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The large computational memory requirement is an important issue in 3D large-scale
wave modeling, especially for GPU calculation. Based on the observation that wave
propagation velocity tends to gradually increase with depth, we propose a 3D trapezoid-
grid finite-difference time-domain (FDTD) method to achieve the reduction of memory
usage without a significant increase of computational time or a decrease of modeling
accuracy. It adopts the size-increasing trapezoid-grid mesh to fit the increasing trend of
seismic wave velocity in depth, which can significantly reduce the oversampling in the
high-velocity region. The trapezoid coordinate transformation is used to alleviate the
difficulty of processing ununiform grids. We derive the 3D acoustic equation in the new
trapezoid coordinate system and adopt the corresponding trapezoid-grid convolutional
perfectly matched layer (CPML) absorbing boundary condition to eliminate the artificial
boundary reflection. Stability analysis is given to generate stable modeling results.
Numerical tests on the 3D homogenous model verify the effectiveness of our method
and the trapezoid-grid CPML absorbing boundary condition, while numerical tests on the
SEG/EAGE overthrust model indicate that for comparable computational time and
accuracy, our method can achieve about 50% reduction on memory usage
compared with those on the uniform-grid FDTD method.
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1 INTRODUCTION

Reverse time migration (RTM) (Baysal et al., 1983; Xuan et al., 2014; Qu et al., 2015; Xu et al., 2021a; Du
et al., 2021) and full-waveform inversion (FWI) (Tarantola, 1984; Virieux and Operto, 2009; Cai and
Zhang, 2015; Xia et al., 2017; Jia et al., 2019) play a fundamental role in geophysical exploration. Since
forward modeling of the wave equation consumes most computational time in the RTM and FWI
processes (Jing et al., 2019; Xu et al., 2021b; Liu et al., 2021), how to achieve the improvement of efficiency
and the reduction of memory usage without a significant decrease of accuracy for 3D large-scale modeling
is a key problem of seismic modeling. The finite-difference (FD) method has been regarded as one of the
most popular wave modeling methods for its easy implementation and high-computational efficiency
(Antunes et al., 2014; Abreu et al., 2015; Xu and Gao, 2018; Robertsson and Blanch, 2020). However, the
numerical dispersion of the traditional FD method leads to the use of fine grids or high-order operators
(Dablain, 1986; Liu and Sen, 2011b), which inevitably affects the efficiency of simulation.
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The conventional FD method literally adopts a weighted
summation of neighboring grid points’ values to estimate the
derivative for a designated grid point (Zhou et al., 2021),
where the grid size (h) is fixed and the FD coefficients are
calculated by Taylor expansion. In this way, the
approximation error ϵ can be expressed as (Liu and Sen,
2011a; Wu et al., 2019b) follows:

ϵ � O
hf

v
( )2M

, (1)

where 2M is the length of the FD operator, h is the spatial
interval, f is the frequency, and v is the seismic wave velocity.
Considering that λ � v/f is the wavelength and G � λ/h is the
number of grid points per wavelength (NPPW), we can rewrite
Eq. 1 as follows:

ϵ � O
h

λ
( )2M

� O
1
G

( )2M

. (2)

Eq. 2 indicates that the modeling accuracy of the conventional
FD method is proportional to G andM. Because the seismic wave
velocity is varying in different positions, the wavelength is short
in low-velocity regions and long in high-velocity regions (Liu,
2020). Therefore, a part of computing resources is wasted in the
high-velocity regions for the fixed spatial interval and FD order.
With respect to this problem, there are two kinds of techniques
corresponding to the different understanding of Eq. 2. The first
one is the variable-operator FD method (Liu and Sen, 2011a),
which adopts the long and short FD stencils in the low- and high-
velocity region, respectively. For the scheme in Liu and Sen
(2011a), the variable-length FD stencils are designed by
approaching the dispersion relation in the time–space domain,
and Liu (2020) subsequently optimizes their FD coefficients.

The second one is the variable-grid FD method, which adopts
different gird sizes in different regions and can efficiently reduce
the oversampling in the high-velocity region. The key problem of

FIGURE 1 | Schematic of the 3D trapezoid coordinate transformation: (A) the trapezoid-grid mesh in the Cartesian coordinate system; (B) the uniform grid mesh in
the transformed trapezoid coordinate system. The two gray regions in A and B represent the same physical region.

