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The identification and classification of lithofacies’ types are very important activities in shale
oil and gas exploration and development evaluation. There have been many studies on the
classification of marine shale lithofacies, but research on lacustrine shale lithofacies is still in
its infancy. Therefore, in this study, a high-resolution sequence stratigraphic framework is
established for the lacustrine shale of the Jurassic Dongyuemiao Formation in the Fuxing
area using detailed core observations, thin section identification, XRD analysis, major and
trace element analysis, wavelet transform analysis, and detailed identification and
characterization of the fossil shell layers in the formation. In addition, the lithofacies’
types and assemblages are identified and characterized, and the lithofacies’
characteristics and sedimentary evolution models in different sequence units are
analyzed. The significance of the lithofacies assemblages for shale oil and gas
exploration is also discussed. The results show that the shale of the target interval can
be divided into 8 parasequence sets; further, 9 types of lithofacies and 6 types of lithofacies
assemblages are identified. The 9 lithofacies are massive bioclast-containing limestone
shoal facies (LF1), thick-layered fossil shell–containing limestone facies (LF2), layered mud-
bearing fossil shell–containing limestone facies (LF3), laminated fossil shell–containing
argillaceous shale facies (LF4), laminated fossil shell–bearing argillaceous shale facies
(LF5), argillaceous shale facies (LF6), massive storm event–related bioclast-containing
facies (LF7), massive argillaceous limestone facies (LF8), and massive mudstone facies
(LF9). The sedimentary evolution models of different lithofacies are established as follows:
Unit 1 (LF1-LF6) of the Dong-1 Member corresponds to the early stage of a lake
transgressive system tract, and Units 2–4 (LF4-LF7) correspond to the middle to late
stage of the lake transgressive system tract, which was an anoxic sedimentary
environment. The Dong-2 Member (LF7-LF8) and the Dong-3 Member (LF5+LF9)
correspond to a lake regressive system tract, which was an oxygen-rich sedimentary
environment. Based on the characteristics of the shale lithofacies, sedimentary
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environment, and the quality of the reservoir, the lithofacies assemblage of LF4–LF7 in Unit
4 is the most favorable type for oil and gas exploration, followed by the lithofacies
assemblage in Unit 2; the lithofacies assemblage in the Dong-2 and Dong-3 Members
are the worst.

Keywords: lithofacies (assemblages), shale oil, sedimentary evolution, dongyuemiao, sichuan basin

INTRODUCTION

Beginning in 2010, this research group began to study the
potential for the exploration and development of shale oil and
gas in China’s geological terrain by drawing lessons from the
successful shale revolution in the United States. In recent years,
research on shale oil has become extremely important (Jia et al.,
2013a; Sun et al., 2013; Xu et al., 2015; He et al., 2017; Wang et al.,
2018; Li W. et al., 2020). At present, shale oil research in the
United States is mainly focused on the Permian, Bakken, Eagle
Ford, Niobrara, and other zones, and most of them are marine
deposits. Recent exploration results in China show that the
Songliao Basin and the Bohai Bay Basin in eastern China, the
Ordos Basin and the Sichuan Basin in central China, and the tight
oil and shale oil in the Jungar Basin and the Qaidam Basin in
western China have good oil and gas exploration potential, and all
of them mainly developed in lacustrine sedimentary
environments. Compared with the marine shale in North
America and the shale of the Wufeng–Longmaxi Formation in
the Sichuan Basin in China, lacustrine shale has strong
heterogeneity, high reservoir plasticity, and complex fluid
properties. Due to the supply of sediments from multiple
sources in different directions in the same period and the
lateral migration of sedimentary centers in different periods,
multiple types and multi-stage interlayers are developed in the
shale; the temporal and spatial heterogeneity of shales’ lithofacies
is strong (Bohacs et al., 2000; Chamberlain et al., 2013;
Desborough, 1978; Doebbert et al., 2010; Liu et al., 2018a; Ma
et al., 2017; Zhang et al., 2017).

Shale oil is mainly divided into three types: the matrix type,
interlayer type, and fracture type. Many scholars have studied
lithofacies, sedimentary environment, and genetic model of
different types of shale (Carroll and Bohacs, 2001; Lei et al.,
2002; Meng et al., 2012; Zhang et al., 2012; Chamberlain et al.,
2013; Strobl et al., 2014; Bruner et al., 2015; Lazar et al., 2015; Liu
et al., 2018a; Deng et al., 2019). In terms of petrological research,
comprehensive investigations have been carried out using core
descriptions, thin section analysis, scanning electron microscopy,
and X-ray diffraction analysis. At the same time, the
heterogeneity of different types of shale lithofacies is reflected
in its sedimentary structure (lamina and paleontology), organic
matter content, and diagenesis (Surdam and Stanley, 1979;
Bohacs et al., 2000; Loucks et al., 2007; Mitra et al., 2010; Xu
et al., 2020a). Studies on the lacustrine shale of the Shahejie
Formation in the Bohai Bay Basin have revealed that its lithofacies
is divided into felsic shale, mixed shale, dolomite and carbonate
shale, andmassive, layered, and laminar shale (Ma et al., 2017; Bai
et al., 2020; Li M. et al., 2020; Wu et al., 2020). In addition, studies
on the sedimentary environment and genetic model of lacustrine

organic-rich shales using sedimentology theory have shown that
changes in the paleoclimate and tectonic activity are important
factors controlling the evolution of ancient lake basins (Carroll
and Bohacs, 1999; Sageman et al., 2003; Macquaker et al., 2010; Jia
et al., 2013b; Egenhoff and Fishman 2013; Bruner et al., 2015; Ma
et al., 2017; Liu et al., 2020; Gou et al., 2021); some scholars have
also classified the lacustrine shale in the Sichuan Basin into pure
shales deposited in a deep lake, shales intercalated with calcareous
strips deposited in a shallow lake, and shales intercalated with
thin fossil shell–containing limestone layers deposited in a semi
deep lake.

