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We have developed a migration scheme that can compensate absorption and dispersion
with effectiveQ estimation and Fresnel zone identification based on deep learning. We use
the U-Net neural network technology in deep learning to automatically identify Fresnel
zones from compensated migrated dip-angle gathers and obtain the optimal aperture for
migration, avoiding the tedious task of manually modifying the boundaries of Fresnel
zones. Instead of the interval Q factor, we used an effective Q parameter to compensate
absorption and dispersion. The effective Q is estimated using VSP well data and surface
seismic velocity data. The proposed scheme can be incorporated into conventional
seismic data processing workflow. A field data set was employed to validate the
proposed scheme. Higher resolution imaging results with low noise levels are obtained.
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1 INTRODUCTION

The dissipation of seismic energy is caused by the anelasticity of the subsurface medium, which will
decrease the amplitude andmodify the phase. In this dissipative medium, as the propagation distance
of the seismic wave increases, the attenuation of the seismic wave becomes more serious. Therefore,
seismic waves in deep and ultra-deep stratums face the problem of lower resolution due to
dissipation. It is crucial to find an appropriate method to eliminate the absorption and
dispersion effects of seismic waves for higher resolution. We commonly use the quality factor
Q-related methods to compensate absorption and dispersion in seismic data processing, and most of
them can be divided into two categories: one is the inverse Q filtering (Hargreaves and Calvert, 1991;
Wang, 2002; Ferber, 2005; Cavalca et al., 2011; Chen et al., 2014; Zhang et al., 2014; Dai et al., 2018;
Shi et al., 2019; Sangwan and Kumar, 2021), and the other is the anelastic prestack migration based
on the viscoacoustic wave equation (Zhang and Wapenaar, 2002; Xie et al., 2009; Zhang et al., 2013;
Guo et al., 2016;Wang et al., 2018; Zhang et al., 2021). In the first category, inverseQ filtering is based
on the theory of 1-D wave backpropagation and cannot calculate the seismic wave propagation path
accurately. In the second category, anelastic prestack depth migration (PSDM) utilizes the
viscoacoustic wave equation to simulate wave propagation with dissipation in the wavefield
extrapolation, which is a more accurate and consistent way; however, the calculation load is
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huge, and the interval Q model is difficult to obtain. Because of
the effectiveness of prestack time migration (PSTM) in imaging
complex structures without strong velocity variations, various
Q-compensated methods based on the PSTM structure have been
developed (Zhang et al., 2013; Zhang et al., 2016; Wu et,al., 2019).
These methods employ effective Q parameters, rather than the
interval Q model used in the depth migration approach, and the
estimation of an effectiveQmodel is easier to achieve than that of
an interval Q model.

An optimal migration aperture can improve the signal-to-
noise ratio (S/N) of imaging results. Schleicher et al. (1997)
pointed out that the Fresnel zone is an optimal migration
aperture. The signal outside the Fresnel zone does not
contribute to imaging but brings noise and artifacts, which
reduces the quality of the imaging results (Chen 2004; Marfurt
2006; Klokov and Fomel 2012a; Yu et al., 2013). However, the low
S/N of field data and underground complex structures make an
accurate Fresnel zone estimation challenging. In recent years,
some articles have realized the estimation of Fresnel zones in a
simple domain, by constructing a migrated dip-angle gather in
the time or depth domains (Zhang et al., 2016; Li et al., 2018;
Cheng et al., 2020). Zhang et al. (2016) has applied conventional
PSTM to generate migrated dip-angle gathers for Fresnel zone
estimation during deabsorption of the PSTM process. Cheng et al.
(2020) used a modified VGGNet (A convolutional neural
network was developed by the University of Oxford’s Visual
Geometry Group and Google DeepMind in 2014) to extract
Fresnel zones from migrated dip-angle gathers, which is a
useful attempt at deep learning for Fresnel zone estimation.
However, these Fresnel zone estimation methods are all
suitable for dip-angle gathers generated by conventional
migration methods, and little research has been carried out on
that using compensated dip-angle gathers with a high resolution
generated by compensated migration methods.

