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At present, numerical models, which have been used for forecasting services in
northwestern China, have not been extensively evaluated. We used national automatic
ground station data from summer 2016 to test and assess the forecast performance of
the high-resolution global European Centre for Medium-Range Weather Forecast
(ECMWF) model, the mesoscale Northwestern Mesoscale Numerical Prediction System
(NW-MNPS), the global China Meteorological Administration T639 model, and the
mesoscale Global/Regional Assimilation and Prediction System (GRAPES) model over
northwestern China. The root mean square error (RMSE) of the 2-m temperature forecast
by ECMWF was the lowest, while that by T639 was the highest. The distribution of RMSE
for each model forecast was similar to that of the difference between the modeled and
observed terrain. The RMSE of the 10-m wind speed forecast was lower for the global
ECMWF and T639 models and higher for the regional NW-MNPS and GRAPES models.
The 24-h precipitation forecast was generally higher than observed for each model, with
NW-MNPS having the highest score for light rain and heavy storm rain, ECMWF for
medium and heavy rain, and T639 for storm rain. None of the models could forecast small-
scale and high-intensity precipitation, but they could forecast large-scale precipitation.
Overall, ECMWF had the best stability and smallest prediction errors, followed by NW-
MNPS, T639, and GRAPES.
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INTRODUCTION

Numerical forecast products have become a mainstay of daily forecast services in modern
meteorology (Chen and Xue, 2004; Yan et al., 2010), although objective assessments remain an
important part of ongoing performance improvements (Pan et al., 2014; Xue and Pan, 2016). The
presently used multiple numerical models have discrepancies in their predictive ability, resulting in
different forecasting results by region (Wang, 2004; Gong et al., 2015; Jing et al., 2017; Zhang et al.,
2017). Model selection, assessment, and correction are important aspects of accuracy evaluations
aimed at providing objective forecasting criteria for users (Chen and Sun, 2005; Pan et al., 2013,
2014). In particular, testing and evaluating models by region improves the understanding of local
forecast performance and enables model choice and results.

The main aspect of numerical model development is improved resolution. Although this can
enhance forecast capacity for small- and medium-scale weather phenomena, it does not necessarily
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improve the accuracy of the forecast (Mass et al., 2002;
Chakraborty, 2008). Small phase errors in a high-resolution
model may lead to low hit rates and high false alarm rates,
whereas some meso- and micro-scale physical processes may not
be properly represented. This makes it necessary to test the
accuracy of high-resolution numerical models using statistical
and synoptic model dynamics, thermal diagnostic tools, and
other forms of error correction. Objective and definitive test
methods are commonly applied in most operational forecasts,
including tests of precipitation forecasts, threat score (TS),
equitable threat score (ETS), and false or missed alarm ratios.
However, such tests can be too stringent and cannot indicate ways
to improve performance (Wang and Yan, 2007; Zhang et al.,
2011). Therefore, researchers have developed other spatial testing
methods, such as the Method for Object-Based Diagnostic
Evaluation (MODE) (Davis et al., 2006a) and the intensity-
scale decomposition method (Casati et al., 2004; Csima and
Ghelli, 2008; Casati, 2010), which allow forecasters to better
understand the effects of model precipitation forecasts.

Northwestern China’s complex surface terrain results in
poorer model performance than in eastern China (Gong et al.,
2015) because the forecast error increases in such terrains due
to limited assimilated data input into the model and the
difficulty involved in precisely simulating the true terrain
(Pu et al., 2013). Such terrain generally makes the
forecasting of surface meteorological elements more
difficult (Zhang et al., 2013; He J et al., 2014), as it has a
strong influence on meteorological elements, particularly
precipitation (Huang et al., 2013). Summer precipitation is
mostly affected by strong convective weather, and prominent
uncertainties in model forecasts make it difficult to predict
this type of weather (Pan et al., 2014). Most assessments for
model-based precipitation forecasts (such as the commonly
used synoptic weather and score tests) are currently focused
on southern China and other rainy regions, whereas relatively
few consider northwestern China. However, as northwestern
China experiences vigorous weather system development in
summer, with frequent meteorological disasters, accurate
weather forecasting during this period is essential for
reducing the impacts of such events (Shen et al., 2017),
requiring improved model forecasting evaluations.