In addition, many scholars have begun to pay attention to the
significance of sedimentary structures, such as interlayers in
organic-rich shale, for lithofacies identification and oil and gas
exploration (Birdwell et al., 2016; Ougier-Simonin et al., 2016;
Chen et al., 2017; Liang et al., 2017; Zou, 2017); much attention
has been paid to carbonate interlayers commonly found in many
continental lake basins, such as the Uinta Basin in the
United States, the Cankiri–Corum Basin in Turkey, the
Midland Valley Basin in Scotland, and the Bohai Bay Basin in
eastern China, among others (Burton et al., 2014; Scherer et al.,
2015; Merkel et al., 2016; Moradi et al., 2016; Liu et al., 2018b).
Carbonate intercalations are deposited in shale as laminar or
medium thick laminar, and their content and structure show
obvious differences in the vertical direction (Hao et al., 2014; Bai
et al., 2018; Liu H. et al., 2019; Zhang L. et al., 2019; Gou et al.,
2019; Xu et al., 2020b). Many studies have also shown that total
organic carbon (TOC) content, shale oil content, and reservoir
quality play an important role in oil and gas accumulation; among
these, the TOC content indicates the oil generation potential and
the shale oil content, and shale porosity reflects the reservoir
space characteristics (Katz, 2003; Kuhn et al., 2012; Holditch,
2013; Hao et al., 2014; Chen et al., 2017; Zou et al., 2019). The
above indicators are closely related to the mineral composition,
sedimentary structure, and petrological characteristics of shale.
Therefore, the study of lacustrine shale lithofacies and lithofacies
assemblages is of great significance to reveal the enrichment
mechanism of shale oil and gas, and is also conducive to more
effective shale oil and gas exploration and development (Birdwell
et al., 2016; Liang et al., 2017; Zou, 2017; Shi et al., 2019a; Su et al.,
2019).

Comprehensive research has shown that fine-detailed
identification and description of lacustrine shale lithofacies is
an important task for shale oil and gas exploration and
development evaluation. At present, shale lithofacies are
mostly divided based on mineral composition, sedimentary
structure, and TOC content. However, research on the
characteristics of shales with interlayers is obviously
insufficient. For example, in the Jurassic Dongyuemiao
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Formation in the Sichuan Basin, the frequent development of
fossil shell layers are of great significance for the exploration and
development evaluation of the shale oil and gas in the area. This
set of lacustrine shales, which are different from marine shales
and the lacustrine shale in the Bohai Bay Basin, has high clay
content, moderate thermal evolution (belonging to condensate oil
and gas reservoirs), and many fossil shell interlayers. It is urgent
to establish a lithofacies characterization scheme for this set of
shale. In this study, Dong-1 Member is the key research object.
Based on the establishment of a high-resolution sequence
stratigraphic framework, mineralogical characteristics,
sedimentary structure, fossil shell interlayer type, and organic
carbon content, lithofacies characteristics of the shale and
lithofacies assemblages are identified; in addition, the redox
environment is analyzed, and the sedimentary evolution model
of the different lithofacies assemblages and their significance for
shale oil and gas exploration is discussed to provide a theoretical
basis and technical support for the exploration and development
of shale oil and gas in the Jurassic Dongyuemiao Formation in the
Fuxing area.

GEOLOGICAL SETTING

The Fuxing area is located in the north of Sinopec mining right
Qijiang–Fuling area. It is located in Chongqing, whose
administrative division is subordinate to Liangping, Dianjiang,

Fengdu, and Zhongxian. Structurally, it is located in the Wanxian
syncline of the East Sichuan high and steep fold belt, with an area
of 2,747 square kilometers. The area is a low mountainous to hilly
landform that is 300–600 m above sea level and has convenient
transportation and a well-developed water system. Since the end
of the Middle Triassic, the Indosinian movement made the sea
water to withdraw from the Sichuan Basin; the eastern edge of
Loushan was connected to the ancient Jiangnan land and the
basin entered an evolution stage of “circular depression” with
deposition occurring in a lacustrine environment. Therefore, the
sedimentary environment changed from a marine one to a
lacustrine one. In the early Jurassic, the area of the lake
basin’s center to the periphery was a half deep lake–deep lake,
a shallow lake–half deep lake, a shore shallow lake, a shore lake,
and a river environment. Jurassic strata in the Sichuan Basin are
well developed. From the bottom to the top, they are the Lower
Jurassic Ziliujing Formation, the Middle Jurassic Lianggaoshan
Formation and the Shaximiao Formation, the Upper Jurassic
Suining Formation, and the Penglaizhen Formation. The Lower
Jurassic shale is mainly developed in the Dongyuemiao
Formation, the Daanzhai Formation, the Lianggaoshan
Formation, and the Ziliujing Formation (Figure 1). Controlled
by tectonic subsidence, transgression, and regression, three sets of
shallow lake to semi deep lake organic-rich shale are mainly
deposited in the Lower Jurassic strata, among which good shale
oil and gas exploration potential is seen in the Dong-1 Member,
the Da-2 Member, and the Liang-2 Member.

