeability
(relative permeability), capillary pressure curve, lithology, and others

Site-scale and core-
scale

Hydraulic flow and water quality data in a deep geological formation Site scale
Boundary conditions, including hydrodynamic boundary, basin dynamic processes, lithology,
geothermal field, and others

Site scale

Surface geological data Surface geological map, including a geographic map, geological sequence, well coordination,
landformmap, national resources, national reserve parks, rivers, lake systems, and other datasets

Sub-site scale

Hydraulic flow and water quality data in shallow ground Core to sub-site scale
Shallow investigation wells and other investigation data Core to sub-site scale

Surface non-geological data (data stacks and
GIS data)

Underground human activities, such as exploring wells, coal mining, oil and gas production,
geothermal recovery

Sub-site scale

Social and economic distribution, including cities, industrial centers, population centers,
transportation, underground activities, and others

Sub-site scale

Legislation and regulation constraints Sub-site scale
Policy and administrative systems in different regions Sub-site scale
Economic parameters Project or equipment

scale
Others Sub-site scale
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and Tsang, 2008; Kim et al., 2014). However, available geological
data in the petroleum industry are limited before detailed site
characterization. The confidence of geological investigation is
always defined by the number of investigation wells and density
of seismic investigation in the geological volume of interest. More
flexible methods such as the variable grid method can allow
various data qualities while preserving the overall spatial trends
and patterns (Bauer and Rose, 2015).

Surface Data
The surface data are mainly non-geological and can be grouped
into several types: 1) geological data including surface geological
characteristics, lithologies, metamorphic rock, igneous rock,
stratigraphic contour line, earthquake records, first and
secondary tectonic units, outcrops, and others; 2) geographic
and geomorphic data including mountains, water system,
landform, climate, precipitation, wind energy, solar power,
geological hazards, and other features; 3) social and
environmental data, including CO2 emission sources,
transportation system, natural preservation park, mining,
natural resource, oil and gas field, well information, vegetables,
cities, population, industry, economic density area, infrastructure,
economic parameters, climate, evaporation, water system, natural
preserves, and others. These surface data can be compiled using
various data forms of point, polyline, polygon, raster, vector, data
stacks, or other types such as ArcGIS, MAPGIS, Access, and
mathematical tools developed by various computing languages.
The algorithms related to non-geological factors can refer to
existing algorithms that perform site suitability and risk analysis.
These algorithms include multi-criteria analysis with empirical or
statistical criteria, analytic hierarchy process, spatial analysis in
GIS systems, numerical modeling, probability analysis, and others
(Ellett et al., 2013; Wei et al., 2013). Using knowledge integration
and data assimilation of the multiple types of site data at multiple
scales and theories of sedimentary basin evolution can improve
geology assessments (Popova et al., 2014; Dilmore et al., 2015).

2.1.2 Resolution of Data
The detail level of various data types can be grouped according to
the data types above.

Sub-surface Geological Data
Data resolution or accuracy is the smallest difference between
adjacent positions/sites that can be recorded at a spatial dimension.
The resolution is also the character difference between the
interpreted value and the true value. Data uncertainties are the
combined effect of site investigation and data interpretation tools;
the uncertainty from data compilation tools handling massive data
can be neglected. The resolution of site data depends highly on the
coverage and details of site characterization tools. In order of
decreasing resolution and increasing coverage, these tools inlcude
petrophysical and chemistry properties experiments at pore and
core scale, well drilling and logging, geophysical investigation (such
as profile interpretation crossing multiple wells, 2D/3D seismic
investigation, and micro-gravity investigation), and theory of
sedimentary process and tectonic activities. Current site
characterization is usually conducted by standard petroleum

and underground mining technologies. The proximate
resolution of site characterization generally ranges from 0.1 m
to several hundred meters depending on the characterization
approaches and spatial correlation from investigated points with
high resolution by well logging and core analysis to low-resolution
points by seismic investigation and profile interpreted by data
assimilation. The assimilation of various data sources can provide
reliable geological models of storage sites (Chen et al., 2020a).
However, most capacity assessments are conducted before the
stages of detailed site characterization and the stage of
contingent resource assessment; the spatial resolution of
geological data is much lower than that of seismic
investigations. Therefore, the ideal geological model should be
built using sufficient data obtained by various site characterization
tools and data interpretation tools. These tools contain core
characterization, well logging, 2D/3D seismic survey,
electromagnetic investigation, micro-gravity investigation,
theoretical basin modeling technologies (sedimentary, tectonic,
and diagenesis theory), etc.

Nevertheless, data scarcity and imbalanced datasets are
common; this decreases the certainties of assessed capacity.
The quality of geological data can be defined by the number
of investigation wells with well logging or the coverage of 3D/2D
seismic investigation in a given area (Pearce et al., 2013; Niemi
et al., 2016; Chen et al., 2020a). Although the subsurface data can
be refined by high-cost site characterization, the uncertainties of
subsurface geological data are incredibly high compared with that
of surface data, which low-cost and large-area investigation
technologies can obtain. The only suitable method to reduce
the uncertainties of the geological model without sufficient
detailed site characterization is stochastic approaches using
data assimilation and synthesized modeling technologies based
on available statistical data (Popova et al., 2014; Dilmore et al.,
2015). The geological model can also be integrated into data
compilation tools; then, the fluid dynamic analysis can be fulfilled
by site performance tools, such as fluid dynamic analysis tools
compatible with GIS and geological modeling tools.

Surface Data
The surface geological data can be an extension of sub-surface
geological data when the data resolution is insufficient. However,
the data precision of surface geological data is much higher than
that of sub-surface data in most cases for abundant methods of
the data acquisition and existing dataset. Consequently, surface
geological data can be compiled independently. The surface
geological data, especially the faults, outcrop data, geological
sequence, and landform, are always presented using GIS tools
by a vector (such as point, polyline, polygon, polyhedron, class,
and others), raster data types, and data stacks by other
mathematical tools. The spatial resolution is much higher
compared with that of sub-surface data.

The non-geological data, especially surface transportation,
railway, industries, mining, weather, precipitation map,
legislation, economic, and social data, are always presented in
GIS tools by vector or raster data types and other mathematical
tools using data stacks. The acquisition technologies and
resolution of surface non-geological data are considerably
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different from that of sub-surface geological data. A rigorous
statement of accuracy can be used with statistical descriptions of
uncertainty and error. For example, in raster-type data, the
resolution is the effective size of each grid cell expressed as the
length of each cell (or area). The units can be in (arc) degrees,
minutes, or seconds in the geographic coordinate system, or
meters, kilometers, and other units in the projection coordination
system. Data resolution increases with the decreasing size of the
cell (Naumova et al., 2006). The spatial resolution of data is
shown in the form of scales, which is the smallest distance (or
cellular size) that can be represented, such as 1, 250, or 2,500 m in
the map of 1:2, 500, 000 scales. Most surface data on non-
geological features can be obtained with a spatial resolution
ranging from tens of meters to several centimeters by a series
of mature technologies, such as remote sensing or multiple
spectrum photographic surveys by satellites or unmanned
aerial vehicles, interferometric synthetic aperture radar,
geodetic surveying, national site investigation, satellite
investigation (remote sensing, remote spectrum sensing, and
global positioning system), and other satellite-, flight-, and
vehicle-based surveying technologies with high precision.
Meanwhile, the data resolution of non-geological data is much
higher than the general resolution of sub-surface geological data
with an average spatial resolution of several meters or tens of
meters. The resolutions of surface data are sufficient for capacity
evaluation at various scales, such as reservoir and site scales. Most
GIS data are spatially analyzed in the form of features, polygons,
or raster data. Given specific social, economic, legislative, and
regulatory constraints, the uncertainties of CO2 capacity
evaluation mainly come from the available data and
algorithms of sub-surface geological features rather than
surface features.