FIGURE 2 | Schematic of the rotation transformation in the trapezoid
coordinate system for transforming mixed spatial derivatives into non-mixed
spatial derivatives.

FIGURE 3 | Schematic of the grid discretization in the 3D trapezoid-grid
CPML area.
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the variable-grid FD method is the processing of the transition
area between the fine grids and the coarse grids. The variable-grid
FD method based on interpolation (Hayashi and Burns, 2005;
Pasalic and McGarry, 2010) is the easiest one, in which the
lacking information in the transition area is completed by
interpolation. However, the resulting artificial reflection in the
transition area and the possible instability make it inefficient for
high-accuracy seismic wave simulation. Another variable-grid FD
method adopts irregular FD coefficients to process the transition
region (Huang and Dong, 2009; Liu et al., 2014), which can
significantly avoid the artificial reflection and improve the
stability. The disadvantage of this type of variable-grid method

is the additional computing cost brought by calculating irregular
FD coefficients.

The trapezoid-grid FD method (Chen and Xu, 2012; Gao
et al., 2018; Wu et al., 2018, Wu et al., 2019a, Wu et al., 2019b) is
one of the practical variable-grid methods. It uses the
trapezoid-grid mesh to fit the trend of velocity increasing
with depth, which can effectively reduce the number of
required grid points. Meanwhile, the use of trapezoid
coordinate transformation can avoid the difficulty of
processing ununiform grids in the physical Cartesian
coordinate system. On the other hand, the significant
reduction of memory requirement of trapezoid-grid FDTD
can improve the easy implementation of GPU calculation
(Fujii et al., 2013; Li et al., 2016). The existing research on
trapezoid-grid FDTD methods mainly focuses on 2D wavefield
modeling. Therefore, it is essential to expand trapezoid-grid
FDTD from 2D to 3D for realistic seismic exploration research.

In this article, we propose a 3D trapezoid-grid FDTD method
for acoustic wave modeling. First, we design the 3D trapezoid
coordinate transformation and derive the 3D acoustic equation in
the trapezoid coordinate system. Second, to reduce the artificial
boundary reflection (Ma et al., 2018, Ma et al., 2019), we apply the
corresponding trapezoid-grid convolutional perfectly matched
layer (CPML) absorbing boundary condition. Third, stability
analysis is given to generate stable modeling results. We then
test our proposed method on the 3D homogenous model and the
SEG/EAGE overthrust model and compare the efficiency and
accuracy of the trapezoid-grid FDTD method with the uniform-
grid FDTD method. Finally, conclusions are shown in the last
section.

2 METHODS

2.1 3D Trapezoid Coordinate System
In this article, the 3D trapezoid coordinate transformation is
defined as

FIGURE 4 | Snapshots obtained by the trapezoid-grid FDTD for the homogenous model (A) with CPML and (B) without CPML.

FIGURE 5 | Comparison of seismograms obtained by the uniform-grid
FDTD and the trapezoid-grid FDTD for the homogenous model at (x0, y0, z0) �
(600 m, 600 m, 0 m). The black solid line represents the uniform-grid FDTD
result, and the red dash line represents the trapezoid-grid FDTD result.
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FIGURE 6 | (A) SEG/EAGE overthrust model; (B) SEG/EAGE overthrust model in the trapezoid coordinate system; (C) actual simulating area for the trapezoid-grid
FDTD in the Cartesian coordinate system.

FIGURE 7 | (A) Vertical sampling function g(z); (B) variation of Δz0 for the trapezoid-grid FDTD.
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x � x0 − α

1 + γz0
; (3a)

y � y0 − β

1 + γz0
; (3b)

z0 � g z( ), (3c)

where (x0, y0, z0) is the Cartesian coordinate system, and (x, y, z) is
the defined trapezoid coordinate system. In Eq. 3, α and β are
central horizontal positions of the 3D trapezoid mesh, and γ is
the scaling parameter for lateral coordinates. The velocity-
related function g(z) is the sampling function for z0-axis,
which should be first- and second-order continuous for
deriving 3D wave equations in the trapezoid coordinate
system. The discrete points of g(z) are given by the following
recursion:

g 0( ) � 0; (4a)

g z + Δz( ) � g z( ) + vmin g z( )( )
f0N0

, (4b)

