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Coastal lagoons are among the most vulnerable and economically significant ecosystems
on Earth. Songkhla Lake, connected with the Gulf of Thailand, is the second largest lake in
Southeast Asia and supports the development of the fishery, transportation, and tourism
industries in southern Thailand. With increasing anthropogenic disturbances, the lake is
facing acute ecological problems and further research is needed. Here, we provide 55-year
record of grain size, color reflectance, magnetic susceptibility, total organic carbon, total
nitrogen, and trace element (As, Hg, Pb, Cr, Ni, Cu, and Zn) concentrations of sediment
core SKL8-2 collected from Songkhla Lake. These records reveal a three-stage
sedimentary and input history of trace metals under anthropogenic effects: 1) From
1964 to 1982, it was a natural terrigenous input period with a relative reduction
environment when the channel connecting Songkhla Lake and the Gulf of Thailand
was closed. 2) Trace metal concentrations, organic carbon content, b* value, and
magnetic susceptibility changed abruptly in 1982. During 1982–2000, the sources of
trace metals were more complex than during 1964–1982 and mainly came from urban
wastewater, industrial effluent, and fishery discharge. 3) From 2000 to 2019,
contamination signals of Pb, Hg, As, Zn, and Ni emerged in the first decade because
of the rapid development and poor sewage treatment around nearby cities.

Keywords: lagoon, Songkhla Lake, Gulf of Thailand, modern sedimentation, anthropogenic activities, trace metal
contamination

INTRODUCTION

Coastal lagoons rank among the most productive ecosystems on Earth because they provide a wide
range of ecosystem services and resources (Newton et al., 2018; Velasco et al., 2018; Faremi et al., 2021).
Their high ecological value encompasses flood control, groundwater recharge, prevention of seawater
intrusion, facilitation of shoreline stabilization, storm protection, retention and export of sediment and
nutrients, mitigation of climate change, water purification, and providing reservoirs of genetic and/or
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species biodiversity (Pérez-Ruzafa et al., 2012; Barbier, 2014;
Anthony et al., 2016; Hung et al., 2020). Furthermore, lagoons
are desirable areas for a variety of anthropogenic activities such as
intensive aquaculture, shipping, tourism, and recreation (Pérez-
Ruzafa et al., 2007). Consequently, coastal lagoons are highly
exposed to various types of contaminants including trace
metals, hydrocarbons, and plastics, which result from sources
that include, but are not limited to, increased discharge of
domestic, municipal, and industrial effluents (Pedro et al., 2016;
Sogbanmu et al., 2016; Veiga et al., 2019; Wakkaf et al., 2020; El
Zrelli et al., 2021). These contaminants persist for long periods and
become bioavailable to living organisms because of their potential
to bioaccumulate and biomagnify through the food chain (Bryan
and Langston, 1992; Zhou et al., 2008; Bakshi et al., 2018), where
sediments serve as their ultimate sink (Gadkar et al., 2019; Jung
et al., 2019). Given that such lagoons are only occasionally
connected with the open sea, marine influence is limited, and
the sedimentary record is relatively continuous and undisturbed.
Lagoon sediments can therefore serve as archives of environmental
changes through time (Aparecida Leite Silva and Eduardo Rezende,
2002; Liu et al., 2006; Laermanns et al., 2021).

Anthropogenic environmental contamination by trace metals
began with the domestication of fire; later, the industrial revolution
led to unprecedented demand for metals and an exponential
increase in the intensity of metal emissions (Schmidt and
Reimers, 1991; Nriagu, 1996). Songkhla Lake, a coastal lagoon, is
regarded as one of themost important natural resources in southern
Thailand, with fishing and aquaculture as the main economic
activities. The lake provides the people of its surroundings with
food, water for irrigation and domestic use, and means of
transportation and recreation (Kumblad et al., 2001). Increasing
human activities, including urbanization, industrialization, and
agriculturalization, have led to considerable amounts of trace
metal inputs, requiring urgent remediation (Ratanachai et al., 2013).