The quality factorQ is closely related to the rock properties of
the formation, water saturation, seismic wave amplitude and
frequency, and other factors; therefore, calculating the Q value
accurately is very difficult. To meet the demand for Q in seismic
data processing, many methods have been developed to estimate
Q. The Q estimation method was initially proposed using a
vertical seismic profile (VSP) (Tonn, 1991) and crosswell data
(Neep et al., 1996). These methods can obtain a small amount of
Q values because VSP and cross-well data are not always
available in the field, and we prefer to estimate the Q value
from surface reflection seismic data. A variety of methods have
been proposed to estimate theQ value from surface seismic data,
and most of them can be divided into two categories: one is the
wavelet information–based method (Quan and Harris, 1997;
Dasgupta and Clark, 1998; Zhang et al., 2013; Bettinelli Pet al.,
2014), which is employed in the time or frequency domain (e.g.,
the frequency shift method and spectral-ratio method) and
demonstrates good performance for estimation of the Q
value, whereas often suffers from noise and wavelet
interferences, and the other one is the tomography
inversion–based method (Brzostowski and McMechan, 1992;
Shen et al., 2018). In the first category, Zhang et al. (2013)
estimated the Q value using surface seismic data by constant Q

migration scanning; however, the implementation complexity
of this method limits its broader application. In the second
category, the widely used ray-based tomography can estimate
the Q value for the dominant frequency with expensive
calculation cost and local instability (Cavalca et al., 2011;
Shen and Zhu, 2015; Dutta and Schuster, 2016). Full-
waveform inversion (FWI) is another popular inversion
approach using waveform rather than travel-time, but it
requires an accurate initial model and burdens a huge
computational expense (Kamei and Pratt, 2008).

This article takes the estimations of the optimal aperture and
effective Q model as the research focus in the compensated
PSTM, which is arranged as follows: first, we introduce a
modified PSTM scheme with compensation based on the
effective Q; second, we propose a Fresnel zone identification
scheme based on compensated migrated dip-angle gathers using
deep learning; third, we present an estimation approach of the
effective Q model for the compensated PSTM. Finally, we
demonstrate our scheme with a field data set.

2 PSTM WITH COMPENSATION BASED ON
EFFECTIVE Q

By following Zhang et al. (2013), a modified PSTM with
compensation based on the effective Q model is expressed as

IQ(x, T) � ∑n
p�1

Ω(x, TS, T0) τs
τg

∫fp(ω) ��
ω

√
exp(−iπ

4
)

exp[iω(τs + τg)(1 − 1
πQeff

ln
ω

ω0
)]

exp⎡⎣ω(τs + τg)
2Qeff

⎤⎦dω,
(1)

where fp(ω) is the Fourier transform of the pth prestack trace, τs
and τg represent the travel times from the shot and receiver to the
imaging point, respectively, T0 is the two-way vertical travel time,
Ω(x, TS, T0) represents the whole migration aperture, Ts

represents the starting travel time of the migration aperture,
and Qeff is the effective Q parameter. Eq. 1 denotes a
compensated migration impulse response of a seismic trace.
Summation of the impulse responses of all seismic traces
yields a compensated migration result. The two Qeff -related
terms in Eq. 1 are the frequency-dependent dispersion and
amplitude attenuation correction terms, respectively, which are
different from the conventional PSTM. In Eq. 1, the size of the
migration aperture has an important influence on the signal-to-
noise ratio of the imaging result, and the accuracy of effective Q
determines the quality of the compensation result. In view of
these two aspects, this article proposes a method of using deep
learning to pick up the optimal aperture and a method of quickly
obtaining the effective Q model using VSP data and seismic
velocity data. These two methods, together with the modified
PSTMwith compensation, form a seismic data imaging workflow
that is specifically used for high-resolution imaging of prestack
seismic data.
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3 IDENTIFICATION OF FRESNEL ZONES
USING DEEP LEARNING

Three separate sections are considered to introduce the theory of
deep learning–based automated Fresnel zone extraction. The first
section makes a review of migrated dip-angle gathers.

