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Mangroves are an important coastal wetland ecosystem, and the high-throughput visible
light (RGB) images of the canopy obtained by the ecological meteorological station can
provide basic data for quantitative and continuous growth monitoring of mangroves.
However, as for the mangroves that are subject to periodic seawater submersion, some
key technical issues such as image selection, vegetation segmentation, and index
applicability remain unsolved. With the typical mangroves in Beihai, Guangxi, as the
object in this study, we used canopy RGB images and tidal data to find out the
screening methods for high-quality nontidal submerged images, as well as the
vegetation segmentation algorithms and RGB vegetation index applicability, so as to
provide technical reference for the use of RGB images to monitor mangrove growth. The
results showed that: 1) The critical tide levels can be determined according to the periodic
changes of submersion in the mangroves, and critical tidal levels and image brightness can
be used to quickly screen high-quality images of mangroves that are not submerged by
seawater. 2) Machine learning and NLM filtering are effective strategies to obtain high-
precision mangrove segmentation results. The machine learning algorithm has superiority
in the segmentation of mangrove vegetation with a segmentation accuracy of higher than
80%, and the nonlocal mean filtering can effectively optimize the segmentation results of
various algorithms. 3) The seasonal index VEG and antiseasonal index CIVE can be used
as the optimal indices for mangrove growth monitoring, and the compound sine function
can better simulate the change trend of various RGB vegetation indices, which is
convenient for quickly judging mangrove growth changes. 4) Mangrove RGB
vegetation indices are sensitive to meteorological factors and can be used to analyze
the influence of meteorological conditions on mangrove growth.
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1 INTRODUCTION

As a special ecosystem at the land–sea interface, mangroves
encompass both important ecological service functions and
socioeconomic values (Zhu et al., 2014). It can play an
important role in wind and wave defense, pollution
prevention, and beautification of the coast. Quantitative
monitoring of mangrove growth conditions can provide an
important data basis for in-depth interpretation of mangrove
ecosystem functions. As the mangroves that grow on the
intertidal zone of the coast or at the mouth of the river are
subject to periodic tidal submersion (Zhang and Zheng, 1997),
there are some problems in the traditional field sampling growth
survey, such as lack of representativeness, and it is difficult for
investigators to enter the mangrove growth area (Wen et al.,
2020). Satellite remote sensing technology provides a convenient
means for mangrove growth monitoring. The leaf area index
(Ramsy and Jensen, 1996; Kovacs et al., 2005) and normalized
vegetation index (Cao, 2017) retrieved by remote sensing can be
used for mangrove health monitoring. However, due to the
satellite revisit cycle and cloud and rain weather, it is difficult
to ensure the continuity of high-resolution satellite remote
sensing data suitable for mangrove growth monitoring (Zhang,
2016; Zhu et al., 2020). Thus, both traditional ground survey and
satellite remote sensing technology have some problems, such as
lack and incompleteness of key information, which is difficult to
be used for quantitative and continuous monitoring of mangrove
growth.

In recent years, the widespread construction of ecological
meteorological observatories in China has made camera visible
light (RGB) images become normalized data. As an important
part of the space–air–ground integrated monitoring network, this
type of data can be an effective supplement to satellite remote
sensing and UAV remote sensing, making it able to achieve the
high-throughput time-series monitoring of vegetation growth.
Guangxi established a mangrove ecological meteorological
observation station in 2018, providing important basic data for
mangrove growth monitoring. However, the current key
technologies of RGB images are mainly applied to crops, and
it has been proven that the technologies can effectively monitor
the growth period (Lu et al., 2011; Wu, 2014; Wu et al., 2018; Liu
et al., 2020), coverage (Purcell, 2000; Campillo et al., 2008; Yang
et al., 2018), growth vigor (Zhou et al., 2015; Han et al., 2019), and
nitrogen status (Chen et al., 2017; Shi et al., 2020) of crops.
Although UAV RGB images have achieved initial success in
mangrove vegetation segmentation and canopy structure
inversion (Jones et al., 2020; Wen et al., 2020), whether the
RGB images acquired by the ground are effective in
monitoring mangrove growth conditions remains to be
clarified. Moreover, some key issues related with image
selection, vegetation segmentation, and index applicability for
mangroves, which are subject to periodic seawater submersion,
are still rarely reported.