During the past three decades, a number of studies on trace
metals in lacustrine sediments have been carried out in this area,
revealing the spatial pattern of trace metals in Songkhla Lake
(Nakinchart et al., 2006; Pradit et al., 2010). These studies have
shown that canals and their vicinities were associated with
abundant trace elements because of municipal, agricultural,
and industrial discharges entering the lake through the canals.
Furthermore, a recent study, which analyzing the concentrations
of As, Cd, Pb, and Zn in mangrove plants (leaves, roots, and bark)
and sediments, revealed heavy pollution of As (Pradit et al., 2018).
However, research on sedimentary trace metal history, which can
help improve understanding of the influence of human activities,
remains scarce. Thus, the aims of the present study were to reveal
sedimentary records of trace metals in Songkhla Lake for the past
several decades, evaluate the contamination status of the lake, and
examine the impact of human activities.

MATERIALS AND METHODS

Study Area
Songkhla Lake (Figure 1), a coastal shallow lagoon, is located in
southern Thailand (7°08′-50′N and 100°07′-37′E) and covers an

area of 1,042 km2. The lake is divided into four parts: 1) Thale
Noi, a freshwater lake surrounded by freshwater swamps with a
total area of 28 km2; 2) an inner lake with an average depth of 2 m
and an area of 459 km2; 3) a shallow middle lake with an average
depth of 1 m and an area of 377 km2; and 4) an outer lake with a
surface area of 182 km2, which is connected to the Gulf of
Thailand (GoT) through a narrow channel 420 m wide and
9.5 m deep.

Songkhla Lake is dominated by a tropical monsoonal climate.
The rainy season, dominated by the southwest monsoon, occurs
from mid-May to almost the end of the year and is caused by
warm, humid air flowing from the Indian Ocean. Then, the dry
season, controlled by the northeast monsoon, is characterized by
low precipitation (https://www.tmd.go.th/en/climate.php). The
salinity of the water is altered by the tidal currents and varies
over a wide range from nearly 0 psu in Thale Noi to 30 psu in the
outer section. There are no major rivers in the area; the lake is fed
by numerous small streams and man-made canals.

The lake is a vital natural resource for the people living in the
surrounding provinces, Songkhla Province and Phatthalung
Province, which have populations of 1.25 and 0.50 million
people, respectively, as well as some parts of Nakhon Si
Thammarat Province. It is a major fishing ground for
mollusks, crustaceans, and fish and is especially used for the
aquaculture of sea bass. The catchment area of the entire
Songkhla Lake Basin (approximately 8,020 km2), besides
Songkhla Lake, consists mostly of lowland rice fields, rubber
plantations, and forest-covered hills (Kumblad et al., 2001).

Sediment Sampling
Five sediment cores were collected from Songkhla Lake in August
2019 (Figure 1, Table 1) using push corers. The cores were sealed
after collection and stored in the repository at a temperature of
4°C. Half of each core was preserved, and the remaining half was
photographed and then subsampled at 2-cm intervals for further
analysis. In this study, we focused on sediment core SKL8-2.

Laboratory Analysis
This study is based on comprehensive analyses of color
reflectance, magnetic susceptibility, grain size, total organic
carbon (TOC), total nitrogen (TN), and elements
concentrations of core sediment, combined with 210Pb dating
chronology.

The sedimentation rate was determined using 210Pb
radionuclide dating at the Radioactive Isotopes Analysis
Laboratory of East China Normal University, Shanghai, China.
Lyophilized samples were stored for at least 3 weeks in sealed
containers to reach secular equilibrium prior to analysis. The
analysis was then conducted on a well-type HPGe gamma
spectroscope (GSW275L).

Sediment color and magnetic susceptibility were measured by
MSCL (Multi Sensor Core Logger). In sediment color, L*
describes the lightness between black (0) and white (100),
while a* and b* denote the red (positive values)–green
(negative values) and yellow (positive values)–blue (negative
values) chromaticity, respectively. The chlorine content in the
sediments was analyzed by an X-ray fluorescence (counting
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intensity) core scanner (Itrax, Sweden). Grain sizes of the samples
were determined with a Mastersizer 3000 instrument, and 10%
parallel samples were chosen for repeat measurement to confirm
the reliability of the results. The measurement range of the
instrument was 0.02–2,000 μm. The error based on repeated
measurements was estimated as <3%.