This data quality review clarifies that future efforts focused on
site characterization and data collection of geological formations
with favorable reservoirs may provide a more useful settlement
for capacity evaluation and feasibility studies on CO2 aquifer
storage projects.

2.2 Technical Schemes and Storage
Mechanisms
Assessing the CO2 storage capacity in aquifer formation is
challenging because of complex trapping mechanisms that
simultaneously act at different rates and timescales in the highly
heterogeneous formations (Bachu, 2015; Aminu et al., 2017;
Elenius et al., 2018). In target formations, CO2 is trapped
underground using various types of trapping and storage
mechanisms, such as stratigraphic and structure, dissolution,
chemical, residual gas, geothermal, and adsorption trapping
(Bruant et al., 2002; Yang et al., 2010; Szulczewski et al., 2012;
Wang et al., 2013; Emami-Meybodi et al., 2015; Krevor et al., 2015).
Due to the timescales of CO2 storage projects, free gas trapping and
non-reactive solubility trapping are major mechanisms in most
reservoirs during the CO2 injection period; the geochemistry and
residue trapping gradually have a significant role in the post-
closure stage (Gorecki et al., 2009b). The fraction of various storage
mechanisms evolve with time and highly depends on reservoir

characteristics (Gorecki et al., 2009d; De Silva and Ranjith, 2012;
Aminu et al., 2017). At present, most existing methods mainly
consider free gas, solubility trapping, and residue trapping
mechanisms, which contribute mainly during the CO2 injection
period or post-closure (Aminu et al., 2017). Few storage capacity
estimation approaches have considered the mineral, adsorption,
and other trappings due to fewer contributions, complexity, and
long-time effect without efficient history matching (Aminu et al.,
2017). In these approaches, the geological model-based numerical
simulations are considered relatively accurate approaches
considering key trapping mechanisms at various time scales
(from injection periods to thousands of years) and spatial scales
(from the core-to the basin-scale).

The portions of trapping mechanisms in a given CO2 storage
project depend on the impact of the technical scheme of the CO2

injection process, reservoirs characteristics, and other properties.
The complexity of CO2 migration created by reservoir
heterogeneity and pressure buildup affects portions of various
storage mechanisms and results in various storage efficiency
coefficients and ultimate storage capacities (Deng et al., 2012;
Birkholzer et al., 2015; Chadwick et al., 2019). The CO2

preferentially migrates through the high permeable channels
or fans toward the low-resistance boundary, which are caused
by hydrodynamic effects in open boundaries and compressibility
of high-volume fluids, expansion of reservoirs, quick dissolution
in brine water, quick chemical reactions with rock, and others in
closed systems (Zhou et al., 2008; Birkholzer et al., 2015). The
main highly permeable channels, delta sheets, and fans always
exist in heterogeneous reservoirs with complex sedimentary
environments, tectonic history, and diagenesis processes. The
preferential migration patterns of CO2 plume in formations
reduce the areal and vertical displacement efficiency and
ultimately decrease the storage efficiency of CO2 in a given
geological volume; proper technical schemes can hamper the
preferential flow and control conformity in the reservoir. The
technical schemes of CO2 storage significantly affect the site
performance, consequently injectivity, storage efficiency,
capacity, economy, risk management, and even site feasibility
(Okwen et al., 2011; Thanh and Sugai, 2021).

Most existing capacity approaches have the theoretical
capacity with a sole injection of CO2, which is related to the
consideration of storage mechanisms and geological
characteristics, such as porosity, gross thickness, permeability,
area, hydrodynamic parameters, and boundary conditions.
However, large volumes of CO2 injection in deep saline
aquifers can trigger large-scale pressure buildup and brine/
contamination displacement, reduce storage efficiency by
increasing in-situ pore pressure, and impeding water migration
to a nearly geological volume beyond what is permitted
(Birkholzer et al., 2009; Bergmo et al., 2011; Wainwright et al.,
2013; Birkholzer et al., 2015). The geological space for CO2 is
mainly created by the displacement process of water in the open
system and water compression and rock extension in the closed
boundary system; by contrast, space for CO2 is mainly created by
the compression of water and expansion of rock mass in a closed
system (Zhou et al., 2008; Iea-Ghg, 2009; Szulczewski et al., 2014;
Liu et al., 2015). The CO2 capacity is limited in migration and
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pressure, thereby requiring the pressure management
technologies through engineering technology to decrease
reservoir pressure buildup and restrain the size of the CO2

footprint (Surdam, 2013; Liu et al., 2015; Anderson, 2017).
The pressure buildup phenomena increase the risk of

hydraulic fracturing of caprock, the reactivity of existing faults,
leakage through caprock, leakage through lateral pathways, and
ultimately pose a high risk on storage projects and limit the CO2

storage capacity underground. In the CO2-EWR process, similar
to that of CO2 enhanced crude oil recovery, CO2 functions in a
manner similar to a displacement fluid to enhance the recovery of
water resource, and CO2 is trapped underground simultaneously
(Bergmo et al., 2011; Damiani et al., 2012; Emami-Meybodi et al.,
2015; Santibanez-Borda et al., 2019; Song et al., 2019). The
operating procedure of CO2-EWR is similar to that of CO2-
EOR but with much larger well spacing, well injectivity, and flow
rate of a single well. The sweep efficiency, capacity evaluation, and
sweeping efficiency approaches can be based on these generic
methods and tools in the petroleum and geological industry to
improve storage capacity.

The engineering approaches, e.g., well field, well type,
conformity control, hydraulic fracturing, and other
technologies, can use pressure mitigation or water production
wells to store CO2 safely and efficiently at the site or regional scale
and keep the mass balance underground. These engineering
approaches can bring several benefits such as creating
underground space for CO2 storage, enhancing CO2 injectivity
and water production, mitigating pressure buildup, and
enhancing utilization of porous spaces underground (Kuuskraa
et al., 2011; Okwen et al., 2011; Zhang et al., 2014). The types of
well patterns could be five-spot, inverse five-spot, seven-spot,
nine-spot, or other type of the well patterns that can be optimized
and refined according to the reservoir properties and site
performance. The diverse types of well structure include
vertical/horizontal with multiple branches and perforations,
reservoir reform (permeability improvement by hydraulic
fracturing, acid, or other chemical components), and complex
well structure (horizontal/multilateral wells with multistage
perforation into multiple geological layers). A good wellfield
increases the contact area between well boreholes and
reservoir and then enhances the storage efficiency coefficient
of CO2. Similar to efforts in the petroleum and geological
investigation industries, the sweep efficiency and storage
capacity can be enhanced by existing methods and next-
generation technologies under development (Zhang et al.,
2014; Costa et al., 2019). The disadvantage is the requirement
of additional engineering technologies, which could increase the
capital and operating costs. A conformity control technology
suitable for geological heterogeneity with fluvial facies
significantly affects the storage efficiency coefficient. The
conformity control technologies include refinement of well
field, injection-production management, surfactant, thickness,
impurities, gravity-stabilizing gas injection, cycling injection,
water-alternating-gas, thermal effect, hydraulic fracturing, and
several next-generation CO2–EOR/storage technologies (Bergmo
et al., 2011; Damiani et al., 2012; Wei et al., 2015b; Emami-
Meybodi et al., 2015; Goodarzi et al., 2015; Krevor et al., 2015;

Talman, 2015; Wang et al., 2015; Wang et al., 2016; Ampomah
et al., 2017). The technical scheme includes the well drilling and
complement, storage equipment, and operating and maintenance
procedures that can be designed accordingly.

The technical schemes significantly affect storage processes,
safety, and storage capacity in aquifer formations. Consequently,
assessing the storage capacity of a given aquifer site should
consider technical schemes extensively.

2.3 Algorithms for Capacity Assessment of
Geological Volume
The various types of storage capacity are calculated by algorithms
that integrate various data types and detailed levels of data. These
algorithms for storage capacity should integrate factors such as
selection of storage mechanisms, site suitability, technical
schemes, techno-economic properties, and source-sink
proximity.