Image selection is the primary problem to be solved to apply
RGB images in mangrove monitoring. Mostly shot in fixed time
and fixed angle in the station, the canopy images can be obtained
at multiple times in a day. Long-term sequence monitoring

involves the screening of a large number of image data.
Therefore, for mangroves, first of all, it is necessary to ensure
that the selected images are not affected by seawater submersion.
Under the effect of tides, the rise and fall of seawater change, and
the submerging time of mangroves in different regions is also
different (Zhang and Zheng, 1997), which brings difficulties to
the selection of mangrove canopy images. In addition, the quality
of the obtained canopy image will be different due to the influence
of light conditions. Therefore, the selection of mangrove canopy
images involves two issues: analysis of tidal submerging rules and
judgment of image brightness.

Vegetation segmentation is a key technology in using RGB
images to carry out mangrove monitoring. Image segmentation
aims to divide the images containing the spatial distribution
information of complex surface features into different regions
with specific semantic labels (Min et al., 2020), which is the basis
for vegetation monitoring using near-ground canopy RGB
images. Currently, the developed segmentation methods
include area (Liu et al., 2021), histogram thresholding (Chen
et al., 2011), feature space clustering (Li et al., 2020), edge
detection (Ren et al., 2004), fuzzy technology (Ma et al., 2008),
artificial neural network (Ma et al., 2020), and deep learning (Yan
et al., 2021). At present, these segmentation algorithms have been
successfully applied in crops, but there has been no report on the
application in mangroves.

The selection of monitoring index is the basis for the
quantitative monitoring and evaluation of mangrove growth.
At present, scholars have constructed various RGB vegetation
indices to monitor the changes in crop growth, namely, NDYI
(normalized difference yellowness index) (Sulik and Long, 2016),
GLA (green leaf algorithm) (Guijarro et al., 2011), VARI (visible
atmospherically resistant index) (Gitelson et al., 2002), and
NGRDI (normalized green-red difference index) (Pérez et al.,
2000). However, due to the wavebands and parameter
composition, the developed indices are mostly for crops, and
the applicability of these indices in mangrove growth monitoring
also needs to be reassessed.

The objective of this study was to demonstrate the plausibility
of monitoring and evaluating the canopy growth of mangrove
using the existing RGB image processing technology. To achieve
this objective, we performed the analysis on the screening method
of high-quality nontidal submerging images, developed the high-
precision segmentation algorithm of mangrove vegetation, and
applied RGB image-based vegetation indices to monitor
mangrove growth. This study provides technical references for
the application of RGB images in the rapid and accurate
monitoring of mangrove growth.

2 DATA AND METHODS

2.1 Study area
Completed at the end of 2018, the Beihai Mangrove Ecological
Meteorological Observatory is located in the small bay
(21°27′5.57″N, 109°18′4.39″E) of the National Marine Science
and Technology Park in Beihai City, Guangxi. The geographical
location is shown in Figure 1. The study area has a subtropical
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monsoon climate, warm and humid throughout the year, with an
average annual rainfall of 1,644.0 mm and an average annual
temperature of 22.6°C. The mangrove forest in the study area has
a total area of about 5.5 hm2, where the species is dominated by
the Aricennia marina community, mixed with some Kandelia
obovata and Aegiceras corniculata. The soil is mainly composed
of fine gravel sand to coarse sand, which has low organic matter
content.

2.2 Data
2.2.1 RGB images
The RGB images were taken from the digital camera erected on
the flux tower of the ecological meteorological observatory. The
camera was erected at 6 m above the ground. The camera model is
ZQZ-TIM, and it uses a 1/1.8 inch CMOS sensor with the total
pixels of about 6.44 million, aperture value of F1.5-4.3, 30 times
optical zoom, 16 times digital zoom, wide dynamic effect, plus
image noise reduction function, all of which enable it to better
display day/night images. Moreover, the camera can achieve
continuous monitoring with 360° continuous rotation in the
horizontal direction, continuous monitoring after −20°–90°

autoflip to 180° in the vertical direction, which has no blind
spot monitoring. After acquisition, the images can be uploaded to
the cloud platform or imported into the computer for processing.
The RGB images were collected from 8:00 to 17:00 every day, with
an interval of 1 h, and the image sequence time period was from
September 3, 2018 to August 31, 2019.