The second section introduces the architecture of the deep
neural network adopted, including the design of U-Net input and
output patterns and different types of layers in the network. The
final section gives the loss function and training details in seeking
optimal weights and biases of the network.

3.1 Review of Migrated Dip-Angle Gathers
Summing the migrated traces within Fresnel zones can produce a
high S/N imaging profile. The migrated dip-angle gather supplies
a simple domain that makes a visual pickup of Fresnel zones
possible, which are constructed by sorting and summing the
migrated results in the time or depth domains according to the
dip angle (Zhang et al., 2016; Cheng et al., 2020). Different from
the conventional migrated dip-angle gather, the compensated
migrated dip-angle gather has the characteristics of high
resolution and thin events. Therefore, the label data and
training parameters of the trained network for conventional
migrated dip-angle gathers must be relabeled and trained
respectively when the neural network is applied to identify
Fresnel zones using compensated migrated dip-angle gathers.
In the next section, we will discuss how to use compensated dip-
angle gathers to determine Fresnel zones of 2D seismic data.
Figure 1 shows the geometrical relationship about the dip angle
(Zhang et al., 2016). The angle can be expressed as follows:

tan θ � [(xs − x)τg + (xg − x)τs]/[TVrms(τs + τg)], (2)

where θ denotes the dip-angle related to travel time at the imaging
point I; Vrms is the root mean-square velocity at the imaging
point; τs and τg represent the travel times from the shot (xs) and
receiver (xg) to the imaging point I, respectively; and T represents
the one-way vertical travel time. We obtained a 1D dip-angle
gather by summing the migrated traces with dip angles (θ) over
the 2D imaging result. This process can be expressed as

I(x, T, θ) � ∑n
i�1
N

τ2s
τ2g

f̃i(τs + τg, xs, xg)λi(τs + τg, Q), (3)

where n denotes the number of seismic traces, f̃i denotes a half-
derivative of the ith prestack seismic trace, and λi is the
corresponding compensation factor.

The dip-angle gather shows a curved reflected event (Klokov
and Fomel 2012b), and its vertex is the stationary-phase point
(Cheng et al., 2020). The Fresnel zone is within half a wavelength
near the stationary-phase point. Since the Fresnel zone is easy to
identify in the dip-angle gather, we can pick it up through the dip-
angle gather and obtain a high S/N migrated result by summing
the Fresnel zones, but in practice, estimating Fresnel zones
through dip-angle gathers will become challenging because
dip-angle gathers will become correspondingly more
complicated due to the low S/N of field data and underground
complex structures, especially for imaging results with

compensating absorption and dispersion since their dip-angle
gathers differ in S/N and resolution from those generated by
conventional migration, which add additional complexity. Many
manual modifications to the Fresnel zone boundaries are
required, which is a time-consuming and difficult task.

3.2 U-Net Architecture
Deep learning can think and process data just like the human
brain, showing its superior capability in many fields in recent
years (LeCun et al., 2015). It has multi-layer nonlinear activation
function, which can discover hidden features in complex high-
dimensional data by simulating signal transformation.
Convolutional neural networks (CNNs) are currently the most
successful and extensive application in deep learning, which
connect input and output through multi-layer convolution.
U-Net, a special type of CNN, was originally an auto-
encoder–decoder network designed for medical image
segmentation (Ronneberger, et al., 2015; A. Sevastopolsky,
2017; Wu et al., 2019; Zhang et al., 2021). We use U-Net to
identify the left and right boundaries in the dip-angle gathers as
the boundaries of Fresnel zones because one important reason is
that U-Net can deliver a satisfactory performance even if the size
of the training set is not very large. As shown in Figure 2, the
main structure of the network includes two parts, down (encoder)
and up (decoder), presenting a symmetrical form. Different levels
of networks have different functions. The shallow layer is
employed to solve the pixel positioning problem, while the
deep layer is used to classify pixels. In the contraction path on
the left, each step consists of two 3 × 3 convolution layers,
followed by a rectified linear unit (ReLU) (Nair and Hinton,
2010; Krizhevsky et al., 2012) and a 2 × 2 max-pooling operation
with stride 2 for downsampling. Symmetrically, each step on the
right expansive path consists of a 2 × 2 upsampling operation
with the same stride and two convolutional layers to halve feature
channels. The sigmoid activation function is applied to the last
channel feature vectors to produce a probability map of the
output with the same size as the input. The skip connection is
used in each upsampling operation, instead of directly