where f0 is the dominant frequency of the source term, N0 is the
preferred NPPW and is related to the accuracy of the adopted FD
scheme, and vmin(g(z)) is the selected minimum velocity at depth
g(z) in the physical Cartesian coordinate system and is smoothed
by solving a local polynomial fitting problem with the constraint
that vmin(g(z)) should not be greater than the model minimum
velocity at depth g(z). The central value of each local polynomial
corresponds to a value of vmin(g(z)). In particular, we usually set
the order of the local polynomial as three. Such vmin(g(z)) can lead
to a smooth sampling function g(z) for discontinuous velocity
variation while satisfying the required number of points per
wavelength in the z0-direction.

If the grid sizes for the trapezoid-grid FDTD in the trapezoid
coordinate system are defined as Δx, Δy, and Δz, then the
corresponding grid sizes in the physical Cartesian system can
be described as

Δx0 z( ) � 1 + γg z( )( )Δx; (5a)

Δy0 z( ) � 1 + γg z( )( )Δy; (5b)

FIGURE 8 | Snapshots for the SEG/EAGE overthrust model at 2.5 s: (A) uniform-grid FDTD result; (B) trapezoid-grid FDTD result in the trapezoid coordinate
system; (C) trapezoid-grid FDTD result in the Cartesian coordinate system.
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Δz0 z( ) � vmin g z( )( )
f0N0

. (5c)

In our work, γ and g(z) are determined adaptively according to
the model velocity. By selecting γ such that Δx0(z) and Δy0(z) are
always smaller than or equal to Δz0(z), and a variable-grid mesh
adaptive to the velocity model can be achieved in the physical
Cartesian coordinate system. Figure 1 shows the schematic of the
3D trapezoid coordinate transform. Figure 1A shows the
trapezoid-grid mesh in the Cartesian coordinate system, while
Figure 1B shows the corresponding uniform grid mesh in the
transformed trapezoid coordinate system. In particular, the
two gray regions in Figure 1 represent the same physical region.

2.2 3D Acoustic Equation with CPML
Absorbing Boundary Condition in the
Trapezoid Coordinate System
According to the theory of Pasalic and McGarry (2010), the time-
domain-discretization form of the 3D isotropic acoustic equation
with the CPML absorbing boundary condition in the Cartesian
coordinate system can be described as

1

v2
uj+1 − 2uj + uj−1

Δt2 − z2uj

zx2
0

− z2uj

zy2
0

− z2uj

zz20
− zψj

x0

zx0
− zψj

y0

zy0
− zψj

z0

zz0

− ζ jx0 − ζjy0 − ζ jz0

� f tj( )δ x0 − xs
0( )δ y0 − ys

0( )δ z0 − zs0( );
(6a)

ψj+1
τ0

� aτ0ψ
j
τ0
+ bτ0

zuj+1

zτ0
; (6b)

ζ j+1τ0
� aτ0ζ

j
τ0
+ bτ0

z2uj+1

zτ20
+ zψj+1

τ0

zτ0
( ); (6c)

aτ0 � e− στ0+ατ0( )Δt; (6d)

bτ0 �
στ0

στ0 + ατ0
aτ0 − 1( ), τ0 ∈ x0, y0, z0{ }, (6e)

where uj � u(x0, y0, z0, tj) represents the scalar wavefield at the jth
time step in the Cartesian coordinate system; v is the velocity; Δt
is the time interval; f(t) is the source term; (xs

0, y
s
0, z

s
0) is the

position of source; στ0 � 3vmax

2Lτ0
( �τ0
Lτ0
)2ln1

R, where R denotes the
designated theoretical boundary reflection coefficient, vmax is
the maximum velocity of the model, Lτ0 is the thickness of
CPML absorbing boundary along the τ0 direction, and �τ0
denotes the distance to the inner area in the τ0 direction; ατ0 �
αmax(1 − �τ0

Lτ0
) and αmax � πf0.