FIGURE 1 | (A) Location of the Fuxing area; (B) distribution diagram of Lower Jurassic strata in the Fuxing area.
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METHODS

Wavelet Transform
Based on the theory of transgressive (T)–regressive (R) cycles and
wavelet transform technology, in this study, a multi-scale analysis
of the gamma logging curve was carried out through wavelet
transform to establish a high-resolution sequence stratigraphy.
The theoretical basis of the T-R cycle is that the rise and fall of the
water level is the main controlling factor of sequence
development; therefore, each water advance cycle and water
retreat cycle are regarded as a complete sedimentary cycle
(Guo et al., 1998; Wang, 2007; Du et al., 2016). Wavelet
transform technology mainly uses the MATLAB software to
process the gamma curve. The Morlet wavelet spectrum,
which has been demonstrated to be effective in the periodic
analysis of sedimentary cycles and sedimentary environments,
was used with the value of the spectrum coefficient a being 256.
After software processing, the wavelet analysis spectrum and the
filtering analysis curve were obtained. The boundary and color
depth of the energy mass in the wavelet analysis spectrum can
effectively reflect the periodic characteristics of the sedimentary
cycle. In this process, gamma logging data is replaced by the
filtering analysis curve with certain periodicity, which is the basis
of establishing the high-resolution sequence stratigraphy and
identifying the sedimentary cycles (Li et al., 2009; Yang et al.,
2019; Zhao et al., 2020).

TOC and XRD Analyses
To obtain the TOC content, the shale samples were treated with
200 mg powder to remove the carbonate content; the powder was
treated with 10% hydrochloric acid at 60°C. Excess hydrochloric
acid in the sample residue was removed using distilled water, and
the samples were finally dried and TOC measurements were
made using a CS844 Carbon/Sulfur Analyzer. For XRD analyses,
the samples were scanned at a rate of 0.01°/s from angles of
2–70°at 20°C and a Bruker instrument was used for the analysis.
All the measurements were done at the Petroleum Exploration
and Development Laboratory, Jianghan Oilfield Branch
Company, SINOPEC. Moreover, the analytical precision is
better than 0.5% based on the Chinese National Standard GB/
T 19145–2003.

Major and Trace Elements
The shale samples were treated to the powder and 50 mg powder
was used for the analysis. First, the samples were pre-heated at
1,000°C for 90 min, and the weight change of the samples before
and after pre-heating was recorded. Then the samples were
mixed with 8x lithium tetraborate 186 (Li2B4O7) to fuse them
into glass beads. Second, they were wetted by a few drops of
ultrapure water and a mixture of 1 ml hydrofluoric acid (HF)
and 1 ml nitric acid (HNO3) in a beaker. Then the beaker was
sealed and placed in an oven and heated at 190°C for more than
48 h. Third, the slurry was evaporated at 115°C to near-dryness,
and a mixture of 2 ml of HNO3 and 3 ml of ultrapure water was
added; then the beaker was sealed again to allow the residue to
dissolve. Finally, the beaker was heated to 135°C for 5 h, and
then the content was transferred to a polyethylene bottle and

diluted to 100 ml with a mixture of 2% HNO3. Then the sample
was analyzed using an inductive coupled plasma–mass
spectrometer (ICP-MS), with a precision of better than ±5%.
The entire experiment was conducted at the ALS Chemex
Laboratory (Guangzhou, China).

RESULTS

Sequence Stratigraphic Framework
The results of the Wavelet transform reveal that there are roughly
three cycle combination modes: the combination mode in which
the GR value increases upward is the water advance process, the
combination mode in which the GR value decreases downward is
the water retreat process, and the stable change of the GR value is
the stable change stage of the horizontal plane. The logging data
can effectively and accurately reflect the rhythmic sedimentary
characteristics of the formation. The wavelet coefficient spectrum
was obtained after processing by the wavelet transform
technology. This method intuitively shows the mutation points
and change areas between the frequency structure segments, and
is displayed through the change in the local energy group and the
periodic change characteristics. The corresponding relationship
with the sequence framework at all levels can be established in
turn. Compared with other logging data, the natural gamma ray
(GR) curve is more sensitive to sand and mud content; after the
wavelet exchange processing, the wavelet analysis map obtained
can establish an effective relationship with the sequence
framework. Based on the wavelet transform analysis of the
FYA well in the Fuxing area and the T-R cycle theory, the
target layer is divided into two system tracts (lacustrine
transgressive system tract and lacustrine regressive system
tract), and eight parasequence groups (8 Units) are identified;
among these, the Dong-1 Member corresponds to Units 1–4,
which reflect transgression overall; the Dong-2 Member
corresponds to Unit 5, and the Dong-3 Member corresponds
to Units 6–8. The Dong-2 and Dong-3 Members generally record
a water regression (Figure 2).