TOC and TN were measured by a VarioEL Ⅲ elemental
analyzer (ELementar, Germany). During measurement, 10%
parallel samples and GSD-9 standard material were also
measured, and the relative measurement error was lower
than 0.5%. Inductively coupled plasma optical emission
spectrometry (ICP-OES, Thermo iCAP-6300, United States)

was used to measure Al2O3 and CaO contents, whereas Cr,
Ni, Cu, Zn, and Pb contents were measured by inductively
coupled plasma mass spectrometry (ICP-MS, Thermo X-series
II, United States). As and Hg were measured using atomic
fluorescence spectrometry (AFS-920). Ten percent parallel
samples, China Stream Sediment Standards (GBW07309,
GBW07313, GBW07314, and GBW07316), and appropriate
blanks were used for quality control. The relative standard
deviations of the analyses were all <5%. All measurements
except for radionuclides were performed at the Key
Laboratory of Marine Geology and Metallogeny, Ministry of
Natural Resources, China.

FIGURE 1 | Locations of Songkhla Lake (A) and sampling sites in this lake (B).

TABLE 1 | Information on five core samples from Songkhla Lake.

Core sample Longitude Latitude Water depth (m) Core length (cm)

SKL1-1* 100.24°E 7.76°N 2.0 88
SKL3-2 100.23°E 7.63°N 2.3 124
SKL6-2 100.29°E 7.41°N 1.0 52
SKL7-1 100.56°E 7.17°N 0.9 134
SKL8-2 100.44°E 7.24°N 1.4 102

*SKL is the abbreviation of Songkhla Lake.
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Assessment of Trace Metal Contamination
in Sediments
To better understand the risk associated with trace metals,
contamination indices, including the enrichment factor (EF)
and geo-accumulation index (Igeo), and sediment quality
guidelines (SQGs) were employed in the present study.

Enrichment Factor of Trace Metals
The EF is a powerful tool used to elucidate the degree of
contamination in sediment in relation to the background
value. The EF can be calculated according to the following
function (Buat-Menard and Chesselet, 1979):

EF � Sn/Sref
an/aref

where Sn is the content of contaminating elements, Sref is the
content of the reference element Al, an is the background content
of contaminating elements, and aref is the background content of
the reference element Al.

EF ≤ 1 indicates no enrichment, 1 < EF ≤ 3 is minor
enrichment, 3 < EF ≤ 5 is moderate enrichment, and EF > 5
suggests severe enrichment.

Geo-Accumulation Index of Trace Metals
The Igeo allows evaluation of contamination by correlating the
obtained current concentration of metals with their background
concentrations. The Igeo values for metals were determined using
the following equation (Müller, 1979):

Igeo � log2( Cn

KBn
)

whereCn is the concentration of metal n of the sediment, Bn is the
geochemical background concentration of metal n, and the
constant K is generally assigned 1.5, which is a background
matrix correction factor for lithogenic effects.

As a threshold value, Igeo � 0 is selected. A value of Igeo ≤ 0
suggest uncontaminated, and Igeo > 0 are divided into six different
contamination levels.

Sediment Quality Assessment
SQGs are useful to estimate biological effects in contaminated
sediments (Long et al., 1995; MacDonald et al., 2000; Filgueiras
et al., 2004; Hinkey and Zaidi, 2007; Violintzis et al., 2009). In this
study, potential ecological effects were evaluated based on the
effects range low (ERL) and effects range median (ERM) guideline
values for estuarine and marine environments proposed by the
United States National Oceanic and Atmospheric Administration
(Table 2). The ERL represents the 10th percentile of the effects
database, below which harmful effects on aquatic biota are rarely

observed. In contrast, the ERM represents the 50th percentile
values of the effects data and indicates concentrations above
which harmful effects are often observed.