2.2.2 Meteorological and tidal data
The meteorological data was collected from the automatic
meteorological observation equipment of the ecological
meteorological observatory. The observation elements included
daily average temperature, daily maximum temperature, daily
minimum temperature, relative humidity, and precipitation. The
tidal data came from the Chinese Tide Table (Beihai port)

compiled by the China Oceanic Information Center, and the
observation elements included the tidal levels in every hour, time
of tide, and tidal levels. These data were combined with RGB
images to analyze the critical tidal levels when mangroves were
submerged in seawater.

2.3 Research methods
2.3.1 RGB image selection
Image selection is to reduce the impact of tidal submersion, cloud
covering, and illumination changes on the image quality of
mangrove canopy, so as to obtain better images for vegetation
segmentation and index calculation. First, the critical tidal level of
seawater submersion in the study area was determined through
the combination of visual interpretation and tidal data. Then the
visual images with lower tidal levels were screened out. Finally,
the image with the highest brightness was selected as the image of
the day. During the process, the brightness of the visible images
was represented by the sum of the R, G, and B color channel
values (Peter et al., 2018). The critical tidal levels of the
mangroves in the study area were determined as follows: 1)
Randomly select the visible image data set with seawater
submersion for 3 days every month. 2) Find the images with a
small amount of water or completely exposed mud flat after
comparing the submerging status in the mud flat on the images,
and use the shooting time of the image as the time when the tide
begins to rise or finishes falling. 3) Determine the critical tidal
level according to the tide table at that time.

2.3.2 RGB image segmentation
The purpose of image segmentation is to accurately obtain green
vegetation information from the entire image. In order to find a
better segmentation algorithm for mangrove vegetation, we
compared the accuracy of three different types of
segmentation algorithms. The first algorithm used the
individual channel of color space as the input of the Ostu

FIGURE 1 | The geographical location of the ecological observatory.
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threshold segmentation algorithm (Ostu, 1979) to achieve the
automatic segmentation of vegetation. For example, there is a
significant difference in the S channel in HSV space and in a
channel in lab space between vegetation and background in RGB
images, and values of these two channels both showed bimodal
distribution in the image, providing the basis of automatic
segmentation. The second used the nonlinear calculation by
combining values of different channels, which enhanced
proportion of green components and showed significant
difference and pattern between vegetation and background in
RGB images. A widely used and proven color index ExG was
applied to discriminate vegetation from non-vegetation part in
this study. The third segmentation algorithm that is based on
machine learning took advantage of training classifiers with
multidimensional classification samples to utilize rich
information by mapping indistinguishable problems at low
dimension to a high dimension. The K-means unsupervised
clustering was first performed to generate training samples
that were divided into vegetation, dark background, and bright
background. Then features of vegetation pixels including 24
indexes from the dimension of color, texture, and gradient
were extracted from the training samples to generate
classification feature vectors. The support vector machine
(SVM) was then used to classify vegetation and background in
images.

Affected by factors such as differences in lighting conditions
and imaging quality, it is fairly probable for the marginal part of
vegetation to be wrongly segmented. In order to reduce the
erroneous segmentation of leaf edges, nonlocal means (NLM)
was introduced to optimize the results of vegetation
segmentation. The NLM operator can protect the long and
narrow structure similar to the vegetation leaf, and eliminate
the ambiguity of pixel segmentation at the edge of the vegetation
leaf by enhancing the nonadjacent pixels on the same structure
within a certain neighborhood. The principle of the NLM
algorithm is as follows:

Assume that the noising image is v � {v(a)|a ∈ A}, the image
after denoising is NL[v], then the weighted value of each pixel a
can be calculated by the following formula:

NL[v](a) � 1
C(a) ∑b∈I w(a, b)v(b)

where w(a, b), is the weight of the similarity between pixel a and
pixel b (Gaussian weighted Euclidean distance), which meets the
requirement of 0≤w(a, b)≤ 1 and ∑bw(a, b) � 1 0≤ ≤ 1. The
formula is as follows:

w(a, b) � 1
C(a) exp( −

����v(N(a)) − v(N(b))����22,a
h2

)
C(a) � ∑

b∈I

exp( −
����v(N(a)) − v(N(b))����22,a

h2
)

where ‖v(N(a)) − v(N(b))‖22 is the square of the Gaussian
weighted distance between the pixel in the subblock centered
on pixel a and the pixel in the subblock centered on pixel b, which
is used to measure the similarity between two pixels; a is the

standard deviation, v(N(a)) is the set of local sub-block pixels
around a; and h is the filter parameter.