2.3.1 Algorithms for Storage Mechanisms and
Sub-surface Geological Data
The algorithms for storage mechanisms are based on cross-scale
science with spatial scales from the pore, reservoir, and site to
regional and temporal scales from tens to thousands of years
(Middleton et al., 2012a; Middleton et al., 2012b). The cross-
scaling algorithms should overcome the cross-scale effect,
including upscaling or downscaling various spatial and
temporal scales. The algorithms can quantitatively estimate
the spatial migration of CO2 and other physicochemical
responses in a reservoir. Numerous assessments on CO2

storage mechanisms have been conducted based on various
data types and precision as well as assessment algorithms,
starting with static volumetric algorithms underpinned by
deterministic-based reservoir models and progressing through
an analytic model, reduced-order methods (ROMs), numerical
simulation, and dynamic algorithms with advanced site
characterization, at a variety of spatial scales ranging from
country scale to site-specific scale and temporal scales
ranging from injection period to thousands of years after
CO2 injections (De Silva and Ranjith, 2012; Cantucci et al.,
2016; Höller and Viebahn, 2016; Middleton and Yaw, 2018).

The existing capacity evaluation at a large scale without
detailed site characterization always uses simplified geological
models and empirical-, analytic- and simplified numerical
models to provide a reasonable capacity magnitude
assessment (Claridge, 1972; Middleton et al., 2012a; Wei
et al., 2015a). Most methods rely on theoretical and geo-
cellular volumes of the storage reservoir considering certain
storage mechanisms in a specific period, e.g., from CO2
injection to cession of injection or the ultimate status of
injected CO2 (Cantucci et al., 2016). The dynamic
approaches predict the temporal and spatial behavior of
injected CO2 and reservoir responses over a desired period
(Aminu et al., 2017). In contrast, static models are at
equilibrium or in a steady state. Therefore, the static and
dynamic methods are equivalent through conversion when
dynamic approaches predict CO2 behavior at a specific time.

Frontiers in Earth Science | www.frontiersin.org January 2022 | Volume 9 | Article 7773237

Wei et al. CO2 Storage Capacity

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Statistical Algorithms
When statistical data are available, the storage efficiency
coefficient can be obtained by applying the commonly
established static algorithms using pore volumes of geological
formations and storage coefficients under desired conditions, e.g.,
mass-balance conditions. The statistical algorithms for storage
capacity efficiency can be simplified as a product of various
components, especially when the correlation coefficients are
weak. In general, the statistical distributions of various
components are diverse; the logistic-normal and normal
distribution functions were mostly chosen to describe
geological parameters and the storage efficiency coefficients
(Middleton et al., 2020).

Most-capacity evaluation methodologies currently use
volumetric-based or mass-balanced approaches for estimating
theoretical CO2 capacity in a geological medium at regional and
sub-basin scales (Goodman et al., 2011; Goodman et al., 2016).
The US-DOE, Carbon Sequestration Leadership Forum (CSLF),
International Energy Agency, Greenhouse Gas R&D
Programmer, and the United State Geological Survey (USGS)
have independently developed methodologies for capacity
assessment of CO2 storage in open aquifers (Bachu et al.,
2007; Bradshaw et al., 2007; Co2Crc, 2008; Zhou et al., 2008;
Iea-Ghg, 2009; Kopp et al., 2009a; Kopp et al., 2009b; Goodman
et al., 2011; Goodman et al., 2013; Doe-Netl, 2018). These most
cited approaches have been applied around the world for basin-
and country-scale assessments (Bachu, 2015). These approaches
are based on similar assumptions on storage mechanisms, such as
free gas trapped by the stratigraphic structures or hydrodynamic
systems, solubility, reaction, or residue trapping. The US-DOE
method calculates the CO2 storage capacity based on a volumetric
approach with sweeping efficiency by hydrodynamic processes.
The CSLF method states that the theoretical capacity is the
maximum amount of CO2 that can be stored in the pore
space minus the irreducible water saturation. The USGS
method assesses capacity using both residual and buoyant
trapping mechanisms in the open part of the aquifer (Brennan
et al., 2010; Aminu et al., 2017). Only structural and stratigraphic
trappings were considered as key storage mechanisms rather than
hydrodynamic trapping (Bachu, 2015; Aminu et al., 2017). Given
the same technical schemes and conditions of geological stratum,
most methodologies can be equally applied to aquifers or regions
of interest; these methodologies and approaches are equivalent
through some conversions among various factors, such as storage
efficiency coefficients (Brennan et al., 2010; Goodman et al.,
2013). However, closed and semi-closed systems’ storage
capacities are significantly different from those in open
systems (Zhou et al., 2008; Bader et al., 2014; Elenius et al.,
2018). The compressibility/expansion-based (or pressure-
limited) algorithms for closed and semi-closed systems assume
that injected CO2 displaces natural brine and occupies additional
pore volume caused by pore geometry expansion and brine
compressibility during the pressure buildup processes;
consequently, the assessed results are limited (Zhou et al., 2008).

The basis for capacity estimation is essentially the integration
of the production of the volume of storage formation, storage

efficiency coefficient, and average CO2 density at reservoir
conditions (ρCO2 ) (Doe-Netl, 2018), as follows:

GCO2 � ∫ ρCO2 · φtot · Es · dV
� ∭ρCO2 · A · hg · φtot · Es · dx · dy · dz, (1)

GCO2 � ρCO2 · Vbulk · Es � ρCO2 · A · hg · φtot · Es, (2)

where Vbulk is total pore volume of geological formation for
assessment [L3]; ρCO2 is CO2 density under reservoir conditions
[M/L3], A is the surface area for reservoir [M/L3], φtot is the
porosity of reservoir [-], Es is storage efficiency coefficient [-],
which is defined as the proportion of available pore volume
accessible for storage. Es reflects the fraction of a given
geological volume in which CO2 can be effectively stored
(Gorecki et al., 2009b). For high-resolution evaluation, the
resource can use discrete methods by dividing the site of
interest into cellular or grid aggregation (Eq. 1). The cellular
size is determined by the detailed level of geological data and the
resolution requirement of evaluation.

GCO2 � ∑N

i�1∑
M

j�1∑
L

k�1GCO2 i,j,k

� ∑N

i�1∑
M

j�1∑
L

k�1(Ai,j · hi,j,k · φi,j,k · ρCO2 i,j,k · Es i,j,k), (3)

whereGCO2 [M] is the mass estimate of CO2 capacity;A [L2] is the
surface geographic area defining the geological volume for
storage; GCO2 i,j,k [M] is the CO2 capacity of the cellular i, j, k
being assessed within the region; hi,j,k is the gross thickness of the
cell i, j, k [L]; φi,j,k [-] is the total porosity of the assessed
formation volume; ρCO2 i,j,k is the density of CO2 evaluated at
storage conditions [M.L−3]; N, M, L is the maximum index
number for i, j, k dimension, respectively; and Es i,j,k is the
storage efficiency coefficient in cells i, j, k and is the product of
several factor components [-]. In general, the storage coefficients
increase with decreasing evaluation scale, and the uncertainties of
CO2 source decrease with reducing evaluation scale.

When the grid or cellular sizes differ, the variable grid or
cellular methods are more flexible methods that allow for capacity
assessment with different spatial sizes with different data quality
(Bauer and Rose, 2015). Storage efficiency coefficients also
depend on storage mechanisms acting at different spatial
scales (cellular size) and temporal scales. At national and
regional (basin) scales, the empirical and analytical methods
can speedily obtain reasonable resolution storage efficiency
coefficients (Iea-Ghg, 2009). At the site scale, detailed
geological models and reservoir modeling tools can be used
for storage efficiency coefficients and storage capacity with
more storage mechanisms and higher resolutions.