Distribution Characteristics of Shell Fossils
(Bioclasts) Interlayer
The observation of the core from the FYA well shows that
laminated ( < 0.01 m) fossil shell interlayers are commonly
present in the Jurassic Dongyuemiao Formation in the Fuxing
area (Figure 3; Table 1). The longitudinal distribution
characteristics of fossil shell layers in the four parasequence
formation units of the Dong-1 Member show obvious
differences; in Unit 1, there are 126 laminae, 6 thin layers
(0.01–0.1 m), and 4 medium layers (0.1–0.5 m) with fossils
(bioclasts); in Unit 2, there are 214 laminae, 5 thin layers, and
2 layers with fossil shells; in Unit 3, there are 36 laminae, 10 thin
layers, and 3 layers with fossil shells (bioclasts); and in Unit 4,
there are 81 laminae and 7 thin layers with fossil shells (bioclasts).
In the other parasequence sets, there are few layers with fossil
shells (bioclasts). From the bottom to the top, the cumulative
thickness of the fossil shell (bioclasts) layers in the four units of

Frontiers in Earth Science | www.frontiersin.org November 2021 | Volume 9 | Article 7725814

Shu et al. Lithofacies, Assemblage Characteristics, and Sedimentary Evolution

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


the Dong-1 Member is 1.82, 0.74, 1.35, and 0.36 m, respectively.
Among them, the number of laminar interlayers in Unit 2 and 4 is
the largest. Compared with the other three units, the number of
layers with bioclasts and the cumulative thickness of bioclast
layers in Unit 4 are significantly reduced. In addition, comparing
the TOC content of different units and the cumulative thickness
of the fossil shell (bioclasts) layers shows that there is a certain
positive correlation between them.

Petrologic Characteristics
XRD results show that the shale minerals in the Dongyuemiao
Formation of the Fuxing area mainly include quartz, feldspar,
carbonate, clay, pyrite, siderite, and other minerals. Among them,
the content of clay minerals in shales of the Dong-1 Member
accounts for 49.8–72.8%, with an average value of 64.3%, the
carbonate content ranges from 0 to 30.7%, with an average of

4.38%, and the siliceous content accounts for 19.4–37.4%, with an
average of 31.3%. The Dong-2 Member mainly contains
limestones, and the carbonate minerals account for the largest
proportion of minerals. The clay content in the Dong-3 Member
is 35.8–68.2%, with an average value of 57.2%; the carbonate
content is less, with an average of value 7.5%, and the siliceous
content ranges from 29.0 to 44.7%, with an average of 35.2%
(Figure 4). The XRD results and mineral ternary diagram
analysis show that the samples of Units 1–4 and Unit 6 are
mainly silty-rich mudstone, with a small amount of mixed
mudstone, carbonate-rich mudstone, and carbonate mudstone;
Unit 5 is mainly composed of carbonate mudstone; besides, the
Unit 7 is mainly silty-rich mudstone and silty-rich/argillaceous
mixed mudstone (Figure 5).

As one of the characteristics of shale, organic matter plays an
important role in the exploration and development of shale oil

FIGURE 2 | Comprehensive histogram of high-resolution sequence stratigraphic division of FYA well in the Fuxing area.
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and gas. Therefore, based on the division of lithofacies by the
three terminal element diagram, the TOC content is included in
the naming of lithofacies to effectively reflect the enrichment
degree of organic matter in different lithofacies. Based on the
TOC results, the lithofacies is divided into five grades: ≤0.5%
(very low carbon), 0.5–1.0% (low carbon), 1.0–2.0% (medium
carbon), 2.0–4.0% (high carbon), and >4% (rich carbon). A
four-component lithofacies classification scheme is established
based on the three-terminal member map of minerals
(Figure 6).

Organic Geochemical Characteristics
From the bottom to the top, the TOC content generally shows a
decreasing trend, but the Unit 4 section of the Dongyuemiao
Formation has the highest range of TOC. Statistics show that the
average TOC content of the four units in the Dong-1 Member is
generally higher than that in the Dong-2Member and the Dong-3
Member. The TOC content in the Dong-1Member decreases first
and then increases: Unit 4 (2.16 wt%) > Unit 1 (1.72 wt%) > Unit
2 (1.57 wt%) > Unit 3 (1.49 wt%). The average TOC content of
the Dong-2 Member is 1.22 wt%, and the lowest TOC value of
0.55 wt% is in the Dong-3 Member (Figure 7).

As redox-sensitive elements, vanadium (V) and chromium
(Cr) are widely used to indicate the redox environment during the
deposition of paleowater (Algeo and Maynard, 2004; Algeo and
Tribovillard, 2009; Liu et al., 2017; Lu et al., 2019; Ross and
Bustin., 2009; Wang et al., 2018). The V/Cr ratio in the Dong-1
Member is higher than that in the Dong-2 Member and the
Dong-3 Member; the V/Cr ratio in the Dong-1 Member is
generally higher than 4.25, while in the Dong-2 Member and
Dong-3 Member, the ratio is basically between 2–4.25, indicating
that the sedimentary environment intensely changed upward
from anoxic conditions to oxic conditions.

DISCUSSION

The Classification and Distribution of
Lithofacies (Assemblages)
Observations of cores from the Dongyuemiao Formation in the
Fuxing area show the presence of many fossil shell (bioclast)
layers in the rock core. Through the detailed analysis of shell
layers in different sequence units, nine lithofacies types are
identified: bioclast-containing limestone shoal facies (LF1),
thick-layered fossil shell–containing limestone facies (LF2),
layered mud-bearing fossil shell–containing limestone facies
(LF3), laminated fossil shell–containing argillaceous shale
facies (LF4), laminated fossil shell–bearing argillaceous shale
facies (LF5), argillaceous shale facies (LF6), massive storm
event–related bioclast-containing facies (LF7), massive
argillaceous limestone facies (LF8), and massive mudstone
facies (LF9) (Figure 8). Among them, LF1 is mainly
composed of light gray broken and clastic shell deposits, and

FIGURE 3 | Schematic diagram of development characteristics of shell fossils layer of the Dong-1 member of FYA well in the Fuxing area.