In order to derive the acoustic equation in the trapezoid
coordinate system, we first need to transform the
derivatives in the Cartesian coordinate system into the
derivatives in the trapezoid coordinate system. Based on the
definition of the trapezoid coordinate system in Eq. 3 and the
derivation rule of the composite function, the relationships of
first- and second-order derivatives in the two coordinate
systems can be given as

z

zx0
� 1
1 + γg z( )

z

zx
; (7a)

FIGURE 9 | Single-trace seismograms for the SEG/EAGE overthrust model at the receiver position of (A) (7.5, 10, 0 km); (B) (10, 10, 0 km); and (C) (12.5, 10,
0 km). The black solid lines represent the uniform-grid FDTD results, and the red dash lines represent the trapezoid-grid FDTD results.
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z

zy0
� 1
1 + γg z( )

z

zy
; (7b)

z

zz0
� − γx

1 + γg z( )
z

zx
− γy

1 + γg z( )
z

zy
+ 1
g′ z( )

z

zz
; (7c)

z2

zx2
0

� 1

1 + γg z( )[ ]2 z2

zx2
; (7d)

z2

zy2
0

� 1

1 + γg z( )[ ]2 z2

zy2
; (7e)

z2

zz20
� 2γ2x

1 + γg z( )[ ]2 z

zx
+ γ2x2

1 + γg z( )[ ]2 z2

zx2 +
2γ2xy

1 + γg z( )[ ]2 z2

zxzy

− 2γx
1 + γg z( )[ ]g′ z( )

z2

zxzz
+ 2γ2y

1 + γg z( )[ ]2 z

zy

+ γ2y2

1 + γg z( )[ ]2 z2

zy2 −
2γy

1 + γg z( )[ ]g′ z( )
z2

zyzz

− g″ z( )
g′ z( )[ ]3 z

zz
+ 1

g′ z( )[ ]2 z2

zz2
.

(7f)

Since the mixed spatial derivatives in Eq. 7f are hard to discrete
directly with the FD method, to transform the mixed spatial
derivatives into non-mixed spatial derivatives, we define three
rotation transformations in the trapezoid coordinate system as

x
z

[ ] � cosθ1 −sinθ1
sinθ1 cosθ1

[ ] x̂
ẑ

[ ]; (8a)

y
z

[ ] � cosθ2 −sinθ2
sinθ2 cosθ2

[ ] ~y
~z

[ ]; (8b)

x
y

[ ] � cosθ3 −sinθ3
sinθ3 cosθ3

[ ] �x
�y

[ ], (8c)

where x̂ and ẑ are axes along diagonals in the (x, z) planes, ~y and ~z are
axes along diagonals in the (y, z) planes, and �x and �y are axes along
diagonals in the (x, y) planes. θ1 is the angle between x and x̂ axes, θ2 is
the angle between y and ~y axes, and θ3 is the angle between x and �x axes.
A schematic of the coordinate transform inEq. 8a is shown inFigure 2.

By using Eqs. 8a–c, the mixed spatial derivatives in Eq. 7f can
be transformed as

z2

zxzz
� 1
2sin 2θ1( )

z2

zx̂2 −
z2

zẑ2
( ); (9a)

z2

zyzz
� 1
2sin 2θ2( )

z2

z~y2 −
z2

z~z2
( ); (9b)

z2

zxzy
� 1
2sin 2θ3( )

z2

z�x2 −
z2

z�y2( ). (9c)

For simplicity, we usually use equal grid sizes in the trapezoid
coordinate system (Δx�Δy�Δz�Δ), whichmeans θ1 � θ2 � θ3 � π

4.
By substituting Eq. 7 and Eq. 9 into Eq. 6, we get the time-domain-
discretization form of the 3D acoustic equation with the CPML
absorbing boundary condition in the trapezoid coordinate system as

1

v2
uj+1 − 2uj + uj−1

Δt2 − γ2x2 + 1

1 + γg z( )[ ]2 z
2uj

zx2 − γ2y2 + 1

1 + γg z( )[ ]2 z
2uj

zy2

− 2γ2x

1 + γg z( )[ ]2 zu
j

zx
− 2γ2y

1 + γg z( )[ ]2 zu
j

zy

+ γx

1 + γg z( )[ ]g′ z( )
z2uj

zx̂2 − z2uj

zẑ2
( )

+ γy

1 + γg z( )[ ]g′ z( )
z2uj

z~y2 − z2uj

z~z2
( )