Many studies have tested numerical forecasting products.
For example, Prakash et al. (2016) examined the effect of the
National Center for Environmental Prediction—Global
Forecast System (NCEP-GFS) model on the prediction of
mesoscale monsoon precipitation in South Asia. Sales and
Xue (2011) used the intensity-scale method to test the
performance of the Regional Circulation Model model in
the dynamic downscaling of precipitation in South
America. Michael et al. (2008) compared the effects of five
reanalysis datasets on precipitation forecasts. Furthermore,
Gong et al. (2015) conducted a comparative study of the
applicability of surface meteorological elements predicted
by various numerical models in China. Numerical model
forecast results can reflect the spatiotemporal distribution
of meteorological elements to a certain extent and have a
certain degree of applicability in China, but differences

remain between these forecasts and observational data. For
example, the global-scale European Centre for Medium-
Range Weather Forecast (ECMWF) ensemble forecast is
stable in forecasting light rain in central China but is
incapable of distinguishing between degrees of heavy rain
(Pan et al., 2017). The NCEP-GFS model can predict seasonal
changes in temperature and relative humidity at the
Atmospheric Radiation Measurement Southern Great
Plains (SGP) site (Zhang et al., 2012). The high-resolution
JAPAN model demonstrated higher forecasting skills in
southeastern China than northwestern China and was
better at forecasting precipitation on the eastern coast than
on the west (Pan et al., 2014). The T639 model has a good
performance in predicting the western Pacific subtropical
high but shows large errors in its temperature forecast for
Southern China (Guan, 2016). The trend in the activity of
terrestrial meteorological elements predicted by the Beijing-
Rapid Update Cycle numerical forecasting system is
consistent with actual situations, and it can be used for
short-term weather forecasting because of its high
spatiotemporal resolution (Min, 2014). Some test methods,
such as the intensity-scale decomposition method, have been
applied to test the climatic surface temperature field (Li et al.,
2016); Beijing-Rapid Update Cycle uses MODE as an objective
test for precipitation forecasts (You et al., 2011).

The selection and application of the cumulus convection
parameterization scheme in the numerical model have been
demonstrated to be very important parameters in a
precipitation simulation and forecast (Zhang et al., 2006).
Different cumulus parameterization schemes under different
precipitation systems have different forecast effects on
precipitation intensity and falling areas in different regions
and seasons. Different microphysical schemes have a greater
impact on forecasting performance, such as the precipitation
intensity and precipitation area (Cui et al., 2014). Jankov et al.
(2005) found that no single physics combination performed
best for all events. Bukovsky and Karoly, 2009 found that the
Kain–Fritsch and the Betts–Miller–Janjic cumulus schemes
performed similarly in mean precipitation over the
United States, except over Florida where the Kain–Fritsch
scheme performed better than the Betts–Miller–Janjic
scheme. The cumulus schemes had the largest impact on
the rainfall variability (Flaounas et al., 2011). Janson et al.
(2012) evaluated the performance of a physics ensemble over
southeast Australia and found that no single ensemble
member was found to perform best for all events, variables,
and metrics.

However, currently, relatively few analytical studies assess the
predictive performance of multiple numerical models in
northwestern China. In this study, we analyzed the ECMWF,
the Northwestern Mesoscale Numerical Prediction System (NW-
MNPS), the China Meteorological Administration T639, and the
Global/Regional Assimilation and Prediction System (GRAPES)
numerical models commonly used in northwestern China and
evaluated the accuracy and diversity of their predictions in this
region to provide an improved basis for numerical model
selection in future.
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METHODOLOGY AND MODELS

Methodology
The model grid results in the horizontal direction were
interpolated to the observational data by a bilinear
interpolation algorithm using the closest four grid squares.
The forecast values were initially interpolated linearly in one
dimension and later in the other dimension to the observation
location. We used the following tests to evaluate the results from
each model against actual data from meteorological stations.

1) Continuous variable test

We used the root mean square error (RMSE) to represent the
forecast effect of continuous variable elements:

RMSE �
��������������
1
n
∑n

i�1 (fi − oi)2
√

(1)

where n is the number of observation stations, i is a station, fi is
the forecast value, and oi is the observed value.