FIGURE 1 | Illustration of the generation of a dip-angle gather. Points s
and g denote the shot and receiver, respectively, and point I is the imaging
point. θ represents the travel time–related dip-angle at the imaging point I.
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monitoring and loss back-transmission on high-level semantic
features, to integrate more low-level features into the finally
recovered feature map. After building the network, we feed
small volumes of seismic images generated by PSTM with
compensation, together with corresponding labels. Each data
volume contains 128 2D images with a size of 128 × 128. In
order to avoid the odd-sized feature map encountered by the
pooling layer, the same-padding convolution process was
adopted in each step of the network.

3.3 Loss Function and Training
Network training uses a loss function to represent the
difference between the true Fresnel zones and the
predictions. The update of the parameters in the network is
realized via the loss backpropagation (Rumelhart et al., 1986;
Hecht-Nielsen, 1989), which is commonly used in the
gradient descent optimization algorithm to iteratively
adjust weights and biases of the neurons by calculating the
gradient of the loss function. We consider the Fresnel zone
identification problem as a binary segmentation problem; in
other words, the output of the network is a probability
distribution of 0–1, and the binary cross-entropy loss
function is generally adopted:

Loss � −∑n
i�1
(bi × ln ai + (1 − bi) × ln(1 − ai)), (4)

where n is the number of pixels, bi denotes the true binary labels
(0 or 1), and ai is the prediction probabilities (0 < ai < 1)
computed from the sigmoid activation in the last
convolutional layer. The boundary occupies a relatively small
proportion of the entire imaging region, resulting in a high
imbalance between zero (no boundary) and one (boundary).
To overcome this issue, we apply a class-balanced binary
cross-entropy loss function (Xie and Tu, 2015; Wu et al.,
2021) to adjust the imbalance so that the network is not
trained or converged to predicted only zeros.

Loss � −∑n
i�1
(ε × bi × ln ai + (1 − ε) × (1 − bi) × ln(1 − ai)), (5)

where ε � χ0/χ and 1 − ε � χ1/χ, χ0 and χ1 represent the number
of pixels of boundaries and non-boundaries in the label data sets,
respectively. χ denotes the total number of pixels in the label data
sets. The class-balanced binary cross-entropy loss can help the
network converge in the correct direction by introducing the
class-balancing weight ε on a per-pixel term basis.

Given one thousand images of dip-angle gathers for training
and the corresponding true segmentations as labels, training a
givenmodel and optimizing the parameters is the goal of training.
The labels here are established by manual interpretation and
labeling, with labeling ones on true boundaries and zeros
elsewhere. Figure 3 shows three randomly seismic images of
different dip angle gathers with their corresponding labels. We
prepared another 400 dip-angle gathers for validation and testing,
of which 60% are used for validation and 40% for testing. In
general, a validation set is used to evaluate the model during the
training process, fine-tune hyperparameters, and perform model
selection, while the testing set is used to evaluate the model. The
network takes in the images and outputs 2D boundary
distribution probability maps. Cheng et al. (2020) used a
modified VGGNet to identify the Fresnel boundary, and the
output of his network is a one-dimensional probability
distribution map. In our research, we employ the U-net to
identify the Fresnel boundary, and its output is a two-
dimensional probability distribution map. The U-Net is
essentially a fully convolutional network, and its output is
different from the VGGNet’s (Wu et al., 2021). Although
Cheng’s method is suitable for dip-angle gathers generated by
conventional migration methods and the U-net proposed is
carried out on compensated dip-angle gathers with high
resolution, the steps of the two methods in learning and
training are roughly the same, and both need to pre-process
the data, and both use training to optimize network parameters.