The onsite labeling results were used as reference to evaluate
the accuracy of the classified images obtained before and after the
filtering of the above three segmentation algorithms. The
accuracy evaluation indicators Qseg and Sr are calculated as
follows:

Qseg �
∑i�m

i�0 ∑j�n
j�0(A(p)ij ∩ B(p)ij)

∑i�m
i�0 ∑j�n

j�0(A(p)ij ∪ B(p)ij)
Sr �

∑i�m
i�0 ∑j�n

j�0(A(p)ij ∩ B(p)ij)
∑i�m

i�0 ∑j�n
j�0B(p)ij

where, A is the foreground (green vegetation) pixel set (p = 255)
or background (information other than green vegetation) pixel
set (p = 0) of the segmented image, B is the foreground pixel set
obtained by field labeling (p = 255) or background pixel set
(p = 0), m and n are the number of lines and columns of the
image, respectively, and i and j are the corresponding coordinates,
respectively. The larger the Qseg and Sr values indicate higher
segmentation accuracy. Qseg is the overall consistency of the
background and foreground segmentation results, while Sr only
represents the consistency of the foreground segmentation result.

2.3.3 Calculation and simulation RGB vegetation
indices
The calculation of RGB vegetation indices is as follows: After the
segmentation of the green vegetation in the visible image, the R,
G, and B color channel values of each pixel in the green vegetation
area were extracted, then all the pixels in the area were averaged,
and finally, the visible vegetation indices of mangroves were
calculated (Table 1).

Vegetation change trend was simulated as follows: the
compound sine function was used to simulate the change
trend of mangrove growth over time, which was mainly used
for quick judgment of mangrove growth. The calculation formula
is as follows:

VI � a + b sin⎡⎣2π(tday − c)
365

⎤⎦
where, a, b, and c are all empirical coefficients, and tday is the
day order.

The change rules of the various indices and the simulation
results of vegetation change trend were compared to analyze the
applicability of RGB vegetation indices for mangrove monitoring.

3 RESULT ANALYSIS

3.1 Fast screening of mangrove images
Affected by the tidal force of different cycles and the topography
of the coastal zone, the tidal levels of the sea area presented a
complex periodic movement over time. According to the
submerging degrees classified by Zhang and Zheng, (1997), the
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mangroves at the study area were at once-a-day short-term
submerging degree. The start time of submersion all presented
a cyclical change with the passage of time, which was delayed first
and then shifted to an earlier time. From January to April, tidal
submersion all began in the wee hours and ended in the morning;
fromMay to August, tidal submersion began in the afternoon and
ended at night; and from September to December, the beginning
of tidal submersion gradually shifted from noon to the morning
and even to the wee hours, and then ended in the afternoon. The
annual average critical tidal level of the mangroves at the study
area is 334.8 cm, with a maximum of 376 cm and a minimum of
294 cm (Figure 2). Therefore, in this study, the visual images with

tidal levels of lower than 294.0 cm were selected for image
segmentation and vegetation index calculation, which could
ensure the least effects caused by tidal submersion.

3.1 Applicable algorithms for mangrove
vegetation segmentation
Visual interpretation found that different segmentation
algorithms had significant differences in sensitivity to
mangroves and background information. The algorithms based
on color space, nonlinear combination of color channels, and
machine learning could highly distinguish the bright green

TABLE 1 | RGB vegetation indices.

Image index Caculation formula Source

NDYI NDYI = (G − B) / (G + B) Sulik and Long,(2016)
GLA GLA = (2G − R − B) / (2G + R + B) Guijarro et al.,(2011)
VARI VARI = (G − R) / (G + R − B) Gitelson et al.,(2002)
ExG ExG = 2g − r − b Woebbecke et al.,(1995)
ExR ExR = 1.4r − g Meyer et al.,(1999)
MGRVI MGRVI = (g2 – r2) / (g2 + r2) Bendig et al.,(2015)
RGBVI RGBVI = (g2 − br) / (g2 + br) Bendig et al.,(2015)
NGRDI NGRDI = (G − R) / (G + R) Pérez et al.,(2000)
CIVE CIVE = 0.441r − 0.811g + 0.385b + 18.78745 Kataoka et al.,(2003)
VEG VEG = g / (r0.667b0.333) Hague et al.,(2006)

Note. R, G, B are the red, green, and blue band values, respectively; r, g, b are the normalized red, green, and blue band values.