− γ2xy

1 + γg z( )[ ]2 z2uj

z�x2 − z2uj

z�y2( ) + g″ z( )
g′ z( )[ ]3 zu

j

zz
− 1

g′ z( )[ ]2 z
2uj

zz2

− 1
1 + γg z( )

zψj
x

zx
− 1
1 + γg z( )

zψj
y

zy
+ γx

1 + γg z( )
zψj

z

zz

+ γy

1 + γg z( )
zψj

z

zy
− 1
g′ z( )

zψj
z

zz
− ζ jx − ζjy − ζjz

� f tj( ) x − xs( ) y − ys( ) z − zs( );
(10a)

ψj+1
x � axψ

j
x + bx

1
1 + γg z( )

zuj+1

zx
; (10b)

ψj+1
y � ayψ

j
y + by

1
1 + γg z( )

zuj+1

zy
; (10c)

ψj+1
z � azψ

j
z + bz − γx

1 + γg z( )
zuj+1

zx
− γy

1 + γg z( )
zuj+1

zy
+ 1
g′ z( )

zuj+1

zz
( );

(10d)

ζ j+1x � axζ
j
x + bx

1

1 + γg z( )[ ]2 z
2uj+1

zx2
+ 1
1 + γg z( )

zψj+1
x

zx
( );

(10e)

ζj+1y � ayζ
j
y + by

1

1 + γg z( )[ ]2 z
2uj+1

zy2
+ 1
1 + γg z( )

zψj+1
y

zy
( );

(10f)

ζ j+1z � azζ
j
z + bz

γ2x2

1 + γg z( )[ ]2 z
2uj+1

zx2 + γ2y2

1 + γg z( )[ ]2 z
2uj+1

zy2[
+ 2γ2x

1 + γg z( )[ ]2 zu
j+1

zx
+ 2γ2y

1 + γg z( )[ ]2 zu
j+1

zy

− γx

1 + γg z( )[ ]g′ z( )
z2uj+1

zx̂2 − z2uj+1

zẑ2
( )

− γy

1 + γg z( )[ ]g′ z( )
z2uj+1

z~y2 − z2uj+1

z~z2
( )

+ γ2xy

1 + γg z( )[ ]2 z2uj+1

z�x2 − z2uj+1

z�y2( )
− g″ z( )

g′ z( )[ ]3 zu
j+1

zz
+ 1

g′ z( )[ ]2 z
2uj+1

zz2
− γx

1 + γg z( )
zψj+1

z

zx

− γy

1 + γg z( )
zψj+1

z

zy
+ 1
g′ z( )

zψj+1
z

zz
], (10g)
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where uj � u(x, y, z, tj) represents the scalar wavefield at the jth
time step in the trapezoid coordinate system; (xs, ys, zs) is the
position of the source in the trapezoid coordinate system;
στ � 3vmax

2Lτ
( �τ
Lτ
)2ln1

R, where Lτ is the thickness of CPML
absorbing boundary along the τ direction, �τ denotes the
distance to the inner area in the τ direction; and
ατ � αmax(1 − �τ

Lτ
), τ ∈ {x, y, z}.

A schematic of the grid discretization in the 3D trapezoid-grid
CPML area is shown in Figure 3. In this work, 30 and 20
absorbing boundary layers are usually used for the trapezoid-
grid CPML area in the horizontal and vertical directions,
respectively.

2.3 Stability Analysis
Stability condition is usually required for the FD scheme to give a
stable time step. From Eq. 10a, we use a local frozen coefficients
technique in each discrete point and can get the full-discretization
form of the 3D trapezoid coordinate system acoustic equation
without the CPML boundary condition and source function:

1

v2
uj+1
m,n,l − 2uj

m,n,l + uj−1
m,n,l

Δt2 − γ2x2
m + 1

1 + γg zl( )[ ]2 1

Δ2 ∑Nx

p�1
ηxp uj

m−p,n,l − 2uj
m,n,l + uj

m+p,n,l( )
− γ2y2

n + 1

1 + γg zl( )[ ]2 1

Δ2 ∑Ny

p�1
ηyp uj

m,n−p,l − 2uj
m,n,l + uj

m,n+p,l( )
− 2γ2xm

1 + γg zl( )[ ]2 1
Δ ∑Nx

p�1
cxp uj

m+p,n,l − uj
m−p,n,l( )

− 2γ2yn

1 + γg zl( )[ ]2 1
Δ ∑Ny

p�1
cyp uj

m,n+p,l − uj
m,n−p,l( )