Multiple physical and chemical coupling processes must be
embodied in complex geological models and assessment tools to
apply more trapping mechanisms accurately. Using existing
algorithms and tools, CO2 capacity evaluation with detailed
site characterization can achieve very high resolution (Wei
et al., 2015a; Rezk and Foroozesh, 2019; Wen and Benson,
2019). Advanced approaches with more data can provide more
reliable capacity results considering more storage mechanisms
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andmore detailed site characterization data over a desired period,
especially with monitoring and production history data (Rezk
and Foroozesh, 2019; Wen and Benson, 2019). However, no
single approach can simulate all these coupling processes of
trapping mechanisms reliably at once, nor is such a model
necessary for practical purposes.

Current dynamic approaches rely highly on geological models
and numerical algorithms with limited resolution and inconclusive
factors before detailed site-specific data and history matching
(Bachu, 2015). By contrast, the analytic and simplified
numerical approaches are more flexible and applicable with
precious data of limited site characterization and computation
resources. Accordingly, the static approaches with statistical and
analytical algorithms have been used broadly and routinely in
large-scale capacity assessments compared with the dynamic
methods because of more flexible and applicable with limited
site characterization. (Cslf, 2008; Doe-Netl, 2018).

Analytical Algorithms
Analytical algorithms using several assumptions can quickly
obtain storage capacity. These analytical algorithms include
those for multiphase flow, semi-analytical algorithms of
multiphase (two-phase) flow, solute-transport models of
multiple phases and multiple species, coupled multiphase-
reaction-temperature algorithms, coupled geomechanics-flow
algorithms, and others (Claridge, 1972; Nordbotten et al.,
2005; Okwen et al., 2010; Szulczewski et al., 2014; González-
Nicolás et al., 2015; Ganjdanesh and Hosseini, 2018; Middleton
et al., 2020; De Simone and Krevor, 2021). The analytical
algorithms are preferred because they require a relatively small
amount of data based on the idealized or conceptual model and
can provide quick assessments with acceptable resolutions,
especially for basin or sub-basin scale evaluations with limited
data. However, the analytical algorithms must use several
assumptions to solve the equations mathematically but miss
important mechanisms of the CO2 storage, such as
heterogeneity of aquifer formation, injection strategy,
buoyancy, mobility ratio, multi-phase dissolution, rock-brine-
CO2 interaction, and others. Consequently, the usage of these
algorithms should be careful under certain conditions.

These approaches can also be grouped into deterministic
methods and stochastic methods in the perspective of data of
site characterization. The geological formation has substantial
spatial heterogeneity of physical and chemical properties due to
a complex history of sedimentary, tectonic, and diagenetic
processes, and the heterogeneity causes significant uncertainties
in capacity and site performance assessment (Burruss et al., 2009;
Lv et al., 2015; Han and Kim, 2018; Jayne et al., 2019; Wen and
Benson, 2019). The data of site characterization under the
development stage are still sparse and have extremely high
uncertainties. Providing limited data with high uncertainties, the
only appropriate and reasonable way to describe the capacity
uncertainty is using deterministic approaches based on the
statistical data of site properties (Popova et al., 2014). The
stochastic methods can be implemented using the statistical
properties of site properties as input parameters. These
statistical distributions can be in the logistic normal, normal

distribution, and other forms (Popova et al., 2014). Statistical
data from underground resource recovery projects are helpful to
determine the storage efficiency coefficients. Organizations and
researchers have established several global databases, including a
large volume of reservoir data on geological formations with
different lithologies and depositional environments, structures,
and traps to determine storage coefficients based on
examination of worldwide existing CO2 storage projects and
properties data on hydrocarbon reservoirs (Gorecki et al.,
2009d; Iea-Ghg, 2009). For high-resolution evaluation, provided
that each cellular with storage potential has various parametric
distribution functions for each storage efficiency, the individual p
values of different storage factors are multiplied to determine the
distribution of storage efficiency coefficient Es i,j,k for cellular i, j, k.

Numerical Algorithms
Multiple numerical tools using different algorithms have been
used worldwide, such as TOUGH2, ECLIPSE, GEM, CO2-PENS,
STARS, NUFT, TRANSTOUGH, MODFLOW, FLOTRAN,
SIMUSCOPP, STOMP, MORES, finite element heat, and mass
transfer code (FEHM), novel reservoir monitoring, modeling,
and simulation (NORMS), MATLAB reservoir modeling tools
(MRST), and other tools (Ennis-King and Paterson, 2007; Pruess
and Spycher, 2007; Nordbotten et al., 2012; Ranjith et al., 2013;
Teletzke and Lu, 2013; Celia et al., 2015; Møll Nilsen et al., 2015;
Rezk and Foroozesh, 2019; Wen and Benson, 2019). With a
comprehensive geological model based on site characterization,
numerical simulation can determine the distribution range of
storage efficiency coefficients (Yoshida et al., 2016). Numerical
algorithms are capable of providing more flexible and precise
results than statistical and analytical algorithms. However, the
uncertainty that stems from numerical tools and numeric
algorithms incorporating various storage mechanisms persist.

The integral modeling of multiple-phases fluid properties,
CO2 plume behavior, pressure spreading, and reactive-
transport process, mechanic process at various temporal and
spatial scales depend greatly on storage mechanisms, appropriate
geological model and gridding, cross-scaling of geological
properties, upscaling methodology, and result interpretation,
but less on numerical modeling algorithms (Nordbotten et al.,
2012; Teletzke and Lu, 2013; Thanh and Sugai, 2021).
Uncertainty modeling, which uses statistical data and
stochastic tools to improve the predicted results, may measure
the uncertainties of CO2 capacity to a certain extent, but it is
inadequate for describing the overall uncertainties. History
matching using time-lapse monitoring is essential to enhance
predictions on the site’s long-term performance and CO2

behavior underground (Nordbotten et al., 2012; Jenkins et al.,
2015; Chen et al., 2020a). Furthermore, site characterizations and
experiments at multiple scales ranging from pore scale to site-
scale reveal the basic parameters of the storage process. These
basic parameters depend on characteristics and upscaling
methodology at a smaller scale, such as pore geometry,
capillary pressure, rock and fluid properties, interfacial tension,
wettability, pore geometry, molecular diffusion, hydrodynamic
dispersion, water salinity, surface minerals, as well as the
mineralization and precipitation process (Pruess et al., 2004;
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Middleton et al., 2012a; Yoshida et al., 2016). The appropriate
geological model and gridding that reflects the cross-scaling of
complex geological properties by site characterization, complex
properties with multiple phases fluid, algorithms reflecting
various trapping mechanisms, and heterogeneous reservoir
properties are the keys to resolving the uncertainties in
numerical simulation (Middleton et al., 2012a; Bouquet et al.,
2016; Yoshida et al., 2016). Meanwhile, essential questions
relating to CO2 storage cannot be predicted convincingly to a
satisfactory accuracy with existing numerical simulation tools,
even for highly idealized problems (Nordbotten et al., 2012).

Reduced-Order Methods
Authority must be verified by applying sensitivity analyses or
stochastic analysis of key variables based on field or statistical
data, especially for complex reservoir-seal systems (Pawar et al.,
2017; Alcalde et al., 2018; Jin and Durlofsky, 2018). A quick way
to simulate an entire reservoir is the application of ROMs, which
can understand complex processes with acceptable
computational efficiency (Pawar et al., 2015; Chen et al.,
2020b; Middleton et al., 2020). The development of ROMs
requires a series of simulations or calculations of detailed
component models for reservoirs, wellbores, caprock, faults,
and aquifers; then, ROMs can be integrated to predict site
performance, economic feature, and geological risk (Pawar
et al., 2015; Chen et al., 2020b).