FIGURE 2 | (A)The distribution of tidal levels and critical tidal levels in mangrove vegetation areas from September 2018 to August 2019.
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FIGURE 3 | Segmentation effects of mangrove vegetation images. (A) Original image. (B) Machine learning segmentation result. (C) Image of channel S. (D)
Channel S threshold segmentation result. (E) Image of channel a. (F) Channel a threshold segmentation result. (G) Image of channel ExG. (H) Channel ExG threshold
segmentation.
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mangroves in the close-range view, and the differences in
segmentation results were not significant. However, differences
became significant when using the algorithms to distinguish the
mud flat in close-range view and grrayish-green mangroves in
distant-range view, which were in the order of machine
learning > channel S > channela > ExG (Figure 3).

The accuracy of machine learning algorithm for segmentation
of mangrove vegetation was better than other algorithms.
Machine learning also showed the best segmentation effect
when using field labeling results as a reference to
quantitatively analyze the segmentation accuracy of the three
kinds of algorithms, with the Qseg and Sr of 80.56% and 86.46%,
respectively, and the accuracy rates of other segmentation
algorithms were lower than 80%, of which EXG showed the
poorest segmentation effect with the Qseg and Sr of 73.60% and
75.45%, respectively (Table 1).

NLM filtering could effectively optimize various segmentation
results. After filtering processing, the error segmentation of
background information, such as mangrove leaf edges and
mudflats, were significantly reduced, with an Qseg increase of
0.88%–1.15% and Sr increase of 0.81%–1.61%. The optimization
effect was the most significant on the segmentation results of
channel S, and the accuracy was improved the most after filtering.
Considering the overall performances, machine learning was used
for the original RGB image segmentation and NLM filtering
optimization strategy. In this way, the final segmentation
accuracy of mangrove vegetation could reach 87.27% (Table 2).

3.3 Applicable monitoring index for
mangrove growth monitoring
The 10 RGB vegetation indices could be divided into two
categories according to their sequential variation
characteristics. The first category contained the indices with
seasonal changes that were quasisynchronous with
temperature changes (collectively referred to as seasonal
indices), including ExG, ExGR, GLA, GMRVI, NDYI, RGBVI,
VARI, and VEG. The indices in this category have lower values in
winter and spring, while they have higher values in summer and
autumn. The second category was the indices with seasonal
change trend that was opposite to the temperature change
over time (collectively referred to as the antiseasonal indices),
including ExR and CIVE. The indices in this category had lower
values in summer and autumn, but higher values in winter and
spring, which was opposite to the seasonal indices (Figure 4).

Compound sine function could better simulate the periodic
changes in various RGB vegetation indices during the year. The
correlation coefficients between the simulated and observed

values of various indices were between 0.430 and 0.643,
among which VARI had the best fitting effect (R = 0.643), and
ExG had the worst fitting effect (R = 0.505). The annual sequence
fitting deviations of various indices were between 0.03% and
26.16%, among which ExR (4.09%), VEG (1.73%), and CIVE
(0.03%) showed relatively small deviations between the fitted
values and observed values, while the deviations of other indices
were all greater than 17% (Figure 5; Table 3).

The simulated results of various RGB vegetation indices fitted
by the compound sine function showed significant differences in
seasons. The deviation was 0.02%–17.98% in spring,
0.04%–39.97% in summer, 0.05%–59.66% in autumn, and
0.02%–22.05% in winter. In comparison, the deviations were
small in winter and spring, and large in summer and autumn
(Table 3). Therefore, seasonal index VEG and antiseasonal index
CIVE could be used as the preferred indices for mangrove growth
monitoring. The reasons were that, as one of the seasonal indices,
VEG made it easier to understand the impact of weather
conditions on mangrove growth, while CIVE, an antiseason
index, had smaller simulation deviation.