RESULTS AND DISCUSSION

Sediment Chronology
From the surface to the bottom of core sediment SKL8-2, 210Pbex
activity generally decreased in the pattern of a negative
exponential curve, although occasional anomalies fluctuated in
certain layers (Figure 2). Constant Flux Constant Sedimentation
(CFCS) model was then selected to determine the sedimentation
rate (Crozaz et al., 1964; Sanchez-Cabeza and Ruiz-Fernández,
2012). On the basis of 210Pbex values and distinct colors from gray
to yellowish brown in core photograph, dividing the SKL8-2 into
two stages of sedimentation rates was justified. The bottom part
(63–102 cm) indicated a sedimentation rate of 2.3 ± 0.6 cm/year,
and the upper layer of 0–63 cm had a lower average
sedimentation rate of 1.6 ± 0.6 cm/year. Therefore, this core
covered a period of approximately 55 years (1964–2019).

Lithology and Sedimentary Environment
Based on the differences of sediment color, magnetic
susceptibility, TOC/TN ratio, and calcium content, the core
could be divided into three sections (Figure 3): 1) Section A,
63–102 cm corresponding to 1964–1982; 2) Section B, 32–63 cm,

TABLE 2 | ERL (effects range low) and ERM (effects range median) guideline
values for trace metals (μg/g in dry weight).

Cr Ni Cu Zn Pb As Hg

ERL 81 20.9 34 150 46.7 8.2 0.15
ERM 370 51.6 270 410 218 70 0.71

FIGURE 2 | Vertical distribution of 210Pbex and
226Ra and a photograph

of sediment core SKL8-2. Depth errors are ±1 cm. The blue lines represent the
linear fitting results with the detailed information on the right.
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spanning from 1982 to 2000; and 3) Section C, 0–32 cm,
deposited during 2000–2019.

Section A: 1964–1982
These layers were mainly gray clayey silt with an average silt
content of 74.3%, followed by the clay fraction (averaging 21.3%)
and sand fraction (averaging 4.4%). The average sorting
coefficient was 1.7, indicating poor sorting.

In this section, the sediment was characterized by high TOC
content (averaging 1.5%), and there was conspicuous tiny black
carbonaceous debris at depths of 70, 73–75, 90, and 95–98 cm.
The mean TOC/TN ratio was as high as 21.7, indicating that
terrestrial plants prevailed as the source of organic matter
(Meyers, 1994). Given the obviously low magnetic
susceptibility, b* and a* values, and high TOC and TN, it may
be reasonable to conclude that the environment in the lake was
relatively reducing (Tian et al., 2011).

The count intensity of chlorine (Cl) was approximately 2,700
cps during 1964–1982 and increased progressively after 1982. The

Cl trends in sediment cores SKL7-1 and SKL6-2 were similar to
that in SKL8-2 (Figure 4). The period before the rise was
consistent with the closure of the GoT channel in order to
develop irrigation agriculture by preventing seawater salinity
invasion (ONEP, 2005). While the cores collected far away
from the channel (e.g., SKL3-2 and SKL1-1) did not show a
response to this increasing change of Cl, which further proved the
reconnection with the GoT at around 1982.

Section B: 1982–2000
Sediments in Section B were silty sand, slightly coarser than
sediments in Section A, with the mean grain size rising from 9.6
to 10.3 μm. The average contents of silt, clay, and sand in this
section were 76.7%, 19.2%, and 4.1%, respectively, and the
sorting was poor. The mean TOC/TN ratio of 13.2 suggested
mixed terrestrial and marine sources for organic matter
(Meyers, 1994).

The average calcium content was 0.7%, and Ca content peaked
at 1.1% at around 1987. In addition, large amounts of small shells

FIGURE 3 | Bulk properties of sediment core SKL8-2 collected from Songkhla Lake and its three sections, (A–C). Dashed lines represent the average values.

FIGURE 4 | Vertical variations of chlorine content at five stations in Songkhla Lake (distance from the channel connected with the Gulf of Thailand: SKL7-1 < SKL8-2
< SKL6-2 < SKL3-2 < SKL1-1).
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and biological detritus were found in this layer, and pronounced
large shells were found at 44-cm depth. We ascribed these
findings to the Thai government’s proposal to expand shrimp
farming in the Songkhla Lake Basin in 1987 (ONEP, 2005). Since
1987, the area where there previously were rice plantations in
Songkhla Lake Basin has been gradually occupied by shrimp
ponds. Thus, accelerated shrimp breeding and seafood processing
in this period boosted the growth of aquatic shelly organisms and
subsequent calcareous deposition in the lake. In addition, this
change may also have been caused by the increased productivity
of calcareous plankton and/or benthos caused by the opening of
the channel with the GoT. As previously reported, nutrients
brought by marine plankton can stimulate the growth of
calcareous organisms (Yu et al., 2020).