FIGURE 2 | Simplified U-Net architecture. The black number describes the number of channels in feature maps. The purple arrow represents convolution-ReLU
operation. The red arrow indicates themax-pooling operation which downsamples featuremaps while the green arrowmeans the upsampling process. The blue arrow is
the shortcut concatenating feature maps from shallow to deep layers.
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In order to improve the convergence of U-Net training and
balance the numerical difference between training data and
prediction data, the input image needs to be normalized.
Adam method (Kingma and Ba, 2014) was adopted to
optimize network parameters, and the default learning rate
was set to 0.001. The Adam method is designed to combine
the advantages of two methods: AdaGrad (Duchi et al., 2011),
which works well with sparse gradients, and RMSProp (Tieleman
and Hinton, 2012), which works well in online and non-
stationary settings. We can also pick up a proper learning rate
manually (Smith L, 2017). We used 60 epochs to train the
network, and each epoch processed 1,000 training images. As
shown in Figure 4, after 60 training epochs of approximately
22 h, the accuracy of training and validation gradually increases
to 95%, while the training and validation loss converges to 0.01. It
shows that our network has been trained.

4 ESTIMATION OF EFFECTIVE Q

Zhang et al. (2013) introduced the definition of effectiveQ , which
is related to the spatial location of the imaging point with no
knowledge of velocities, and proposed a constant Q migration
scanning method to obtain the effective Q parameters. However,
this method of obtaining Q is complicated in calculation, and the
quality of seismic data has a great influence on the accuracy of Q.
We need a method that is more suitable for practical applications,
taking into account both accuracy and efficiency. To address
these issues, we develop an effective Q-model estimation scheme,
and the specific implementation steps are as follows:

1) use VSP data to obtain initial Q , expressed as Qvsp. The
number of VSP wells should be as many as possible, and the
distribution should be as even as possible.

FIGURE 3 | Three randomly seismic images (red lines, the boundaries manually picked) with their corresponding labels (with labeling ones, white line of Fresnel
zones and zeros elsewhere) generated by manual interpretation.

FIGURE 4 | (A) The training and validation accuracy both will increase with epochs, whereas (B) the training and validation loss decreases with epochs.
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2) generate a synthetic trace without attenuation and different
migrated traces with compensation. Q is selected according to
the match between the synthetic trace and their corresponding
migrated traces and is denoted as Qwell.

3) use Lee’s empirical formula Q � 14v2.2 to get Q from seismic
data. The Q is marked as Qseismic. Lee’s empirical formula can
quickly establish a Q model of the entire work area by using
seismic velocity (Tian, 1990).

4) Use all Qwells to calibrate Qseismic and get a Q model of the
whole work area.

In step 1, we use the centroid frequency shift method (Quan
and Harris, 1997) to estimate Q that reads

Q � πτσ2
fshot − fgeo

, (6)

where σ2 is the variance of the source wavelet; τ is the travel
time in the layers; and fshot and fgeo are the centroid frequencies
of the shot point and detection point, respectively. Since this
method is sensitive to layering effects and background noise, it
is necessary to preprocess the VSP data such as denoising. In
addition, try to avoid thin layers, and select some large layers
for Q calculation.

In step 2, we use a Rick wavelet to generate a synthetic trace
without attenuation at the location of this VSP well, first. Because
the attenuation of shallow seismic data is weak, its dominant
frequency can be used as the dominant frequency of the Rick
wavelet. Next, we get different migrated imaging traces
corresponding to the synthetic trace using PSTM with
compensation under a set of regular variable Q. Based on Qvsp

and multiplied by different weight coefficients, the variable Q was
obtained as 0.5, 0.6, 0.7, 0.8, 0.9,1.0, 1.1, 1.2, 1.3, 1.4, and 1.5 times of
Qvsp. The optimal Q is selected according to the similarity between
the synthetic trace and its corresponding seismic imaging traces.