The ROMs for CO2 injection in heterogeneous reservoirs are
used to quickly estimate site performance and CO2 capacity based
on values of key dimensionless scaling groups (Stauffer et al.,
2011; Harp et al., 2016; Pawar et al., 2017; Jin and Durlofsky,
2018). This algorithm combines simplifications of full-order flow
simulation, linearization of a nonlinear system, projection into a
low-dimensional sub-space using proper orthogonal
decomposition, or other ways to reduce the complexity of
computation and storage mechanisms (Jin and Durlofsky,
2018). The ROMs link basic parameters, storage mechanisms,
and site performance assessment. They are more efficient for
high-effort and quick simulations than conventional simulations;
nevertheless, they cannot decrease the uncertainties similar to
numerical simulation.

Hybrid Algorithms
Algorithms should make the best of limited subsurface data. For
example, based on known geological theory and site characterization
data, geological interpretation tools can be used to generate a spatial
distribution of reservoir parameters reflecting the correlativity. Then,
the proper algorithm can be selected to assess the geological storage
efficiency coefficient (Popova et al., 2014). However, suppose the
data scarcity varies in different regions. In that case, the variable grid
or cellular methods with hybrid algorithms are more flexible
methods that allow for capacity assessment with various data
quality while still preserving the overall spatial trends.

Hybrid algorithms can integrate different algorithm components
and related datasets in a comparative way for the assessment of site
performance and capacity. The hybrid algorithms can start with
volumetric calculations underpinned by deterministic statistical
models with limited site data and progressing through

probabilistic analyses, and dynamic storage assessments using
reservoir simulation with dynamic heterogeneous reservoir
models that compile and assimilate detailed site characterization.

Discussion on Capacity Algorithms
The mathematical theories, evaluation procedures, and data
requirements for the above capacity algorithms vary greatly.
The available algorithms and tools for storage capacity
estimation can be grouped into several large class sets as
empirical, semi-analytical, ROMs, numerical simulations, and
hybrid algorithms. The precise and detailed comparisons of
existing algorithms have been carried out (Pruess et al., 2004;
Bachu, 2008; Goodman et al., 2013). It illustrates that currently
available simulation codes could model the complex phenomena
with quantitatively similar results but significant discrepancy
from fluid properties and discretization approaches (Pruess
et al., 2004; Nordbotten et al., 2012).

Future work should focus on site characterization, data
collection, advanced data assimilation, and highly effective
algorithms that reflect the effects of storage mechanisms to
reduce uncertainties in the capacity evaluation and provide the
uncertainty ranges of each dataset, algorithm, and integrated
method. Among these, the data quality of site characterization is
of priority.

2.3.2 Algorithms for Site Suitability
Suitable sites for CO2 storage should have favorable physical and
chemical properties or reservoir-seal pairs to ensure sufficient
storage capacity, enough injectivity, acceptable risk, compliance
with current legislation and regulation systems (Wei et al., 2013;
Pawar et al., 2015). Aside from geological stratum and storage
mechanisms, the maximum storage capacity is also constrained by
costs, site safety, or risk of stored CO2 (Mathias et al., 2015; Alcalde
et al., 2018). Extensive studies have illustrated with very high
confidence that CO2 stored in thoroughly screened sites is safe
over geological timescales, and leakage is unlikely. A safe or suitable
site means thatmature engineering procedures canmanage the risk
of a selected site to an acceptable risk level at a reasonable cost. The
process of identifying suitable sites for CO2 storage is based on
classifications of resource and project status similar to that used in
the hydrocarbon industry (Doe-Netl, 2018). Various qualitative-
and qualitative-algorithms or methods are being used for site
suitability evaluation and site selection, e.g., guidelines, best
practice menu, multi-criteria analysis, probability analysis, fault
tree, feature, and event and process (FEP), health-safety-
environmental risk-based method, integrated assessment
model-carbon storage, National Risk Assessment Program
(NRAP), site performance assessment, and others (Pawar
et al., 2015; Hnottavange-Telleen, 2018). These algorithms can
be grouped into three aspects: techno-economic optimization,
risk minimization, and other social-economic constraints.

Technical and Economical Optimization
The CO2 storage project aims to find a suitable site with favorite
storage volumes and injectivity. These characteristics can be
estimated based on storage cost using available storage volume
and injectivity parameters (Mathias et al., 2015). The algorithms
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might strongly correlate with those for storage mechanisms
(Mathias et al., 2015).

Risk Minimization
CO2 capacity is constrained by geological volume and related risk,
which allow the areal and vertical spread of CO2 plume without
significant impacts; consequently, a crucial task is to specify the
influence volume and surface area that can be assigned for CO2

geological storage. The primary risk is leakage of CO2 and brine
with/without dissolved CO2 into overlying strata, protected
aquifers, shallow soil zones, and the atmosphere, and other
health, safety, and environmental (HSE) impacts. Considerable
experience has been gained on managing site performance and
long-term risk containment and identifying key uncertainties that
need to be targeted (Pawar et al., 2015). Potential leakages involve
wellbores, active faults, fractures, assigned boundary impact site
performance, long-term containment migration, HSE risks, public
perception, and market risks. Neither permeable pathways nor
reactivation by CO2 injection should happen. The safety of storage
sites depends on the integrity of cap-rock with closed faults/
fracture networks and abandoned wells that have a certain
possibility of occurrence (Zoback and Gorelick, 2012).

As one part of site suitability algorithms, many algorithms can
be applied similarly. Algorithms such as Bayesian network, CO2-
PENS, multi-criteria method, fault tree, certification framework,
QPAC-CO2, NRAP, and other algorithms and related tools have
been developed for quantitative and qualitative risk assessment
applications (Price and Oldenburg, 2009; Tanaka et al., 2011;
Zhang et al., 2011; Aktouf and Bentellis, 2016; Li and Liu, 2016;
Dean and Tucker, 2017; Xia and Wilkinson, 2017; Hnottavange-
Telleen, 2018). These approaches can also predict the behavior of
the CO2 storage process and corresponding risk (risk probability
and consequence).

Social, Legislation, Regulation, and Environmental
Constraints
Social, regulation, legislation, and environmental constraints mainly
stem from the requirements of technical schemes and risk
management of stored CO2. The legislation and regulatory
frameworks aim to protect and minimize the impact on
environmental, economic, and social aspects, underground and
surface resources, such as freshwater, minerals, vegetables, surface
water system, national reserve parks, industrial centers,
municipalities, and cities (Aminu et al., 2017). The legislative
system sets prohibitions and permissions for CO2 geological
storage projects and defines the rights and obligations of
stakeholders. The regulatory and legislative constraints include
various rules that limit the injection activities, such as maximum
bottom-hole injection pressure (e.g., 1.25 times initial pressure and
less than fracture pressure), minimum total dissolved solids (TDS)
of brine (TDS > 10 g/L), geological volumes or area of review
permitted by administrative organizations, storage duration,
conflicts with different mining rights, and relevant regions of
influence (Bachu, 2015). The social and economic constraints
mean that the storage sites should avoid potential negative effects
on the surface or underground activities, such as clandestine mining
activities, oil and gas reservoirs, geothermal utilization on natural

reserves, water sources, and metropolitan and crucial industrial
areas. Depending on the combined effect of the factors above, the
cellular or rock block conflicted with vital activities or featuresmight
not be able to obtain permission from administrative organizations
as assigned geological volume to inject any CO2 (Dixon et al., 2015).
The algorithms handling these restrictions can be integrated into
storage schemes and risk assessment algorithms addressing risk
probability and risk consequence.