The most intriguing feature of this section was the evident
transformation at the bottom interface, where the TOC content,
b* value, and magnetic susceptibility all abruptly changed. This
was responding to the reconnection of the lake with the GoT.
Under marine influence, the hydrodynamic forces in the lake
were increased and part of the sediment was transported to the
GoT, resulting in the decline in the deposition rate. The dropped
TOC and Al contents were considered a consequence of the
intensified hydrodynamics as well, rendering it more difficult for
fine-grained particulate to sediment. The b* value and magnetic
susceptibility increased over their average values, indicating a
transition to an oxidizing environment (Tian et al., 2011).

Section C: 2000–2019
Sediments in the upper part of the core (0–32 cm) were gray clayey
silt with a mean grain size of 10.2 μm. The average silt content was
79.5%, with 17.1% and 3.4% clay and sand fractions, respectively.

TN and TOC in this section increased considerably, which was
consistent with the gradual decrease of brightness. Nevertheless,
the organic matter content in this layer was still low, and the
average TOC/TN ratio was 9.75, indicating that aquatic plants
were the source of the organic matter (Meyers, 1997).

Ca content sharply dropped to below the average of the deeper
sections (Figure 3). During this depositional period, local fishery
development was contained by either enhanced eutrophication or
strengthening regulation; for instance, the use of fishing tools was
limited and the area of shrimp aquaculture was reduced. Analysis
of satellite images from 2002 previously showed that the shrimp
aquaculture area had been reduced to approximately 50.15 km2,
40.2% less than the area in 1995 (Ratanachai et al., 2014). The
implementation of environmental regulations led to the decline of
nutrients in the lake, which hindered the growth of calcareous
organisms and thus caused a decline in sedimentary Ca content.
Because there was still marine organism communication during
this period, it is reasonable to infer that the plateau of Ca content
during 1982–2000 mainly resulted from shrimp farming.

Temporal Variations and Sources of Trace
Metals
Trace Metal Concentrations
The ranges of down-core concentrations of As, Hg, Pb, Cr, Ni,
Cu, and Zn were 14.82–24.34 (mean 19.04) μg/g, 0.039–0.048

(mean 0.042) μg/g, 45.96–58.55 (mean 49.61) μg/g,
44.11–59.93 (mean 50.05) μg/g, 15.70–25.30 (mean 18.96)
μg/g, 9.99–15.94 (mean 11.63) μg/g, and 47.35–53.44 (mean
51.62) μg/g, respectively (Figure 5). In general, the contents of
trace metals decreased from the bottom to the top. The
downward profiles of Cr, Ni, Cu, and Zn showed similar
vertical distributions. Their concentrations exhibited clear
declines since 1964 despite peaking at around 1978. In
1981, the turning point year, the decline of trace metal
contents slowed considerably, and the values were lower
than the mean values. The concentrations of As, Hg, and
Pb changed dramatically but presented low values since the
20th century.

As shown in Table 3, this study revealed that the levels of
trace metals in Songkhla Lake were relatively high compared
with those of the South China Sea shelf (Cr � 39.3 μg/g, Cu �
7.43 μg/g, Zn � 54.4 μg/g, Pb � 15.6 μg/g, As � 9.71 μg/g, and Hg
� 0.02 μg/g) (Zhang and Dui, 2005). However, the
concentrations of Cu, Zn, Cr, Ni, and Hg, unlike those of Pb
and As, were lower than those in Bangkok Bay (Qiao et al., 2015;
Guo et al., 2019), the western GoT (Liu et al., 2016), and the
western Sunda Shelf (Zhang et al., 2021). Based on those
findings combined with the above results, sediments in the
surrounding region of Songkhla Lake were not significantly
contaminated by Cu, Zn, Cr, or Ni, while As, Pb, and Hg
contents were at moderate contamination levels at many
stations in the estuaries primarily because of anthropogenic
activities.