In step 3, the unit of the parameter v in Lee’s empirical formula
is km/s, and it is a root mean square velocity. Lee’s formula uses
velocity information to estimate the Q value, which has the
characteristics of high efficiency and easy realization in
practical application. However, its estimation accuracy is low,
and it needs to be corrected by well information.

In the last step, we use allQwells to calibrateQseismic and get aQ
model of the whole work area.Qwell is derived fromVSP data, and
its accuracy is higher than that of Q calculated from Lee’s
formula. Using all Qwells to calibrate Qseismic can improve the
overall accuracy of the Q model.

5 RESULT

5.1 Field Data Example
In this section, we directly use a 2D field data line to analyze and
discuss the effective Q estimation, the identification of Fresnel
zones using deep learning, and the imaging with compensation.
This line consists of 1,000 CDPs (common depth point) with a
CDP spacing of 12.5 m. The data are sampled at 1 ms with a
length of 2.5 s.

Figure 5 shows how an optimal Q value is obtained from the
compensated imaging traces. The specific implementation
process is as follows: we get the synthetic seismic trace
without attenuation, and then use VSP data to estimate the Q
value, which is denoted as Qvsp. Next, we get different migrated
traces corresponding to the synthetic trace by PSTM with
compensation using Qvsp with different weight coefficients.
There are eleven weight coefficients used, which are 0.5, 0.6,
0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, and 1.5. Multiply Qvsp by
different weight coefficients to obtain the waveforms of
compensated imaging traces under different Q, and then,
compare them with their corresponding synthetic seismic trace
without attenuation. When the two waveforms are similar, the
corresponding Q value is the optimal Q. In Figure 5, trace 0
represents a synthetic seismic trace without attenuation, which
exists as a reference trace during Q picking. Trace 1 to trace 11

FIGURE 5 | Q picking of real data.

FIGURE 6 | Q model of real data.
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represent the compensated imaging traces under different Q. For
example, trace 1 is when Qvsp is multiplied by 1.5, and trace 2 is
when Qvsp is multiplied by 1.4, and so on; trace 11 is when Qvsp is
multiplied by 0.5. On trace 0, six black typical crests are selected,
and each crest is surrounded by a set of red dashed lines. The
amplitude of the intersection of two red dashed lines with the
wave curve is zero. These six crests represent six events. For each
wave crest, two red dashed lines that envelop it extend from trace
0 to trace 11. We judge whether Q is optimal according to
whether the two red dashed lines intersect the wave curve at

amplitude zero. The principle of picking Q here is that when Q is
optimal, the waveform of its compensated imaging trace should
be closest to that of its corresponding synthetic seismic trace
without attenuation. The six red boxes in Figure 5 are the best
Q-labeled. Figure 6 shows the final Qmodel of real data, and the
value is displayed as the reciprocal of Q.

Figure 7 shows part of the prediction results, which are the
Fresnel zones predicted from the dip-angle gathers at three CDPs
(400, 600, and 800). In order to solve the problem of local
unsmoothness of Fresnel zones predicted by deep learning, the

FIGURE 7 | Prediction of the boundaries of the Fresnel zones from the dip-angle gathers at three CDPs (400, 600, and 800). The red lines are the boundaries
manually picked, while the green points on yellow lines are the exact points predicted by U-Net. The predicted boundaries of the Fresnel zones are similar to the manually
picked ones.