TABLE 1 | Statistical table of interlayer distribution in the East first member of
Jurassic in the Fuxing area.

Interlayer type Thickness (cm) Unit① Unit② Unit③ Unit④

Middle layer ＞10 4 1 3 0
Thin layer 1–10 6 10 6 7
Lamina ＜1 126 214 36 81
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the shale content is less than 10%, with almost no intact shell
seen. LF2 is a thick-layered fossil shell layer formed by the
accumulation of a large number of shell organisms. It is mainly
composed of relatively intact shell deposits and contains a small
amount of medium-sized debris deposits. It has certain
directionality, and the shale content is higher but generally
less than 25%. LF3 is a medium to thin layer–containing fossil
shells formed by the accumulation of shells and medium-sized
debris. The overall preservation of the shells is relatively
complete, and the content of the fossil shells accounts for
50–60%. Compared with LF2, the shale content is higher.
LF4 is mainly a laminar deposit; the shells are relatively
intact and appear as floating and laminar structures that are
distributed in the black shale with a certain orientation; the
proportion of shells is 30–50%. In LF5, the fossil shells are

significantly reduced, but the fossil shells that are present are
intact and appear as directional and floating structures; lamellae
are distributed in the black shale, which contains almost no
medium-sized debris; the shell content is less than 25%, and the
matrix is composed of argillaceous shale. LF6 has foliation, is
rich in organic matter, and contains almost no shell or debris.
Massive fossil shell (bioclasts) deposits can be seen in LF7, and
the shale content is generally less than 10%. The lithofacies has
an obvious abrupt relationship with the upper and lower
interfaces. There is no transitional lithology, and the
maximum thickness is 55 cm, which is located at the top of
Unit 3. LF8 is mainly distributed in the middle and upper part of
Unit 5. The lithology is characterized by limestone, acid
dropping, and violent bubbles. LF9 is mainly distributed in
Units 6–8. The core is similar to the argillaceous shale of the

FIGURE 4 | Single well diagram of shale mineral components in the Dongyuemiao Formation of FYA well in the Fuxing area.
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Dong-1 Member, but the siliceous content is higher; most of the
sediments in the core are also from terrigenous sources.

Based on the comprehensive analysis of the mineral ternary
diagram, TOC content, and lithofacies type classification, six
lithofacies assemblages are identified in shales of the
Dongyuemiao Formation in the Fuxing area: LF1–LF6: it is
mainly identified in Unit 1, and multi-stage transgressive and
regressive cycle sequences can be identified from the bottom to
the top; the transgressive lithofacies is characterized by the
gradual change in the LF6-LF5-LF4-LF3-LF2-LF1 sequence,
and the regressive cycle is characterized by the reverse change
sequence of LF1-LF2-LF3-LF4-LF5-LF6 (Figure 9). LF4–LF7: it is
mainly distributed in Units 2–3. The core observations show that
the upper and lower argillaceous shale lithofacies are intercalated
with medium and thin-layered storm event bioclast facies, with

obvious lithologic interfaces and thickness of 1–13 cm. LF6–LF7:
it is mainly located at the top of Unit 3 and has a thickness of
55 cm; storm event bioclast facies are intercalated with the
argillaceous shale facies. LF4–LF7: it is identified in Unit 4
and is characterized by a high TOC content; the lithofacies
assemblage is similar to LF2, but the difference is that the
storm event bioclasts facies is mainly composed of thin-
layered laminar sediments with a thickness of 1–5 cm.
LF7–LF8: distributed in Unit 5, with a low TOC content and
dominated by LF7 and LF8 deposits. LF5 + LF9: identified in
Units 6–8, the TOC content is low, the LF9 type is mainly
developed, and LF5 is occasionally seen (Figure 10).

Previous studies have shown that vanadium (V) and
chromium (Cr) are easy to dissolve as redox-sensitive
elements, which makes the concentration of these elements

FIGURE 5 | Ternary diagram of mineral compositions in the Dongyuemiao Formation of FYA Well in the Fuxing area.

FIGURE 6 | Shale lithofacies division scheme of ternary diagram and TOC content in the Dongyuemiao Formation of FYA well in the Fuxing area.
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low in oxidizing environments. On the contrary, in a reducing
water environment, these elements are easily deposited and
enriched due to their low solubility under anoxic conditions.
When the V/Cr ratio > 4.25, it indicates an anoxic water
environment; when it is between 2–4.25, it indicates a dysoxic
sedimentary environment; and when it is < 2, it indicates an
oxygen-rich sedimentary environment (Algeo and Maynard,

2004; Tribovillard et al., 2006; Wang et al., 2018; Lu et al.,
2019). The V/Cr index of the shale samples from the
Dongyuemiao Formation shows that the ratio is greater than
4.25 on the whole, which indicates that it was deposited in an
anoxic sedimentary environment. Only individual shell layer
samples show a dysoxic sedimentary environment. The results
of shale samples from Dong-2 and Dong-3 Members show that

FIGURE 7 | Analysis of shale sedimentary environment of the Dongyuemiao Formation of FYA well in the Fuxing area.
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the deposition in this period was basically in an oxygen-rich
environment, reflecting the period from Dong-1 to Dong-3.
Overall, the redox conditions show a trend of transformation
to an oxidation environment, which further reveals the evolution
trend of the shallower lake level.