Sources of Trace Metals in Sediments
Inter-element correlations were quantified using a correlation
matrix. Principal component analysis (PCA) was performed to
reduce the dimensionality of the data and determine which
elements explained the most variability across the sediment
core. PCA generates principal components (PCs), which are
uncorrelated variables composed of linear combinations of the
original variables. For each PC, a loading is assigned to each of the
original variables, determined by correlation between the original
variable and the PC. The correlation matrix and PCA were
performed on samples from three periods to identify the
source of trace metals. The results of sections B and C were
similar; therefore, we combined them to obtain the outcomes
exhibited in Figure 6 and Table 4.

For the entire sediment core, the first two PCs were
responsible for 84% of the total variance, with PC1 accounting
for 64% and PC2 explaining 20% of the data variance. In the PCA
loading plot (Figure 6A), there are two apparent clusters of trace
metals, with Zn, Ni, and Cr having high loadings on PC1 and Pb,
Hg, and As having high loadings on PC2. Strong (r > 0.8) and
significant (p < 0.01) correlations between trace metals (Zn, Ni,
and Cr) and TOC may reflect that organic matter provided more
binding sites for metals and thus metals were enriched. Al is
generally regarded as a terrestrial proxy; thus, PC1 represented
Zn, Ni, and Cr, which are strongly regulated by organic matter
and may have originated from lithogenic sources. However, Pb,
Hg, and As, represented by PC2, were not correlated with TOC
(r <0.5), which may indicate an entirely different regulation
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pattern from that of the other metals (Figure 6A), likely related to
human actions.

Significant correlations between elements may reflect
collective sources or similar influencing factors (Zaharescu
et al., 2009). During the period from 1964 to 1982, TOC was
significantly correlated with TN (r � 0.507; p < 0.01), suggesting
a common origin. At the same time, significant correlations
between Cr, Ni, Cu, Zn, and Al, as well as high TOC/TN ratio of
21.7, jointly shed light on the proximate natural terrigenous
input. Accordingly, PC1 of this part, which encompasses high
loading of Cr, Ni, Cu, Zn, and Al, accounted for 64% of the
variance. PC2 is distinguished by positive loading of As, Hg,
and Pb, indicating greater anthropogenic contribution
(Figure 6B).

After 1982, aside from Zn and Ni, the correlations between
other indicators weakened (r < 0.5). This indicates that the

sources of trace metals after 1982 were more complex than
those before 1982 and may have resulted from the following
three causes. First, rapid urban and industrial expansion with
outdated waste treatment brought large amounts of effluent
discharge into the lake (Pradit et al., 2013). This cause may be
supported by the striking distinction of the PC loads of Cu and As
after 1982 compared with those before 1982. Cu and As have
generally been used as wood preservatives, and their material
sources were closely related to the rapid development of the wood
industry around Songkhla Lake in the 1990s (Sompongchaiyakul
and Sirinawin, 2007). Aquaculture may have been the next most
important contamination source. The Thai government’s policies
stimulated the development of aquaculture starting in 1987. The
use of fishing gear and tackle, fertilizer application, food
processing, and ultimately transportation may account for the
contamination of the lake (Ratanachai et al., 2014). Furthermore,

FIGURE 5 | Variation of trace metals concentrations (μg/g in dry weight) in sediment core SKL8-2 of Songkhla Lake. Dashed lines represent the average values.

TABLE 3 | Trace element concentrations (μg/g in dry weight) in sediments of adjacent sites.