2) Precipitation scores test

We used mean error (ME), TS, ETS, and frequency bias
(FBIAS) to test the effect of the model forecast of 24-h
precipitation:

ME � ft − ot
tt

(2)

TS � n11
n11 + n10 + n01

(3)

ETS � n11 − C1

n11 + n10 + n01 − C1

C1 � (n11 + n10)(n11 + n01)
T

� n1.n.1
T

(4)

FBIAS � n11 + n10
n11 + n01

� n1.
n.1

(5)

where tt is the number of precipitation days, t represents days, ft is
the forecast precipitation value, ot is the observed precipitation
value, nij is the counts in each forecast-observation category, i
represents the forecast, j represents the observation, and “.”
symbols represent sums across categories. Verification
formulas are given in Table 1.

3) Precipitation Object Test

The MODEmethod is mainly used to test precipitation spatial
structures (Davis et al., 2006b). We used convolution
thresholding to resolve objects in a raw data field, first by
convolving with a simple filter function:

C(x, y) � ∑∅(u, v)f(x − u, y − v) (6)

where f is the raw data field, ∅ is a simple circular filter function
determined by the radius of influence R and heightH, and C is the
resulting convolved field. The variables (x,y) and (u,v) are grid
coordinates:

∅(x, y) � H if x2 + y2 ≤R2, or ∅(x, y) � 0 otherwise (7)

where R and H are not independent but rather are related by the
requirement that the integral of ∅ over the grid be unity:

πR2H � 1 (8)

The radius of influence R is the only tunable parameter in the
convolution process. Once R was chosen, H was determined by
the equation discussed. Once the convolved field C was derived, it
was thresholded to create a mask field M:

TABLE 1 | Precipitation verification formulas.

Forecast Observation Total

o = 1 (Yes) o = 0 (No)

f � 1(Yes) n11 n10 n1. � n11 + n10
f � 0(No) n01 n00 n0. � n01 + n00
Total n. 1 � n11 + n01 n. 0 � n10 + n00 T � n11 + n10 + n01 + n00

TABLE 2 | Configurations of models.

Models Assimi-lation
system

Assimi-lation data Cumulus
parameter-zation

Microphysical
parameterzation

Land
surfaces

Planetary
boundary layer

Vertical
resolution

NW-
MNPS

3DVAR Surface and Sounding Kain–Fritsch Thompson Noah ACM2 40

GRAPES 4DVAR Surface and Sounding Kain–Fritsch WSM 6 Noah MRF 50
ECMWF 4DVAR SYNOP-SHIP-

METAR
Tiedtke New Prognostic Bulk TESSEL K-EDMF 137

T639 3DVAR Surface Sounding and
Satellite

Tiedtke CAM 5 TESSEL MRF 60

aACM: Asymmetric Convective Model.
WSM: Weather Research and Forecasting (WRF) Single-Moment.
MRF: Medium-Range Forecast.
3DVAR: Three-dimensional Variational Data Assimilation.
4DVAR: Four-dimensional Variational Data Assimilation.
CAM: Community atmosphere model.
TESSEL: Tiled ECMWF, scheme for surface exchanges over land.
K-EDMF: K diffusion turbulence closure and Eddy-Diffusivity Mass-Flux (EDMF).
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M(x, y) � 1 if C(x, y)≥T, or M(x, y) � 0 otherwise (9)

where the objects were the connected regions in whichM � 1. The raw
data were then restored to object interiors to obtain the object field F:

F(x, y) � M(x, y)f(x, y) (10)

where the radius of influence R and threshold T control the entire
process of resolving objects in the raw data field. Finally, the
forecast and observational objects were compared.

4) Precipitation Intensity-Scale Test

We used the intensity-scale decomposition method (Casati,
2010) to evaluate the simulated field at different intensity
thresholds and spatial scales. This required the test area to be
a square second-order area (i.e., a grid area 2k × 2k, where k is a
positive integer). The forecast and observation fields were first
converted into a binary field that was then decomposed into
components of different scales via the Haar filter method. Next,
the mean square errors (MSEs) of each intensity, each scale, and a
random field were calculated along, followed by the skill score for
each intensity and scale. The MSE for each threshold (t) and each
scale component (j) of the binary forecast and observation was
calculated as follows:

MSE(t, j) � (n10 + n01)/T (11)

The MSE for the random binary forecast and observation
fields was calculated as follows:

MSE(t)random ≈ FBI ∗ Br ∗ (1 − Br) + Br ∗ (1 − FBI ∗ Br) (12)

where FBI � n1./n.1 is the frequency bias index, and Br � n.1/T is
the sample climatology from the contingency table (Table 1).