3.4 Response of mangrove growth
monitoring indices to meteorological
factors
The selected main meteorological factors were daily average
temperature, daily maximum temperature, daily minimum
temperature, relative humidity, and daily precipitation, which
were used to make correlation analysis with mangrove canopy
RGB vegetation indices (Table 4). There was a high degree of
correlation among various RGB vegetation indices (Table 5), but
due to the difference in image bands and parameters, the
correlations between different RGB vegetation indices and
meteorological factors were significantly different. The eight
seasonal RGB vegetation indices (ExG, ExGR, GLA, GMRVI,
NDYI, RGBVI, VARI, and VEG) were positively correlated with
average temperature, maximum temperature, minimum
temperature, and precipitation, and negatively correlated with
relative humidity, while the correlations between the two
counterseasonal RGB vegetation indices (ExR and CIVE) and
the meteorological factors were opposite to those of the seasonal
indices. Among them, ExR, VARI, MGRVI, and NGRDI showed
significant correlations with temperature (average, maximum,
and minimum) and relative humidity, while NDYI and CIVE
showed no significant correlation with temperature and relative
humidity. In terms of precipitation, the correlation with NDYI,
GLA, RGBVI, CIVE, and VEG reached significant levels, while
the other RGB vegetation indices were not significantly

TABLE 2 | Comparison on accuracy of mangrove vegetation image segmentation algorithms.

— Channel a (%) Channel S (%) ExG (%) Machine learning (%)

No filter Qseg 75.32 76.27 73.60 80.56
Sr 77.39 79.58 75.45 86.46

After filtering Qseg 76.19 77.36 74.64 81.70
Sr 78.80 81.02 77.06 87.27
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correlated. In general, the RGB vegetation indices were sensitive
to meteorological factors, and thus, they could be used to analyze
the influence of meteorological conditions on the growth of
mangroves.

4 DISCUSSION

Machine learning algorithm can improve the segmentation
accuracy of mangrove vegetation in aerial RGB images, and

FIGURE 4 | Seasonal changes of mangrove visible vegetation index.
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this result has been confirmed in the research on the
segmentation of UAV images of mangroves at the park scale
(Wen et al., 2020). Digital cameras can be used to monitor the

critical tidal levels of mangrove submersion, and the exposure
time of mangroves in the test area is significantly longer than the
submerging time (Figure 4), which further proved the results of a

FIGURE 5 | Time variations of mangrove RGB vegetation index.
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previous research on the seawater submerging rules of mangroves
(Zhang and Zheng, 1997; Chen et al., 2006). Under the combined
effects of light, precipitation, and seawater submersion, the daily
RGB vegetation indices of mangrove vegetation vary greatly, but
there is still a significant seasonal trend. However, since the peak
time is mostly in autumn, there is a certain difference in the time
with peak value of temperature. The day-to-day vegetation
indices extracted using visible images vary greatly. The
possible reasons are as follows: Mangroves are located in the
intertidal zone, and both seawater submersion and extreme
weather will have severe impacts on the vegetation indices of

the coastal zone (Wang, 2017), and the digital camera equipped in
the ecological station performs automatic exposure and
correction according to the light conditions when collecting
images, and different exposure times can cause large
differences in the quality of vegetation images (Wang et al., 2016).

In this study, we combine image processing with machine
learning technology to provide effective technical methods for
automatic and continuous monitoring of mangrove vegetation
conditions, but there are still many shortcomings. First, limited
by the test conditions, the onsite labeling results are used as the
references for the evaluation on the accuracy of various

TABLE 3 | Correlation and deviation percentage between fitted and observed values of mangrove RGB vegetation indices.

— Correlation coefficient/R Absolute percentage error

Spring (%) Summer (%) Autumn (%) Winter (%) Year (%)

ExG 0.505 15.31 29.92 29.09 12.13 21.60
ExGR 0.555 17.34 30.56 59.66 22.05 31.01
GLA 0.508 15.01 29.26 28.39 11.95 21.14
GMRVI 0.626 13.42 22.18 24.60 14.08 18.54
NDYI 0.430 17.98 39.97 33.76 12.89 26.16
RGBVI 0.503 15.16 29.66 28.53 12.05 21.34
VARI 0.643 12.81 20.02 22.30 14.12 17.29
VEG 0.530 1.11 2.15 2.76 0.93 1.73
CIVE 0.511 0.02 0.04 0.05 0.02 0.03
ExR 0.631 2.46 3.71 7.56 2.75 4.09

TABLE 4 | Correlation between mangrove RGB vegetation indices and meteorological factors.