Elements As Hg Pb Cu Ni Cr Zn

This study 14.82–24.34
(19.04)

0.039–0.048
(0.042)

45.96–58.55
(49.61)

9.99–15.94
(11.63)

15.70–25.30
(18.96)

44.11–59.93
(50.05)

47.35–53.44
(51.62)

South China Sea
shelfa

9.71 0.02 15.6 7.43 — 39.3 54.4

Bangkok Bayb — — 29.6 28.99 44.18 80.93 99.01
Western Gulf of
Thailandc

1.06–34.07 0–0.11 4.13–34.07 2.20–25.31 — 8.08–82.61 1.63–78.95

Bangkok Bayd — — 13–36 (23.6) 6–36 (17.4) — — 13–132 (55.2)
Western Sunda
Shelfe

7.13–17.18 0.02–0.06 21.92–47.07 6.01–14.30 — 22.75–49.94 30.67–69.51

References:
aZhang and Dui, 2005.
bGuo et al., 2019.
cLiu et al., 2016.
dQiao et al., 2015.
eZhang et al., 2021.
The values in parentheses represent average values. Dashes indicate no data.
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the reconnection of the lake with the ocean exacerbated the
complexity of material sources.

Potential Ecological Assessment
The EF and Igeo were used to quantitatively evaluate the degree of
anthropogenic pollution in the sediments, and Al was selected as
the standardized element because Al2O3 content was stable
during the formation of the sediments and was uninfluenced
by the surrounding environment (Cheevaporn et al., 1995;
Srisuksawad et al., 1997). The background values of Cr, Ni,
Cu, Zn, Pb, As, and Hg were 58.5, 13.0, 17.7, 35.5, 20.5, 13.0,
and 0.021 μg/g, respectively, with Al content of 5.15%, which was
determined through previous studies of Songkhla Lake and the
western GoT (Ladachart et al., 2011; Liu et al., 2016).

The EF and Igeo results suggest that trace metal contamination
was not severe in Songkhla Lake from 1964 onward (Figure 7).
The average EF values were ranked as follows: Pb >Hg > As > Zn
>Ni > Cr > Cu. The first five elements exhibited EF > 1, denoting
slight contamination. The EF results for Cr and Cu were much
lower than 1, indicating natural enrichment. The Igeo values
showed the same order as the EF index. Pb and Hg
maintained the Igeo > 0 throughout the core, suggesting
moderate levels of contamination. The Igeo values of Zn and
Ni decreased to less than zero starting approximately in 1981. Cr
and Cu showed no enrichment.

It was notable that except Cr and Cu, trace metals showed
contamination signals in the depth range of 15–32 cm,
corresponding to 2000–2010. This result was also supported
by previous reports (Sompongchaiyakul and Sirinawin, 2007;
Pradit et al., 2010; Pradit et al., 2013), which showed that
concentrations of As and Pb were rising because of rapid
urbanization. The outer section of Songkhla Lake receives
municipal waste from two large and rapidly expanding cities,
Songkhla and Hat Yai, as well as agricultural and industrial
discharge transported by canals. In the 1990s, urbanization
accelerated, but the first wastewater treatment plant for Hat
Yai City was not built until 1999 and the treatment coverage
was limited. Therefore, a large amount of untreated wastewater
was still discharged into Songkhla Lake, resulting in a decline of
lake water quality and environmental degradation. This poor
sewage treatment had led to serious concern with regard to
nutrient and metallic pollution in Songkhla Lake. In addition,
expansion of Songkhla Port in 2003 (ONEP, 2005) and expansion
of rubber planting in Songkhla Lake stimulated by the rising price
of rubber from 2003 to 2005 may have facilitated the high
enrichment in this period as well. After 2010, pollution has
been kept to a low level, which was likely closely related to the
concept of “man–land integration and coordinated development”
in this period (Ratanachai et al., 2013).

Comparison with the ERL–ERM guideline values (Figure 8)
showed that all the trace metals were under the ERM guideline
values, reflecting contamination that at present is far from
alarming. Nevertheless, As and Pb contents have exceeded the