The MSE for the random binary forecast was equipartitioned
on the k + 1 scale to evaluate the skill score (SS):

SS(t, j) � 1 −MSE(t, j) ∗ (k + 1)/MSE(t)random (13)

The intensity-scale skill score was used to evaluate the forecast
skill as a function of the precipitation intensity and spatial scale of
the error.

Models
The NW-MNPS is based on version 3.6 of theWRF (Powers et al.,
2017), which uses NCEP-GFS data as the initial field and
boundary conditions and assimilated surface and sounding
data in China with a spatial resolution of 9.0 × 9.0 km. The
ECMWF is a global high-resolution model developed by the
European Centre for Medium-Range Weather Forecasts that has

FIGURE 1 | (A) Distribution of terrain height and differences between Northwestern Mesoscale Numerical Prediction System (NW-MNPS) and study area; (B)
Terrain scatter plot for models and observation stations.

FIGURE2 | Average root mean square error (RMSE) of temperature at 2-
m height by forecast time.

FIGURE 3 | Daily variation in RMSE for temperature at 2-m height for 24-
h forecast (starting at 00:00 UTC).
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been widely used by China’s weather forecasting service
(Mariano, 2002); we used data with a spatial resolution of
0.125 × 0.125°. The T639 model is a global midterm numerical

forecast system developed by the Numerical Weather Forecasting
Center of the China Meteorological Administration and has a
high spatiotemporal resolution of 0.28125 × 0.28125° (Guan et al.,

FIGURE 4 | Distribution of RMSE for temperature at 2-m height. ECMWF: European Centre for Medium-Range Weather Forecast, GRAPES: Global/Regional
Assimilation and Prediction System. (A) ECMWF. (B) NW-MNPS. (C) T639 (d) GRAPES.

FIGURE 5 | Average RMSE for meridional and zonal winds speed at 10-m height by forecast lead time. (A) Meridional wind. (B) Zonal wind.
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2008). GRAPES is a new generation of multi-scale meteorological
numerical forecasting system developed by the Numerical
Weather Forecasting Center of the Chinese Academy of
Meteorological Sciences in 2001 (Chen and Shen, 2006). This
model also uses NCEP-GFS data as the initial field and boundary
conditions and has been continuously improved to reach version
4.0, with a spatial resolution of 0.1 × 0.1°. Some configurations of
those models are shown in Table 2. NW-MNPS and GRAPES
were run locally for 72 h and the others for 168 h; the initial time
was chosen as 00:00 (UTC), as it represents the start time of
forecasting; the NW-MNPS and GRAPES models were also
started at this time. Overall, data were output every 3 h, but
T639 data were output every 6 h after forecasting for 60 h;
therefore, these were analyzed before 60 h. Because NW-
MNPS was built in 2015, and the model was stable in 2016
after a 1-year test run, we selected the data for summer 2016 (June
1–August 31).

Data
Hourly surface observational temperature (at 2-m height), wind
(at 10-m height), and observed terrain data were sent to every
regional bureau by the China Meteorological Administration,
which has more than 2,400 stations. The data are subjected to
quality control through climatological and regional threshold
value checks and spatiotemporal consistency checks, resulting in
98.9% usability (Ren and Xiong, 2007). Data collected from all
2,400 stations were used in this study and converted into a
readable American Standard Code for Information

Interchange format. The observational data also included 24-h
precipitation data, which were used to evaluate the forecast
precipitation; these point data were assigned to the nearest
model grid point for MODE analysis. The distribution of
regional sites (707 points) in northwestern China is shown in
Figure 1A.

The distribution of terrain height differences between the
NW-MNPS model and the study area by map (Figure 1A)
and scatter plots (Figure 1B) showed that the model’s terrain
height was generally higher than that recorded for the observation
stations, particularly in the plateau region. The terrain differences
between the four models were not very large.