Sedimentary Evolution Models of Different
Lithofacies Assemblages
Under the influence of the sedimentary environment and lake
level changes in different periods, the sedimentary models of the
shale in different units of the Dongyuemiao Formation show
great differences (Eugster and Surdam, 1973; Demaison and
Moore, 1980; Jia et al., 2013b; Feng et al., 2016; Liu et al.,
2018b; Shi et al., 2019b). Analysis of the characteristics and
genesis of the lacustrine shale lithofacies assemblages in the
Jurassic Dongyuemiao Formation in the Fuxing area show that
the bottom-up lithofacies assemblage evolved from LF1–LF6 to
LF5+LF9. Combined with redox environment analysis of this
period, in the entire sedimentary cycle of the lake transgression
and lake retreat, the lake basin evolved from a moist lake
significantly affected by seasonal climate change to a dry lake
that was shallower and not significantly affected by seasonal
climate change. Finally, a sedimentary evolution model of the

lacustrine shale lake in this area was established in this study; it
can be divided into three evolution periods: the early stage of the
lake transgressive system tract, the middle–late stage of the lake
transgressive system tract, and the lacustrine regressive system
tract (Figure 11).

In the early stage of the lake transgressive system tract, which
corresponds to Unit 1, the LF1−LF6 assemblage was mainly
developed, and multiple sets of transgressive and regressive
sedimentary sequences can be seen from core observations,
which are pointed out in Discussion 5.1 (Figure 8). In terms
of lithology, the black shale is interbedded with laminated, thin,
and medium–thick fossil shell layers with different thickness,
and horizontal bedding is developed. The fossil shells in the core
and thin section are complete in shape and different in size, and
they are distributed in the black shale as layers or in suspension
(Figure 12B). According to the analysis, it is considered that this
lithofacies assemblage was mainly deposited in the lower part of
a shallow lake and the middle-upper part of a semi deep lake
located near the normal wave base, with strong hydrodynamic
force. Under the dynamic action of waves, the complete shells
passed through repeated panning and transformation, and
finally formed the LF1 assemblage, which is a medium clastic
beach sedimentary microfacies with broken shells. It is
distributed in the lower part of the shallow lake sedimentary

FIGURE 8 | Photos of seven lithofacies cores of FYA well in the Fuxing area.
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facies, and the content of mud is low (generally less than 10%).
LF2–LF6 is mainly distributed in the semi deep lake sedimentary
facies. As the lake water became deeper, the fossil shell content
reduced and their preservation became better. LF6 is mainly
deposited at the bottom of the semi-deep lacustrine facies
(Figure 11). With the gradual rise of the lake level, the
oxygen content in the bottom water of the lake decreased

correspondingly. The redox index V/Cr ratio shows an
upward trend from bottom to top.

Under the background of a humid paleoclimate, the rainfall
was strengthened, which led to the injection of a large amount
of freshwater carrying nutrients by fluvial action, and the lake
level increased, entering the middle to late stage of the lake
transgressive system tract and forming the largest lake

FIGURE 9 | Lithofacies distribution map of Dong-1 member of FYA well in the Fuxing area.
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FIGURE 10 | Lithofacies assemblage division scheme of the Dong-1 member FYA well in the Fuxing area.

FIGURE 11 | Shale sedimentary evolution model diagram of the Jurassic Dongyuemiao Formation in the Fuxing area.
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flooding surface. In addition, the suitable paleoclimate and
rainfall promoted the development of vegetation around the
lake and blocked the injection of terrigenous debris
transported by runoff; however, the transport of fine
particles such as clay minerals and silty materials was
enhanced due to the conservation of energy (Smith et al.,
2014; Ma et al., 2020). This period roughly corresponds to
Units 2–4 of the Dong-1 Member, of which Units 2–3 are
mainly composed of the LF4–LF7 assemblage. In the core,
there are two black shale segments intercalated with
middle–thin gray bioclast layers, which were mainly
deposited in the middle and lower part of a semi-deep
lacustrine facies. There are multiple sets of bioclast layers
with thicknesses between 5 and 25 cm. The individual shape of
shells cannot be discerned, but the shell fragments can be seen
in the thin sections (Figure 12A), and the shale content is less
than 10%. Besides, this medium debris layer is in an
unconformable contact with the upper and lower shale
sections, which is different from Unit 1, and lacks a
transitional lithofacies, reflecting the characteristics of
event sedimentation. Combined with the geological
background of this area, it is considered that LF7 is a
storm deposition. Most of the fossil shells with complete
morphology were formed into bioclast debris under the
action of storm currents, and these are identified as storm
beach sedimentary microfacies. The erosion surface structure
can be seen in the lower part of most bioclast layers
(Figure 12F). The sedimentary environment of this set of
lithofacies assemblages is deeper than that of the lithofacies
assemblage in Unit 1, and LF6 is a semi-deep lacustrine mud-

containing sedimentary microfacies. In addition, a set of
medium bioclast limestone sections with a thickness of
about 55 cm is developed at the top of Unit 3. This set of
thick-layered medium bioclast-containing limestone facies
combined with the argillaceous shale facies (LF6) to form
LF3, which is a semi-deep lake facies.