2.3.3 Algorithms for Techno-Economic Evaluation of
Full-Chain CCS Projects
The costs of CO2 storage operations are heavily dependent on a
combination of site characterization, injection and operating
strategy, MVA, and risk management strategies; meanwhile,
storage cost contributes an assignable part of the overall cost
of the CCUS project, especially when the injectivity of the single
well is low or storage-related risk is high (Mathias et al., 2015;
Anderson, 2017). The techno-economic models embodying
algorithms include two parts: a technical model (technical
design and site performance similar with algorithms for
capacity assessment of geological formations) and an
economic model. Numerous economic models of CO2 storage
have been built globally (Mccoy and Rubin, 2008; Middleton and
Bielicki, 2009; Knoope et al., 2014; Leeson et al., 2017; Bui et al.,
2018; Middleton et al., 2020; Zimmermann et al., 2020). In
general, an algorithm considering more parameters of
technical characteristics and economic parameters obtains
costs with higher resolution and lower uncertainty.

The suitable stages of techno-economic algorithms range from
conceptual analysis, pre-feasibility studies, front-end engineering
design (FEED) to feasibility-scale studies. Accordingly, technical
algorithms can be grouped similarly with capacity algorithms.
Economic models based on corresponding technical models can
be grouped into empirical or statistical, budgetary, and
accounting models. However, most of the available techno-
economic models in the literature are mainly empirical models
using statistical cost data from petroleum industries.

2.3.4 Algorithms for Source-Sink Matching
Geological uncertainty propagates through the chain of CCS
systems and affects decisions for CCUS deployments. The
uncertainty effect of capture properties of CO2 emission
sources, geological features, and geographic features can cause
the overall cost of CCS projects to deviate highly; potential CCS
projects, particularly pipeline networks and integration of various
industry sectors, can considerably diverge spatially (Ambrose
et al., 2009; Zheng et al., 2009; Middleton et al., 2012b; Dahowski
et al., 2012; Welkenhuysen et al., 2013; Bachu, 2016; Sun and
Chen, 2017; Edwards and Celia, 2018; Costa et al., 2019; Yu et al.,
2019; Guo, 2020). Defining the capacity magnitude and ranges of
levelized costs for matched capacity over the set of modeled CO2

sources and storage reservoirs is the best way to understand the
role and potential of CO2 aquifer storage in background of carbon
mitigation and carbon neutrality (Patricio et al., 2017; Costa et al.,
2019; Li et al., 2019).

The economic factor of potential CO2 storage projects is
essential for the feasibility and affordability of CO2 storage
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projects. Affordable CO2 capacities can be fulfilled cost-effectively
under specific punitive or incentive policies, such as carbon
constraints, carbon incentives, product subsidies, infrastructure
support, and other supports under a supportive environment. This
condition also means that only small parts of theoretical, effective,
or practical capacity can be affordable in CO2 mitigation.

The source-sink matching method applied in the strategic
planning and design of future full-chain CCUS projects with
matched capacity is based on the various systematic optimization
processes with pipeline routing and techno-economic models
(Ambrose et al., 2009; Zheng et al., 2009; Middleton et al., 2012b;
Middleton et al., 2012c; Dahowski et al., 2012; Tan et al., 2012;
Vikara et al., 2017; Edwards and Celia, 2018; Middleton and Yaw,
2018). The matched capacity of source-sink pairs provides a more
reliable and competitive capacity that has the potential to be
deployed at scale. The resulting cost curve for source-sink
matching processes provides a solid foundation for a
commercialization strategy of CCUS to use an appropriate
supportive environment to turn matched capacity into actual
storage capacity (Dahowski et al., 2012; Edwards and Celia, 2018).
The supportive environment contains carbon price and incentive
policies, regulation and legislation systems, industrialization
policies, and others that significantly impact how much
matched capacity can be affordable and actual storage capacity.

2.3.5 Algorithms for Other Factors
Except for these factors mentioned above, feasible and
affordable capacity should include key factors in the
feasibility study, such as financial support, administrative
processes of permitting, operating and closing, risk,
transferring long-term liability, involvement of stakeholders,
and other essential factors. Concerning the actual storage
capacity contributing to carbon neutrality globally, the
uncertainties depend more on the CO2 mitigation strategies
and policies to address climate change, technical evolution,
industrialization, and commercialization strategy of CCUS,
affordable cost, and administrative system than solely the
sub-surface performance and storage mechanisms (Zhang
et al., 2019). Therefore, CO2 capacity assessment should
consider additional factors and higher data resolution to
decrease uncertainties in capacity evaluation in future work.

2.4 Overall Storage Capacity or Storage
Efficiency Coefficient
Each cell’s overall CO2 storage coefficients can be obtained
through deterministic and stochastic methods based on the
aforementioned factors. The overall CO2 storage coefficients
for each cell can be obtained through weakly coupled or fully
coupled integration of numerous factors as expressed in the
following equation:

Eoverall � Es · Etech · Esite · Eeconomic · Ematch · Eothers, or Eoverall

� Eintegrated, (4)

where Eoverall is overall storage efficiency coefficient; Esite is site
suitability coefficient; Es is storage coefficient reflecting the effect

of geological data and technical schemes with various storage
mechanisms; Eeconomic is a coefficient reflecting techno-economic
evaluation result; Ematch is a coefficient reflecting source-sink
matching processes; and Eothers is a coefficient reflecting the
effects of other factors. Some of these factors can be with others to
reduce the factor numbers, e.g., the technical factor can be
implicit in other factors. Eintegrated is an overall storage
efficiency coefficient obtained by integrated methods.

A schematic graph of storage efficiency coefficient and
capacity evaluation is presented in Figure 1. Using suitable
algorithms that integrate available data with various data
quality in the evaluation framework is crucial to acquire the
overall capacity efficiency coefficient for each geological cell or
site. The types of data complication and evaluation algorithms
can be classified as shown in Table 2. The deterministic method
can be extended into stochastic analysis.

The statistical results of overall efficiency coefficients can be
obtained at different confidence levels. Suppose the distributions
of some parameters are non-available. In that case, the expert
panel, statistical methods, empirical methods, and other as-if
methods can be used to estimate the reasonable ranges for these
parameters. Then, the overall storage efficiency coefficient and
storage capacity distribution can be obtained by Monte Carlo
sampling or other stochastic sampling methods. These factors
and components may be strongly correlated at more minor scales,
e.g., site scale. Therefore, more advanced fully-coupled methods
based on more complex algorithms that integrate and solve all
factors at once are necessary to provide highly reliable results with
uncertainties.

3 A HIERARCHICAL FRAMEWORK OF CO2

CAPACITY EVALUATION

Building a consensus capacity framework that can integrate all
available data with various qualities and well-recognized
algorithms is necessary to obtain reliable capacity results with
clear descriptions of capacity types, technical schemes,
assessment algorithms, and data quality (data types and
resolution). Based on the preceding reviews, a hierarchical
framework of CO2 capacity evaluation is presented with the
aim to define the capacity types that describe uncertainties
qualitatively. Among these factors, data availability is the priority.

3.1 Resolution Descriptions of Geological
Data
The surface data have a much higher resolution than that of the
sub-surface geological data. Consequently, the availability of sub-
surface data is the bottleneck for capacity evaluation. The high
requirements of types and detail levels of data and related
algorithms cause challenges in the reliable estimations of CO2

capacity in deep saline aquifers, and capacities assessed with low
uncertainties only happen at site-specific projects with detailed site
characterization and reservoir performance data. Table 3 presents
a suggested accuracy classification of sub-surface geological data.
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The resolution of site characterization gradually increases from the
stage of the general survey, initial investigation, detailed site
characterization, and site operating. The proposed resolution of
a subsurface geological feature is always defined by the density of
investigation wells or similar resolution scale or data requirement
of different evaluation stages. Cellular or grid in the capacity

evaluation indicates the unit with proper resolution of sub-
surface geology. Cellular size with at least one investigation well
is equal to 50 × 50 sq. km., 20 × 20 sq. km., and 5 × 5 sq. km.,
respectively, when the precision is 1: 20, 1: 5, and 1: 1 million. Thus,
the accuracy levels of storage capacity gradually increase from a
general survey to site operation.