MULTI-MODEL FORECAST EFFECT TEST

Temperature
The RMSE of the forecast temperature at 2 m increased to varying
degrees for each model with increasing forecast time (Figure 2);
ECMWF had the smallest increase, whereas T639 had the largest
increase. Each model’s forecast had similar daily patterns, with
high daytime (0–12, 24–36, and 48–60 lead time) and low
nighttime (12–24, 36–48, and 60–72 lead time) RMSE;
ECMWF had the lowest RMSE value of 2.5°C, whereas T639
showed the highest value of 4.0°C. The RMSE of daily first
forecast of 24-h temperature at 2 m (Figure 3) was lower for
ECMWF andNW-MNPS (particularly the former) and higher for
GRAPES and T639, suggesting that the former two had a
relatively stable performance. The RMSE of the first forecast
of 24 h for the temperature at 2 m (Figure 4) was generally
1.0–3.0°C for ECMWF but >5.0°C in some areas of southwestern
Gansu Province, whereas that for NW-MNPS was generally
2.0–3.0°C but 4.0–5.0°C in southwestern Gansu Province and
3.0–5.0°C in central Shaanxi Province; however, it was >5.0°C in
parts of Qinghai and Gansu Provinces for T639 and 2.0–5.0°C for
GRAPES. T639 had the highest distribution of temperature at
2 m, whereas ECMWF showed the smallest distribution, with the
RMSE of NW-MNPS being closer to the latter. The RMSEs for all
models were relatively large in the plateau area, with a consistent
distribution to that of differences between model and observed
terrain height, indicating the effect of terrain difference on model
prediction.

Wind Speed
The RMSE for zonal and meridional wind speed at 10 m did not
increase with forecast lead time for any model (Figure 5) but was
consistently larger in daytime (0–12, 24–36, and 48–60 lead time)
and smaller in nighttime (12–24, 36–48, and 60–72 lead time).
These were lower for the global ECMWF and T639 and higher for
the regional NW-MNPS and GRAPES, as the latter were better
able to consider the impact of small-scale factors on wind speeds.
The global models considered larger-scale factors and had lower
resolutions (Mass et al., 2002), resulting in lower RMSEs. The
RMSE of the lowest-resolution T639 was lower between the two
global models, and that of NW-MNPS was lower among the
regional models. These results were similar to those obtained by
He X et al. (2014) using different resolution models.

FIGURE 6 | Daily variation in RMSE for meridional and zonal wind
speeds at 10-m height for 24-h forecast. (A)Meridional wind. (B) Zonal wind.
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The RMSE for daily variations in wind speed during the first
forecast of 24 h at 10 m (Figure 6) had smaller fluctuations in
T639 and ECMWF than in NW-MNPS and GRAPES

(particularly the latter). Each model was relatively consistent,
with daily fluctuations (small or large) occurring simultaneously.
The RMSE for zonal winds (Figures 7A–D) showed that the

FIGURE 7 |RMSE distribution of (A–D) zonal and (E–H)meridional wind speeds at 10-m height. (A) ECMWF. (B)NW-MNPS. (C) T639. (D)GRAPES. (E) ECMWF.
(F) NW-MNPS. (G) T639. (H) GRAPES.
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ECMWF and T639 forecasts were generally lower than NW-
MNPS and GRAPES. T639 showed the smallest RMSE value, and
its distribution was similar to ECMWF. The distribution of NW-
MNPS was consistent with GRAPES, being the lowest in southern
and eastern Gansu and northern Ningxia but large in Shaanxi.
The RMSE for meridional winds (Figures 7E–H) showed nearly
identical distributions for all four models to zonal winds. The
RMSE of T639 was the smallest, and that of GRAPES was the
largest.