In Unit 4, the LF5–LF7 assemblage is developed, and the
lithology is mainly black shale, which is obviously different
from the deposits of layers containing fossil shells and bioclasts
under the microscope, and the grain size is fine (Figure 12C).
The lithofacies assemblage mainly consists of laminated
bioclast layers with an accumulative thickness of 11.3 cm.
There are 108 laminar bioclast-containing limestone
interlayers with a density of 16.6/m. Compared with the
lithofacies assemblage 2 in Units 2–3, the number of middle
layers and thin bioclast-containing limestone interlayers is
significantly reduced, and the thickness of a single layer and
the cumulative thickness are obviously reduced. At this time,
the maximum lake flooding surface was formed, and there was
still storm flow at the bottom of the semi deep lake facies, but
the intensity was weakened, the duration was reduced, and the
location of the lithofacies deposition became deeper. In
addition, imaging logging shows that the argillaceous shale
facies and foliation are extremely developed (Figure 13), and
that LF6 is a semi-deep lake mud microfacies. The analysis of
sedimentary environment indicates an anoxic environment,
which was beneficial to the generation and preservation of
organic matter. After that, the indexes show a gradual
downward trend, and the lake level also began to decrease,
entering the period of the lacustrine regressive system tract.

FIGURE 12 | Microscope photos of shale and core close-up of the Dongyuemiao Formation of FYA well in the Fuxing area.
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During the period of the lacustrine regressive system tract, with
the decrease in the amount of rainfall, the paleoclimate was relatively
arid. Due to the decrease in the input of fresh water into the lake, the
lake level gradually decreased, and a certain amount of terrigenous
debris entered the lake through eolian action. This period
corresponds to the Dong-2 Member and the Dong-3 Member.
The Dong-2 Member is mainly composed of LF7 and LF8
(Figure 12D), which is a carbon-bearing massive argillaceous
limestone assemblage with fewer fossil shell layers and mainly
shallow lake sediments. The lithology of the Dong-3 Member is
dominated by black and grayish brown mudstone, and the LF5 and
LF9 assemblages are developed (Figure 12E) with occasional bioclast
layers. With the entry of terrigenous debris, the content of silty
minerals and siliceous minerals increased and the TOC decreased as
compared with theDong-1Member. The lake became shallower and
the deposition during this time is mainly composed of shallow lake
deposits. The redox index indicates that this period was in an
oxidizing environment, and the total organic carbon content also
shows a downward trend.

Significance of Different Lithofacies
Assemblages for Shale Oil and Gas
Exploration
Controlled by the sedimentary environment, there are obvious
differences in lithofacies types and lithofacies assemblages in
different units. On the premise of not being affected by external
factors, different sedimentary environments determine the
lithofacies assemblage characteristics of different strata in a
basin (Abouelresh and slatt, 2012; Bai et al., 2020; Feng et al.,
2016; Jin et al., 2006; Meng et al., 2012; Strobl et al., 2014; Yan and
Zheng, 2015). Shale is the main hydrocarbon source rock in the
study area, and the sedimentary environment during the shales’

formation is conducive to the generation of oil and gas (Bai et al.,
2020; Chen et al., 2017; He et al., 2017; Liang et al., 2018; Zhang S.
et al., 2019); the later diagenetic process is also conducive to oil
and gas accumulation (Ma et al., 2016; Yang et al., 2018). The
shale of the Dongyuemiao Formation in the Fuxing area has
multiple types of interlayers and strong heterogeneity, which
indicates that not all the shale strata were involved in oil and gas
accumulation. Therefore, the different lithofacies assemblage
types played a vital role in oil and gas accumulation. Besides,
the strong adsorption of clay minerals is conducive to the
enrichment of organic matter (Bai et al., 2020; Ilgen et al.,
2017) since shale oil and gas are stored in the micro and nano
pores of shale through the adsorption of clay minerals. In
addition to good hydrocarbon generation capacity, favorable
migration channels and the reservoir space also affect the
enrichment of shale oil and gas (Cancino et al., 2017; Elert
et al., 2015; Zhang L. et al., 2019). According to the
characteristics of the shale lithofacies in the Jurassic
Dongyuemiao Formation in the study area, the LF1–LF6
lithofacies assemblage is mainly developed in Unit 1. The
LF4–LF7 assemblage is developed in both Unit 2 and Unit 3,
but there is a set of 55 cm thick layered medium bioclast
limestone in Unit 3, which is distinguished from the
lithofacies association type of Unit 2. Although LF4–LF7
assemblage is also developed in Unit 4, it is distinguished
from the lithofacies assemblage of Unit 2 and Unit 3 by the
presence of a thin laminar-stratified bioclast-containing
interlayer. Since the TOC content, shale oil content, and
reservoir quality are of great significance to oil and gas
accumulation (Hao et al., 2014; Holditch, 2013; Katz, 2003;
Kuhn et al., 2012; Zou et al., 2019), the TOC, physical
properties, and oil and gas characteristics of the four units
were compared (Table 2). Their ratings are as follow: Unit