+ γxm

1 + γg zl( )[ ]g′ zl( )
1

2Δ2 ∑Nxz

p�1
ηxzp uj

m−p,n,l−p + uj
m+p,n,l+p − uj

m−p,n,l+p − uj
m+p,n,l−p( )

+ γyn

1 + γg zl( )[ ]g′ zl( )
1

2Δ2 ∑Nyz

p�1
ηyzp uj

m,n−p,l−p + uj
m,n+p,l+p − uj

m,n−p,l+p − uj
m,n+p,l−p( )

− γ2xmyn

1 + γg zl( )[ ]2 1

2Δ2 ∑Nxy

p�1
ηxyp uj

m−p,n−p,l + uj
m+p,n+p,l − uj

m−p,n+p,l − uj
m+p,n−p,l( )

+ g″ zl( )
g′ zl( )[ ]3 1

Δ ∑Nz

p�1
czp uj

m,n,l+p − uj
m,n,l−p( )

− 1

g′ zl( )[ ]2 1

Δ2 ∑Nz

p�1
ηzp uj

m,n,l−p − 2uj
m,n,l + uj

m,n,l+p( )
� 0,

(11)

where ujm,n,l is the wavefield at (xm, yn, zl, tj), xm � x0 + (m − 1)Δx,
yn � y0 + (n − 1)Δy, zl � z0 + (l − 1)Δz, tj � t0 + (j − 1)Δt,Nx,Ny,Nz,
Nxy, Nxz, Nyz are half-of-spatial FD orders, ηx, ηy, ηz, ηxy, ηxz, ηyz

are corresponding FD coefficients of the second-order derivative,
and cx, cy, cz, cxy, cxz, cyz are corresponding FD coefficients of the
first-order derivative.

To derive the stability condition, we use the plane wave
solution that is defined as

u x, y, z, t( ) � u0*e
iωt−ikxx−ikyy−ikzz, (12)

where u0* is the amplitude of the plane wave, i is the imaginary
unit, ω is the angular frequency, and kx, ky, kz are wavenumbers in
the x-, y- and z-directions, respectively. Similar to stability
analysis of Kosloff and Baysal (1982), by substituting Eq. 12

into Eq. 11 and only considering the maximum wavenumber, the
stability condition of the 3D acoustic equation in the trapezoid
coordinate system can be expressed as

Δt< Δ
vmax max

m,n,l

γ2x2
m + 1

1 + γg zl( )[ ]2 ∑Nx

p�1
mod p, 2( )ηxp⎛⎝

+ γ2y2
n + 1

1 + γg zl( )[ ]2 ∑Ny

p�1
mod p, 2( )ηyp + 1

g′ zl( )[ ]2 ∑Nz

p�1
mod p, 2( )ηzp⎞⎠

−1
2

,

(13)

where mod is the function for the getting remainder, and max
m,n,lrepresents the maximum value of the objective function at those

discrete points (xm, yn, zl).

3 NUMERICAL RESULTS

In the following numerical examples, Eq. 10 is discretized by the
eighth-order FD in the space, and conventional Taylor-
expansion–based high-order FD coefficients (Dablain, 1986)
are adopted.

3.1 Homogenous Model
First, we use a 3D homogenous model with a constant velocity of
2000 m/s to verify the effectiveness of our trapezoid-grid FDTD
method and corresponding CPML absorbing boundary
condition. A Ricker wavelet with a dominant frequency of
20 Hz is located at the center of the model as the source. The
FD time step is taken as 1.6 ms. The scaling parameter γ is set as
2.78 × 10–4, the sampling function g(z) � z, and the lateral grid
sizes in the Cartesian coordinate system increase from 7.5 to 10
from top to bottom. Figure 4A shows the snapshot obtained by
the trapezoid-grid FDTD with CPML at 0.45 s, while Figure 4B
shows the corresponding snapshot without CPML. Figure 5
shows the comparison between the recorded seismograms
computed by the uniform-grid FDTD and the trapezoid-grid
FDTD at (x0, y0, z0) � (600, 600, 0 m). The comparison between
Figures 4A,B demonstrates that trapezoid-grid CPML can
effectively reduce boundary reflections, while Figure 5
demonstrates the accuracy of the trapezoid-grid FDTD
method for the homogenous model.