Twenty-Four-Hour Precipitation
Error Distribution
The function of triple2grid in the NCL software was used to
assign each unstructured individual data point to the nearest
rectilinear grid point; this function does not perform the
interpolation. Moreover, we obtained the mean error
distribution for the first forecast of 24 h of precipitation
(Figure 8), which showed a higher amount of forecasted

precipitation than that observed for all other models. Relative
to observations, ECMWF forecasts more precipitation overall
(although less in certain local areas), and the intensity of over
forecasts or low forecasts was generally weak. NW-MNPS
forecasts more precipitation over most of the area,
particularly southern Qinghai, southwestern Gansu, and
southern Shaanxi but forecasts less precipitation in western
Gansu, northern Ningxia, and some of central Shaanxi. T639
forecasts comparatively more precipitation overall, particularly
in the east of Gansu and southern Shaanxi. GRAPES generally
forecasts more precipitation in Qinghai, eastern Gansu and
Ningxia, and southern Shaanxi, particularly in southern
Qinghai, Gansu, and southern Shaanxi. All four models,
particularly the mesoscale NW-MNPS and GRAPES, forecast
much higher precipitation than observed in the plateau region.
The mean error distribution of 24-h precipitation at the 48 and
72 lead times was similar to the 24 lead time (the figs were
omitted).

FIGURE 8 | Mean error distribution for 24-h precipitation forecast. (A) ECMWF. (B) NW-MNPS. (C) T639. (D) GRAPES.
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Score Tests
The accumulated precipitation test scheme was based on
thresholds for 24-h precipitation of light rain (≥0.1 mm),
moderate rain (≥10 mm), heavy rain (≥25 mm), storm rain
(≥50 mm), and heavy storm rain (≥100 mm). The TS, ETS,
and FBIAS of every model that forecasts a different magnitude
of precipitation are shown in Figure 9. For TS and ETS, for light
rain, NW-MNPS was the highest and ECMWF the lowest; for
moderate and heavy rain, ECMWF was the highest and T639 the
lowest; for storm rain, T639 was the highest and NW-MNPS the
lowest; and for heavy storm rain, NW-MNPS was the highest and
T639 the lowest. Overall, the regional models had higher scores
for light and heavy storm rain, whereas the global models had
higher scores for moderate storm rain. For FBIAS, all four models
(particularly ECMWF and T639) forecast much more light rain

than observed; for moderate rain, ECMWF forecast less rain,
whereas the other three forecast much more; for heavy rain, the
NW-MNPS forecasts matched observations, whereas GRAPES
forecasts much more rain. ECMWF and T639 both forecast less
rain; for storm rain and heavy storm rain, all four forecast less
rain, but NW-MNPS and GRAPES had better forecasts than the
other two.

In the effect of different forecast lead times, TS and ETS for
each model decreased as forecast lead time increased, with
GRAPES having the largest reduction. The forecast bias of
each model increased with increasing forecast time,
particularly for GRAPES. GRAPES forecasts for moderate and
heavy rain were three times more than the 72-h forecast lead time.
Overall, ECMWF and NW-MNPS had relatively stable
performances as forecast time increased.

FIGURE 9 | TS, ETS, and FBIAS of every model forecasting a different magnitude of 24-h precipitation. TS: threat score, ETS: equitable threat score, FBIAS:
frequency bias. 24-h forecasting. 48-h forecasting. 72-h forecasting.
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Object Test
Major summer precipitation events (with heavy rainfall)
occurring over most parts of northwestern China were
selected. Object tests of such events were conducted to
evaluate each model by its spatial forecast of first forecast 24-h
accumulated precipitation (Figure 10). The test focused mainly
on the angle difference, ratio of intersection area, area ratio,
centroid distance, difference in 90% peak precipitation intensity,
and total interest value to characterize forecast precipitation
objects in the direction of centroid displacement, precipitation
area, precipitation intensity, and overall performance. ECMWF
predicted the smallest angle difference of precipitation, followed
by NW-MNPS, whereas GRAPES and T639 had relatively large
angle differences and showed instability (Figure 10A). The ratio
of the intersection area was the highest in ECMWF, followed by
NW-MNPS, and it was the lowest in GRAPES (Figure 10B). The
precipitation areas forecast by all models were larger than
observed, particularly for NW-MNPS and T639, whereas the
area ratio of ECMWF was the smallest (Figure 10C). ECMWF
and T639 had the smallest centroid differences, and NW-MNPS
and GRAPES had the largest (Figure 10D), whereas the
direction of centroid displacement deflected southwestward
for all models. The 90% peak precipitation intensity
difference showed that ECMWF predicted too little
precipitation for intense precipitation, whereas NW-MNPS
predicted too much (Figure 10E). The total interest value,
which characterizes the overall performance of the model for
the precipitation object, was generally similar for all models
(Figure 10F).