FIGURE 6 | Plots of loadings of PC1 and PC2 from principal component
analysis (PCA) of sediment core SKL8-2 from Songkhla Lake. (A) The whole
sediment core; (B) 63–102 cm of sediment core (1964–1982); (C) 0–63 cm of
sediment core (1982–2019).
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ERL threshold since 1964. Although the As content in Southeast
Asia has been found to be elevated relative to global levels, which
is considered to result from mining or river enrichment (Jones
et al., 2008), the As and Pb contents in SKL8-2 were higher than
the 10th percentile of the effects database and are a signal of the
sustained influence of human activity, which requires attention.
In addition, Ni exceeded the ERL limit in the period during
1964–1982. This finding further indicates terrigenous input in
this period, as in nature, Ni mostly occurs in magnetite and

sulfide deposits (Guo et al., 2019). Moreover, it was found that the
concentrations of Hg, Cr, Cu, and Zn in the sediments did not
exceed the ERL limits for sediments during the entire recorded
period, indicating that harmful effects on organisms would be
rare. In general, these results were in agreement with the obtained
EF and Igeo values. However, because the Hg content was
relatively low in adjacent areas (Liu et al., 2016; Zhang et al.,
2021), the results for this element showed a different
contamination status.

TABLE 4 | Explained data variance of the selected principal components (PCs) and their relationships with the individual sediment metals in sediment core SKL8-2.

(a) Whole sediment core (b) 63–102 cm of sediment core (1964–1982) (c) 0–63 cm of sediment core (1982–2019)

PC1 (62.93%) PC2 (15.47%) PC1 (64.06%) PC2 (19.51%) PC1 (50.55%) PC2 (16.96%)

Al 0.844 0.371 Al 0.897 -0.052 Al 0.732 -0.078
As 0.275 0.730 As −0.399 0.780 As 0.728 0.370
Hg 0.327 0.812 Hg 0.181 0.874 Hg 0.466 0.692
Cr 0.893 0.360 Cr 0.951 −0.121 Cr 0.787 0.008
Ni 0.856 0.445 Ni 0.982 −0.094 Ni 0.840 0.422
Cu 0.732 −0.141 Cu 0.967 0.022 Cu 0.281 −0.670
Zn 0.861 0.473 Zn 0.944 −0.020 Zn 0.947 0.110
Pb 0.032 0.817 Pb 0.654 0.408 Pb 0.221 0.713

FIGURE 7 | Enrichment factor (EF) and index of geo-accumulation (Igeo) of trace metals in sediment core SKL8-2 of Songkhla Lake.
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CONCLUSION

This is one of the first studies on the influences of anthropogenic
activities and sea–land interactions on the modern sedimentary
metal accumulation history of Songkhla Lake. We have provided
a comprehensive record of the geochronology, lithology, and
geochemistry of metal contamination in lake sediment core
SKL8-2. The 55-year record reveals a three-stage input history
of sedimentary trace metals: 1) From 1964 to 1982, the channel
connecting Songkhla Lake and the GoT was closed, and there was
a natural terrigenous input period with a relatively reducing
environment. The deposition rate was high during this period,
approximately 2.3 ± 0.6 cm/year, trace metal and TOC contents
were high with significant correlation, and the mean TOC/TN
ratio was as high as 21.7. The b* value and magnetic susceptibility
were markedly low. 2) Almost all of the recorded values changed
sharply in 1982. During 1982–2000, with the reopening of the
channel with the GoT and the intensive development of human

activities, the sources of trace metals were more complex than
before and mainly came from urban wastewater, industrial
effluent, and fishery discharge. 3) From 2000 to 2019, because
of the rapid urban development and poor sewage treatment,
contamination signals of Pb, Hg, As, Zn, and Ni emerged in the
first decade, and this contamination was then alleviated with
increasing environmental management efforts. Generally, based
on trace metal element analysis, the sediment of Songkhla Lake
was at a low contamination level, with the enrichment order Pb >
Hg > As > Zn > Ni > Cr > Cu. Herein, Pb, Hg, As, Zn, and Ni
showed moderate enrichment, while Cr and Cu exhibited no
enrichment. The obtained results will be useful for future
assessment of changes in the coastal environment under
anthropogenic influences. Although there are signs of
contamination mitigation from reduced emissions, trace metal
contamination in Songkhla Lake should be closely observed in the
long term, as intensified human activities and natural processes
enhance trace elements release into the environment.

FIGURE 8 | Comparison of trace metals concentrations in sediment core SKL8-2 of Songkhla Lake with ERL (effects range low) and ERM (effects range median)
guideline values. The green part below the ERL is where harmful effects on aquatic biota are rarely observed. The red area above the ERM indicates severe harmful
effects.
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