FIGURE 13 | Image logging maps of 4 units of the Dong-1 member of FYA well in the Fuxing area.
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4 > Unit 2 > Unit 3 > Unit 1. Based on the above analysis and the
sedimentary environment analysis, the four units of the Dong-1
Member were deposited in an anoxic sedimentary environment.
Among them, the LF4–LF7 assemblage in Unit 4 is a favorable
lithofacies assemblage type, with LF6 acting as a source rock, and
LF4, LF5, and LF7 provide the reservoir space for oil and gas
accumulation. Moreover, thin layer and laminar interlayers are
favorable, while the massive mesoclastic interlayer is unfavorable
for the migration and enrichment of oil and gas because of its
massive structure (Li et al., 2017; Liu Z. et al., 2019; Zhang S. et al.,
2019; Bai et al., 2020). Compared with Unit 2 and 3, Unit 4 has
significantly less intermediate bioclast interlayers deposited by
storm events, suggesting that the strong hydrodynamic effect of
storm action is unfavorable for the enrichment and preservation
of organic matter. The shale quality of Unit 3 is worse than that of
Unit 2 due to the development of the 55 cm thick-layered
bioclast-containing limestone. Besides, the lithofacies
assemblage type of Unit 1 reveals that the frequent changes of
the horizontal plane in this period and the LF1–LF3 assemblage
are also not conducive to the enrichment of organic matter.
Therefore, even if they have similar source rock conditions as
Unit 4, their shale quality is slightly worse than that of Unit 4. The
Dong-2 and Dong-3 Members were deposited in an oxygen-rich
sedimentary environment, and their source rock conditions are
obviously worse than those of the Dong-1 Member. Thus, the
LF4–LF7 assemblage in Unit 4 of the Jurassic Dongyuemiao
Formation in the Fuxing area is a favorable lithofacies association
type for oil and gas accumulation, followed by Unit 2.

CONCLUSION

To clarify the shale lithofacies characteristics and sedimentary
evolution of the Jurassic Dongyuemiao Formation in the Fuxing
area, a high-resolution sequence stratigraphic framework was
established using detailed descriptions of the core from the FYA
well, wavelet transform analysis, XRD analysis, major and trace
element analysis, TOC content analysis, sedimentary modeling,
and other technical means. The lithofacies and lithofacies
assemblages in the study area are identified and the
sedimentary evolution model of different units is analyzed.
The main conclusions are as follows:

1) Using the transgressive–regressive cycle theory and wavelet
transform technology, a high-resolution sequence

stratigraphic model of the strata of the Jurassic
Dongyuemiao Formation in the Fuxing area is
established. The target strata are divided into two system
tracts—a lacustrine transgressive system tract and a
lacustrine regressive system tract—and eight
parasequence groups are identified. The Dong-1 Member
represents the lacustrine transgressive system tract and
includes four parasequence groups. The Dong-2 and
Dong-3 Members represent lacustrine regressive system
tracts and include 1 and 3 parasequence groups,
respectively;

2) Through the detailed characterization of the layers containing
fossil shells (bioclasts) in target strata in the area, the following
facies are identified: massive bioclast-containing limestone
shoal facies (LF1), thick-layered fossil shell–containing
limestone facies (LF2), layered mud-bearing fossil
shell–containing limestone facies (LF3), laminated fossil
shell–containing argillaceous shale facies (LF4), laminated
fossil shell–bearing argillaceous shale facies (LF5),
argillaceous shale facies (LF6), massive storm event–related
bioclast-containing facies (LF7), massive argillaceous
limestone facies (LF8), and massive mudstone facies (LF9).
In addition, based on the three-step lithofacies classification
methods of whole rock mineral zoning, TOC classification,
and sedimentary structure, six lithofacies assemblages are
identified: LF1–LF6 (Unit 1), LF4–LF7 (Unit 2), LF6–LF7
(Unit 3), LF4–LF7 (Unit 4), LF7–LF8 (Unit 5), and LF5 + LF9
(Units 6–8);

3) Based on the analysis of lithofacies characteristics, genesis,
and sedimentary environment, the evolution model of the
shale of the Jurassic Dongyuemiao Formation in the Fuxing
area is established; the model contains three periods: the
Dong-1 Member corresponds to a lake transgressive system
tract, which is an anoxic sedimentary environment and in
which the depositional period of Unit 1 corresponds to the
early stage of the lake transgressive system tract and Units
2–4 correspond to the middle–late stage of the lake
transgressive system tract. The Dong-2 and Dong-3
Members correspond to the lake regressive system tract,
which is an oxygen-enriched sedimentary environment. In
addition, Unit 4 of the Dong-1 Member has high TOC, high
porosity, and high gas content. The LF4–LF7 assemblage
deposited during this sedimentation period is the most
favorable lithofacies assemblage type for oil and gas
accumulation.

TABLE 2 | Statistical table of key geological parameters of the Dong-1 member of FYA well in the Fuxing area.

Stratum FYA

Member Unit Total
Thickness

(m)

Shell
Thickness

(m)

Shale
Thickness

(m)

TOC
(%)

Porosity
(%)

Gas
Content
(m3/t)

Oil
Content

Dongyuemiao ④ 6.5 0.32 6.18 2.12 6.41 2.89 6.06
③ 6.5 0.93 5.57 1.61 5.52 2.18 2.76
② 8.5 0.67 7.83 1.82 5.30 2.18 2.31
① 6.5 1.78 4.72 1.77 4.11 1.61 1.80
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