Each model had advantages and disadvantages in predicting
precipitation. All indicators for ECMWF showed good predictive
performance except for the underprediction of intense
precipitation. NW-MNPS model showed good predictive
performance in axis angle difference and intersection area
ratio, but the area affected was greater, and the centroid
distance was farther. GRAPES had a large angle difference and
a small intersection area ratio. T639 had a large axis angle
difference but a small centroid distance. Overall, the model
performances were generally similar in the 24-h precipitation
forecast.

Intensity-Scale Test
Each model had a large MSE for the forecast intensity of 10.0-mm
precipitation, particularly NW-MNPS and GRAPES (Figure 11).
The MSE of each model at the 72.0-km scale was relatively large,
particularly for T639. All models had relatively small MSE for
forecasts of both small-scale low-intensity precipitation and
large-scale high-intensity precipitation. Each model had a
negative skill score for the first forecast 24-h small-scale high-
intensity precipitation, with NW-MNPS having the highest score;
furthermore, all models had higher prediction and forecast skill
scores for large-scale precipitation (Figure 12).

Overall, different cumulus and microphysics parameterizations
schemes were selected for each model, and each physical
parameterization had different impacts on the precipitation
forecast, such as precipitation intensity and falling areas. Each
physical parameterization also resulted in a different simulated
outcome in the precipitation system. Therefore, the models

FIGURE 10 | Object test of 24-h precipitation. (A) Angle difference. (B) Intersection area ratio. (C) Area ratio. (D) Centroid distance. (E) 90% peak precipitation
intensity difference. (F) total interest value.
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performed differently in every precipitation event in the analysis
discussed; thus, the precipitation system should be classified first in
future studies before the performance of the precipitation forecast
of every model is tested.

DISCUSSION AND CONCLUSION

To assess the forecasting performance of the ECMWF, NW-
MNPS, T639, and GRAPES models in Northwestern China, the
main elements of temperature at 2 m, wind speed at 10 m, and 24-
h precipitation were analyzed and assessed as forecasted by every
model in the summer of 2016. The conclusions are presented as
follows:

1) The RMSE of the forecast temperature at 2 m for eachmodel was
consistent with daily variations (daytime high and nighttime
low); ECMWF had the smallest RMSE value, whereas T639 had
the largest RMSE value. The daily mean RMSE of ECMWF and
NW-MNPS varied marginally, particularly for the former.

ECMWF had the lowest regional distribution, with NW-
MNPS being similar. Each model had a larger RMSE in the
plateau region, and the overall distribution reflected differences
in height between models and observation stations.

2) The RMSE of the forecast zonal andmeridional wind speeds at
10 m for each model was high during daytime and low at
night; this was lower for the global ECMWF and T639 models
and higher for the regional NW-MNPS and GRAPES models.
The regional RMSE distribution was the smallest for T639,
similar to ECMWF, whereas NW-MNPS and GRAPES were
consistent with each other, being low in southern and eastern
Gansu and northern Ningxia but large in Shaanxi.

3) All models generally forecast 24-h precipitation more than
observed, particularly over the plateau region, and especially
in the mesoscale NW-MNPS and GRAPES models. NW-MNPS
had the highest scores for light rain, ECMWF for medium and
heavy rain, T639 for storm rain, andNW-MNPS for heavy storm
rain. ECMWF and NW-MNPS showed increasingly stable
forecast performances with increasing forecast time. The total
interest value of the precipitation objects forecast by each model

FIGURE 11 | Distribution of MSE by model intensity and scale. (A) ECMWF. (B) NW-MNPS. (C) T639. (D) GRAPES.

Frontiers in Earth Science | www.frontiersin.org December 2021 | Volume 9 | Article 77120711

Liu et al. Evaluation of Preformance for Models

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


was generally similar. Nomodel had forecast skills for small-scale
high-intensity precipitation but did have high forecast skills for
large-scale precipitation.

The complex terrain and various land-surface conditions had
a certain impact on the prediction performance of forecast
models in northwestern China. As each model managed this
problem differently, the performance of each model had unique
advantages and disadvantages in the study region. Future model
tests should consider these external factors for improved
performance.
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