— Daily average
temperature

Daily maximum
temperature

Daily minimum
temperature

Relative humidity Daily precipitation

NDYI 0.04 0.02 0.02 −0.02 0.14*
GLA 0.11* 0.10 0.09 −0.09 0.11*
VARI 0.26** 0.28** 0.23** −0.27** 0.03
ExG 0.11* 0.10 0.09 −0.09 0.11*
ExR −0.27** −0.29** −0.23** 0.27** −0.03
ExGR 0.15** 0.16** 0.13* −0.14* 0.10
MGRVI 0.24** 0.26** 0.21** −0.24** 0.05
RGBVI 0.10 0.10 0.08 −0.09 0.11*
NGRDI 0.24** 0.26** 0.21** −0.24** 0.05
CIVE −0.11* −0.11* −0.09 0.10 −0.11*
VEG 0.14* 0.14* 0.11* −0.13* 0.11*

Note. ns indicates p ≥ 0.05, *indicates p < 0.05, and ** indicates p < 0.01.

TABLE 5 | Correlation comparison of mangrove RGB vegetation indices.

— NDYI GLA VARI ExG ExR ExGR MGRVI RGBVI NGRDI CIVE VEG

NDYI 1.00 0.98 0.70 0.98 −0.68 0.93 0.77 0.98 0.77 −0.97 0.95
GLA — 1.00 0.84 1.00 −0.82 0.99 0.89 1.00 0.89 −1.00 1.00
VARI — — 1.00 0.83 −1.00 0.91 0.99 0.83 0.99 −0.85 0.88
ExG — — — 1.00 −0.82 0.99 0.89 1.00 0.89 −1.00 1.00
ExR — — — — 1.00 −0.90 −0.99 −0.81 −0.99 0.83 -0.87
ExGR — — — — — 1.00 0.95 0.99 0.95 −0.99 1.00
MGRVI — — — — — — 1.00 0.88 1.00 −0.90 0.93
RGBVI — — — — — — — 1.00 0.88 −1.00 0.99
NGRDI — — — — — — — — 1.00 −0.90 0.93
CIVE — — — — — — — — — 1.00 −1.00
VEG — — — — — — — — — — 1.00
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segmentation algorithms, but there is no onsite surveys and
sample sampling of the study area. Second, using visual
interpretation to determine the submerging status of
mangroves can result in low image data processing efficiency.
In further research, multispectral cameras equipped to the
ground-based and UAV platforms can be used to obtain
multispectral and hyperspectral data, and sampling plots can
be set in the study area to collect the data related with the
physical and chemical properties of plants, so as to enrich the
ground data set. Setting camera parameters and improving
image correction methods can reduce the variability of RGB
vegetation indices. The construction of a prediction model
based on the biomass, leaf area index, and chlorophyll
content of RGB vegetation indices can provide technical
support for real-time, fast, and accurate estimation of
mangrove vegetation growth parameters.

5 CONCLUSION

The visible images obtained by the ground camera can be used
to carry out quantitative monitoring of mangrove growth,
which can be achieved by three processes: image screening,
vegetation segmentation, and RGB vegetation index
calculation.

Image screening can be carried out by using two key
indicators: critical tide level and image brightness. The start
time of the mangrove submersion in the study area shows a
cyclical change with the passage of time, which is delayed first and
shifted to an earlier time. On such basis, the average critical tidal
level is 334.8 cm in the observation point. The image brightness
value is represented by the sum of values of R, G, and B color
channels.

Machine learning and NLM filtering are effective strategies to
obtain high-precision mangrove segmentation results. The
machine learning segmentation algorithm has superiority in
the automatic segmentation of mangrove vegetation, and the
accuracy of the segmentation results is higher than 80% without
filtering. NLM filtering can effectively optimize the segmentation
results of various algorithms.

Mangrove RGB vegetation indices include seasonal indices
and counterseasonal indices synchronized with temperature
changes. Seasonal index VEG and counterseasonal index CIVE
can be used as preferred indexes for mangrove growth
monitoring. The compound sine function can better simulate
the change trend of various RGB vegetation indices, and the
simulation effect in winter and spring is better than that in
summer and autumn.

The RGB vegetation indices can be used to analyze the effect of
meteorological conditions on the growth of mangroves. The RGB
vegetation indices of mangroves are sensitive to meteorological
factors. Among them, seasonal RGB vegetation indices show
positive correlations with average temperature, maximum
temperature, minimum temperature, and precipitation, but
show negative correlation with relative humidity. On the other
hand, the correlations between counterseasonal RGB vegetation
indices and the various meteorological factors are opposite to
those of the seasonal indices.
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