FIGURE 1 | Schematic graph of storage efficiency coefficient and capacity evaluation.

TABLE 2 | Categories of algorithms and tools for data complication.

Algorithms that integrate geological features
(data) Dsub−surface

a) Data types defined by Geographic Information System (GIS) software, e.g., ArcGIS, MapGIS, MapInfo,
OGIS, and others
b) Geological models by various petroleum or geological software (e.g., Petrel, Landmark, MORES, Optec,
and others)
c) Data stacks, metadata, data modules, matrix, or other databases, e.g., data class by cellular or grid

Algorithms that integrate non-geological features (data)Dsurface a) Data algorithms in GIS software
b) Data stacks, matrix, or database
c) Other methods (images, 3D geographic model, and others)

Algorithms considering storage mechanismsAs a) Empirical approaches with various storage mechanisms, e.g., US-DOE, CSLF, USGS, others
b) Semi-analytical or analytical approaches, two-phase dynamic method
c) Numerical simulation based on the geological model, e.g., multi-phase solute-transport model, multi-
phase solute-transport-thermal model, multi-phase flow models coupled with geo-mechanical properties,
and other full coupling models

Algorithms for site screening and selectionAsite a) Qualitative methods, e.g., expert panel, brainstorm, and others
b) Semi-quantitative methods, e.g., multiple criteria methods, FEP, and others
c) Quantitative methods, e.g., NRAP, probability analysis, fault tree, and detailed site performance
assessment

Algorithms for techno-economic evaluationAeconomic a) Empirical approaches or statistical methods
b) Budget-type approaches based on technical designs
c) Accounting approaches based on actual projects

Algorithms for source-sink matchingAmatching a) Empirical algorithms are based on source-sink distance, e.g., the PNNL method
b) Routing search with techno-economic models, e.g., Sim-CCS
c) System optimization process for feasibility studies of a CCUS project set, e.g., FEED and project design

Algorithms for other constraintsAother Various algorithms from qualitative to quantitative, e.g., GIS tools, image tools, data stacks, matrix tools,
mathematical methods, and others

Frontiers in Earth Science | www.frontiersin.org January 2022 | Volume 9 | Article 77732313

Wei et al. CO2 Storage Capacity

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


3.2 Hierarchical Types of Capacity
The hierarchical types for capacity are shown in Table 4. The
definitions of capacity are similar to the resource-reserve pyramid
by Bachu et al. (2007). The typical name is in the form of (capacity
type)—(dynamic or static algorithm)—(deterministic or
stochastic algorithm)—(storage mechanisms)—(CO2

sources)—(resolution of subsurface- and surface-data). The
capacity assessment is performed at an order of increasing

types and data resolutions from theoretical capacity to actual
storage capacity. The higher level of evaluation requires higher
top-data quality and more sophisticated algorithms than
integrating all data. This hierarchical framework classifies key
factors into the following categories: 1) capacity types (from
geological capacity to matched capacity) and related key
factors, 2) CO2 storage mechanisms, 3) algorithms for
different factors, e.g., static or dynamic algorithms for storage

FIGURE 2 | The sedimentary basins in China.

TABLE 3 | Proposed hierarchical classification of sub-surface geological data.

Exploration stage Areal resolution of sub-
surface data

Spacing
of investigation well

Resolution
classes of

data

Equivalent resource types
in US-DOE methods

CO2 injection and site
operation (a)

≤1:1 million At least one well per 25 km2 or a well spacing
of 5 km

Ⅰ or Ⅱ Storage capacity

Detailed prospection (b) ≤1: 2.5 million At least one well per 100 km2 or a well spacing
of 10 km

Ⅱ or Ⅲ Proved resource (Proved oil
reserve)

Preliminary prospection (c) ≤1: 5 million At least one well per 400 km2 or a well spacing
of 20 km

Ⅲ or Ⅳ Contingent resource (Controlled oil
reserve)

General survey (d) ≤1: 10 million At least one well per 2,500 km2 or a well
spacing of 50 km

Ⅳ Prospective resource (Prospective
oil reserve)

Ⅰ, Ⅱ, Ⅲ, and Ⅳ represent the accuracy classes of geological data, basin-scale, sub-basin scale, site scale, and detailed site characterization, respectively.
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mechanisms, and 4) data types and resolutions. This framework
can be applied in two different ways as data or algorithm priority.

The algorithms can be selected according to the CO2 storage
mechanisms, available types, and detailed levels of data; on the
other hand, the types and detail levels of data can be screened
according to given algorithms and evaluation requirements.

3.3 Limitations of This Framework
This hierarchical framework of CO2 capacity evaluation can offer
a more precise definition of capacity types and integrate various
data qualities (data types and resolutions) and related algorithms.
This framework also provides clearer descriptions of the
evaluation processes and capacity results and allows
comparisons among different evaluation processes and
capacity results. However, the framework faces uncertainties
such as follows: 1) definitions of capacity types and factors in
this paper are hierarchical and facing uncertainties from technical
evolution, site characterization, and others; 2) the outer
environment, such as legislation and regulatory, policy,
administrative procedure, and other vital factors, frequently
change with time; 3) the uncertainties from analysis
algorithms and tools are not discussed in this paper; 4) the
confidence levels of algorithms for each factor are unclear
although some of these algorithms are mature, and 5)
integrated or one-model-fits-all type algorithms, and
systematical analysis of uncertainties that can handle all kinds
of uncertainties are unavailable currently. Therefore, this paper
does not try to give precise and detailed comparisons of existing
algorithms, methods, or approaches but to classify them into a
common ground. The detailed uncertainty analysis is the next
step in the future.

Addressing these limitations is necessary to provide a more
precise and reliable assessment with fewer uncertainties in

current capacity estimates. Under the premise that more
advanced site characterization, efficient data compilation tools,
reliable algorithms, and efficient analysis tools lead to reduced
uncertainties of each factor. Furthermore, integrated methods for
overall storage efficiency coefficient are expected to obtain more
accurate and dependable assessment results with clear definitions
of storage types.

4 REVIEW ON ONSHORE AQUIFER
CAPACITY IN CHINA

The current national-wide estimates for CO2 capacity in onshore
aquifers in China have high uncertainties due to limited on-site
data, capacity clarifications, lack of technical schemes, various
assessment algorithms, and unavailability of other data (Höller
and Viebahn, 2016). China-wide capacity studies on onshore
aquifer storage with capacity methods at regional- and basin-
specific scale are shown in Table 5. The sedimentary basins in
China are shown in Figure 2. No surface data and related
algorithms are used in these evaluations.

The capacity for onshore aquifer formations in China is
reviewed and classified by the framework in Table 6. This
evaluation provides a clear view of the magnitude of the CO2

capacity of onshore aquifers in China.
The results show that the matched CO2 capacity can be

170 Mt/a at costs less than 30 USD/t, and higher capacity
can be 3.4 Gt/a at costs less than 70 USD/t (Li et al., 2019).
The matched capacity is a tiny portion of theoretical
capacity refined by the technical scheme, site suitability,
CO2 source, and economic results. The site suitability is
evaluated by the multiple criteria method (Wei et al.,
2013). The matched capacity is improved by the source-sink

TABLE 4 | Proposed hierarchical capacity with descriptions of data types and resolution.