FIGURE 8 |Comparison between the compensatedmigrated result with different apertures. Panel (A) represents the compensatedmigrated result with a constant
aperture ranging from −17 to 17°, while panel (B) represents the result with the U-Net predicted optimal aperture. The result with the U-Net predicted optimal aperture
has a higher S/N than the result with a constant aperture.
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prediction results were sparsely processed and only twelve
pairs of equally spaced sample points were retained. The
Fresnel zones predicted by deep learning was obtained by
connecting the sample points with smooth curves. In
Figure 7, the red lines are the boundaries manually picked,
while the green points on yellow lines are the sample points
predicted by U-Net. The predicted boundaries of the Fresnel
zones are similar to the manually picked ones, with a
smoother curve. After superimposing the Fresnel zones at
each CDP within the predicted boundaries, a migrated result
with a higher S/N can be obtained. Figure 8 shows the
compensated imaging results with different apertures.
While Figure 9 shows the detailed comparison of two
white boxes in Figure 8. The result with U-Net predicted
an optimal aperture has a higher S/N than the result with a
constant aperture. The prediction of each dip-angle gather by

the trained U-Net requires approximately 0.6 s when using six
TITAN Xp GPUs, which is much more efficient than manual
picking. Figure 10 shows the comparison between the
migration results obtained using conventional PSTM and
the PSTM with compensation. The conventional PSTM
used a constant aperture, and the compensated PSTM used
an optimal aperture predicted by deep learning. Figure 11
shows the detailed comparison of two white boxes in
Figure 10. We see the overlay events are well separated by
the PSTM with compensation. Figure 12 shows the
comparison of dB spectra between the migration sections
obtained using conventional PSTM and the PSTM with
compensation. The white boxes in Figure 10 are the time
windows of the frequency spectrum. Observe that the high
frequencies have been recovered well by the PSTM with
compensation.

FIGURE 9 | Comparison of the enlarged details inside the boxes of Figure 8. Panel (A) is the enlarged detail of the compensated migrated result with a constant
aperture ranging from −17 to 17°, while panel (B) is that with the U-Net predicted optimal aperture.

FIGURE 10 | Comparison between the result obtained using conventional PSTM (A) and the result obtained using PSTMwith compensating absorption and dispersion
(B). Panel (A) represents the migrated result with a constant aperture ranging from −17 to 17°, while panel (B) represents the result with the U-Net predicted optimal aperture.
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6 CONCLUSION

We have presented a PSTM scheme that can compensate
absorption and dispersion with effective Q estimation and
Fresnel zone identification based on deep learning. Using U-Net
to estimate Fresnel zones from compensated migrated dip-angle
gathers, we obtain an optimal migration aperture. The predicted
boundaries of the Fresnel zones were similar to the manually
picked ones, and the migrated result obtained by applying the
predicted Fresnel zones exhibited a higher S/N. The effective Q
model is constructed using surface seismic velocity data and VSP
well data. The optimal Q is selected according to the similarity
between the synthetic trace and its corresponding seismic imaging
traces, which is a quick and effective method. Since the proposed
migration scheme can compensate absorption and dispersion, the
real data have been imaged with a higher resolution. Here, we
discussed how to obtain 1D Fresnel zones from 1D dip-angle
gathers for 2D seismic data using deep learning. Because of the high

computation cost and memory requirement for 2D dip-angle
gathers, it is difficult to directly estimate 2D Fresnel zones from
2D dip-angle gathers for 3Dmigration. Although 2D Fresnel zones
can be represented by incorporating the inline and crossline 1D
Fresnel zones from 1D dip-angle gathers obtained from 3D data,
this simplified strategy will bring about inaccuracy of migration
apertures in other directions except the inline and crossline
directions. Therefore, it will be the next research focus to use
deep learning to obtain 2D Fresnel zones from 3D data (Aki and
Richards, 1980; Bleistein, 1984; Tian, 1990; Xu and Zhang, 2017;
Wu and Zuo, 2019).
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FIGURE 11 | Comparison of the enlarged details in-side the boxes of Figure 10. Panel (A) is the enlarged detail of the conventional migrated result with a constant
aperture ranging from −17 to 17°, while panel (B) is that of the compensated migrated result with the U-Net predicted optimal aperture.

FIGURE 12 | Comparison of amplitude spectra between the migration
sections obtained using conventional PSTM (blue) and the PSTM with
compensation (red).
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