3.2 Overthrust Model
Then, we apply our method to the SEG/EAGE overthrust model
(Figure 6A), which is based on the real overthrusts of South
America. Figures 6B,C show themodeling area of the SEG/EAGE
overthrust model in the trapezoid coordinate system and the
Cartesian coordinate system, respectively. A Ricker wavelet with
the dominate frequency of 4.2 Hz is located at (10 km, 10 km,
0.5 km) as the source. The grid sizes for the uniform-grid FDTD
are 50 m × 50 m × 50 m, which means the minimum NPPW in
each direction is close to 10. We therefore set the minimum
NPPW in x0-, y0-, and z0-direction as 10 for the trapezoid-grid
FDTD method, and get the scaling parameter as γ � 2.07 × 10–4.
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Figure 7A shows the vertical sampling function g(z) used for this
model, and the vertical grid sizes in the Cartesian coordinate
system increase from 51.8 m in the shallow region to a maximum
value of 142.6 m in the deep region, as shown in Figure 7B. Based
on the stability analysis, the time step for the trapezoid-grid
FDTD and the uniform-grid FDTD are 3.697 and 3.585 ms,
respectively. Receivers are located on the surface along y0 �
10 km. Figure 8A shows the snapshot at 2.5 s computed by
the uniform-grid FDTD, and Figure 8B is the snapshot at
2.5 s in the trapezoid coordinate system computed by our
trapezoid-grid method. Using coordinate transformation and
cubic spline interpolation, we can get the corresponding
snapshot in the Cartesian coordinate system, as shown in
Figure 8C. Figures 8A,C show good agreement. To give more
detailed comparisons, single-trace seismograms at (7.5, 10, 0 km),
(10, 10, 0 km), and (12.5, 10, 0 km) for both the uniform-grid
(black solid line) and the trapezoid-grid (red dash line) FDTD are
shown in Figure 9. Figure 9 also shows good agreement between
the uniform-gird FDTD and the trapezoid-grid FDTD. On our
computing platform (Intel(R) Xeon(R) Sliver 4216 CPU @
2.10GHz, 256GB of memory, and C++ codes), using 16-
threads computation and similar code optimization
techniques, the running time for the trapezoid-grid FDTD and
the uniform-grid FDTD is calculated as 2203 s and 2925 s,
respectively, which shows a calculation efficiency improvement
of 24.7%. The memories for the trapezoid-grid FDTD and the
uniform-grid FDTD are about 336 and 1213 MB, respectively,
which shows a memory reduction of 72.3%. Considering that the
simulation area of our trapezoid-grid method is almost 60% of
that of the uniform-grid method, for the common simulation
area, we can achieve about 50% reduction on memory usage.

4 CONCLUSION

In this article, we propose a 3D trapezoid-grid FDTD seismic
wave modeling method based on the increasing trend of seismic
wave velocity with depth. The trapezoid-grid mesh in the physical
Cartesian system can effectively reduce the oversampling in the
high-velocity region compared with the uniform-grid method,
and the design of 3D trapezoid coordinate transform greatly
avoids the difficulty of processing an irregular grid. We derive the
3D acoustic equation in the trapezoid coordinate system. The

corresponding CPML boundary condition is also given to
decrease artificial boundary reflection. To obtain a stable and
efficient wave modeling result, we combine the plane wave theory
and frozen coefficients technique and provide an effective
stability condition for the 3D trapezoid-grid FDTD method.
The discretization of the 3D acoustic equation in the trapezoid
coordinate system is completed by the eighth order and second
order finite-difference method in the space and time domain,
respectively. The 3D homogenous model is given to verify the
effectiveness of trapezoid-grid FDTD and the performance of the
CPML boundary. Numerical tests on the SEG/EAGE overthrust
model indicate the accuracy and the significant memory
reduction of our method compared with uniform-grid FDTD.
The key idea of our method is the combination of the trapezoid
coordinate transformation and the FD stencils. Such idea can be
generalized tomany other wave equations such as elastic equation
(Zhan et al., 2017) and Maxwell’s equations (Zhan et al., 2021).
Besides, our method is actually dealing with the regular grids in
the trapezoid coordinate system, which means that we can
combine other methods to treat the irregular surface (Li et al.,
2020) or curved interfaces (Zhan et al., 2020).
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