Capacity types Matched capacity/
resource (A)

Practical
capacity/

resource (B)

Effective
capacity/

resource (C)

Theoretical
capacity/

resource (D)

Sub-surface geology (G) (G) (G) (G) (G)
Technical scheme (T) (T) (T) (T) —

Site suitability and economic (S) (S) (S) — —

Source-sink proximity (M) (M) — — —

Capacity type (simplified name) (M) or (A) (S) or (B) (T) or (C) (G) or (D)
Static or Dynamic type capacity Static (S) or dynamic (D) (S) or (D) (S) or (D) (S) or (D)
deterministic or stochastic type capacity (optional) (s or d) (s or d) (s or d) (s or d)
Storage mechanisms considered (One or hybrid
mechanism)

(f), (s), (m), or (r) (f), (s), (m), or (r) (f), (s), (m), or (r) (f), (s), (m), or (r)

CO2 sources (F/S) (optional) F (full-chain CCUS) S (sink) S (sink) S (sink)
Data resolution and types
Resolution of sub-surface data (a) or (b) (b) or (c) (c) or (d) (c) or (d)
Resolutions of surface data (optional) I or II I or II II or III III, or IV
Examples for this framework (G-T-S-M)-S- (f) -(c)- (I) or

A-S- (f)-(c)- (I)
B-S- (f)-(c)- (II) C-S- (f)-(b)- (III) D-S- (f)-(a)- (IV)

Where (A) (B) (C), and (D) represent different types of capacity of matched capacity/resource, practical capacity/resource, effective capacity/resource, and theoretical capacity/resource. (f)
(s) (m) (r) and (a) represent different trappingmechanisms of the free gas phase (f), solubility (s), mineralization (m), residue gas (r), and adsorption (a), respectively. Symbol (S) and (D) mean
static or dynamic methods integrating sub-surface geological data for capacity evaluation. Symbol (d) and (s) mean deterministic or stochastic capacity, respectively. IV, III, II, and I
represent the resolutions of surface geological data and surface non-geological data at basin, sub-basin, and site scales, and detailed site characterization, respectively. (a) (b) (c) (d)
represent different stages of site characterization from CO2 injection stages, detailed prospection, preliminary prospection to a general survey. G-T-S-M and A represent that the capacity
assessments include geological data, technical schemes, site screening and selection, and matching of source-sink pairs.
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matching algorithm proposed by Li et al. (2019) based on the
practical capacity results.

This application illustrates that this framework can
qualitatively classify the existing capacity assessments into
different categories with similar magnitudes but significant
discrepancies from storage efficiency. The evaluations on the
storage capacity of aquifer storage in China are with limited site
data at a large scale, e.g., national-scale and basin-scale. In China,
aquifer formations mostly with non-marine sedimentary facies

have substantial spatial variations of physical and chemical
properties, very high multiple-scale heterogeneity that leads to
significant uncertainty in the storage assessment. The current
evaluations of aquifer storage capacity lack sufficient data on-site
characterization. Consequently, the uncertainties of storage
capacity evaluation are always defined by the subsurface data
of site characterization. Most energy will be spent on site
characterization and data collection. Moreover, capacity
evaluation methodologies should be updated to enable a more

TABLE 5 | Capacity assessment of aquifer storage at various scales in China.

Basins or formations
evaluated

Capacity (Gt CO2) Resolution of
sub-surface

data

Types classified by
proposed hierarchical

types

References

Aquifer formations in China 2,288 (onshore)
3,067 (total)

before (d) stage D-S-(s)-(d) or D-S- (s)—(d)—(-) Solubility method, Dahowski et al. (2009), Li
et al. (2009)

Annual contribution of Aquifer formations in
China

2.9 Gt/a @ 10 USD/t
C O 2

(d) D-S- (s)—(d)—(-) Source-sink matching algorithm
byDahowski et al. (2009)

Sedimentary basins in China 1826 (d) D-S-(f)- (d)- (-) Mass balance method Sun et al. (2018)
Matched capacity of onshore aquifer storage
in China

2.5 Gt @70 USD/t (d) A-S-(f)-(d)- (-) Source-sink matching by CO2-GIS model,
P50 Dahowski et al. (2009), Li et al. (2009)

Songliao Basin 138 (d) D-S-(f)- (d)- (-) US-DOE method, P50 Wu et al. (2009),
Zhang et al. (2009)

Cretaceous strata in Northern Songliao Basin 9.8 (c) C-S-(f-s)- (c)- (-) Capacity with site suitability evaluation by
Wang et al. (2014)

Sedimentary basins in China 1826.07 (d) D-S-(f)- (d)- (-) Mass balance method Sun et al. (2018)
Bohai basin–Huimin sub-basin Within the
Bohai bay basin

23 0.7 (d) D-S-(f)- (d)- (-) CSLF-based method Vincent et al. (2011)

Pear River Mouth Basin 308 (d) D-S-(f)- (d) - (-) US-DOE method P50 Zhou et al. (2011)
Two formations within two depressions in
SubeiBasin (onshore part in Jiangsu province)

(2.8 P15, 6.6, P50
11.2, P85)

(d) D-S-(s-r)- (d)- (-) US-DOE method P50 Qiao et al. (2012)

Aquifer capacity in the U.S. (2,379 P10, 8,328,
P50 21,633 P90)

(c) D-S-(s)-(f)- (c) - (-) Netl (2015)

The italic values refers to values in Table 4.

TABLE 6 | Hierarchical capacities of onshore CO2 aquifer storage in China.

Capacity
types

Onshore aquifer
storage

Storage
mechanisms

Resolution of
sub-surface

data

Resolution of
surface data

Hierarchical
capacity
types

Descriptions

Matched
capacity (A)

2.9 Gt/a @ 10 USD/t CO2 with total
CO2 emission of 3.9 Gt/a captured
from eight sectors in China in 2009

S-(s) (d) IV A-S-(s) -(d)-(IV) Solubility method refined with the
source-sink matching algorithm
by Dahowski et al. (2009)

Matched
capacity (A)

3.4 Gt/a @ 60 USD/t (P50) with total
CO2 emission of 6.5 Gt/a captured
from coal power, coal chemistry, steel
and iron, and cement sectors in China
in 2015 and 2012

S-(f) (d) III A-S-(f)-(d)- (III) US-DOE methodology refined
with the source-sink matching
algorithm by Li et al. (2019)

Matched
capacity (A)

270 Mt/a @ 30 USD/t (P50 and
levelized cost) with high-purity CO2

emission from coal chemical sectors
in 2015

S-(f) (d) III A-S-(f) -(d)- (III) Refined by the source-sink
matching algorithm by Li et al.
(2019)

Matched
capacity (A)

1800 Mt/a @ 60 USD/t (P50 and
levelized cost) with CO2 stream from
coal-fired power plants in 2018

S-(f) (d) III A-S-(f)-(d)- (III) Refined by the source-sink
matching algorithm by Wei et al.
(2021)

Practical
capacity (B)

1.35 Tt (P50) S- (f) (d) III B-S-(f)-(d)-
(d)- (III)

US-DOE methodology refined
with site suitability evaluation by
Wei et al. (2013)

Theoretical
capacity (D)

2.40 Tt (P50) S-(f) (d) — D-S-(f)-(d)- (-) US-DOE volumetric method by
Goodman et al. (2011)
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comprehensive assessment of capacity uncertainties beyond
current estimates.

5 CONCLUSION

Carbon dioxide (CO2) storage in deep saline aquifers is an
essential option for CO2 mitigation at a large scale.
Determining storage capacity is the first step toward the large-
scale deployment of CCUS projects. The existing methods and
assessments of CO2 capacity in aquifer formations involve
uncertainties caused by selected storage mechanisms, data
quality, evaluation algorithms, and considered factors. This
paper reviewed these methods and presented a hierarchical
framework of capacity evaluation to classify capacity types and
describe the assessment processes and capacity uncertainties. The
frame can allow multiple algorithms to estimate storage capacity
with probabilistic analyses of the storage efficiency coefficients,
which depend on numerous factors, such as CO2 storage
mechanisms, technical design, economic, source-sink
proximity, risk, socioeconomic constraints, and related
algorithms. Finally, the CO2 storage capacities onshore aquifer
sites in China, as reported in the literature, are reviewed and
classified by this framework. Furthermore, this hierarchical
framework of capacity evaluation is capable of conducting

comparisons among different capacity results with
hierarchical types.
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