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The high temperature forecast of the sub-season is a severe challenge. Currently, the
residual structure has achieved good results in the field of computer vision attributed to the
excellent feature extraction ability. However, it has not been introduced in the domain of
sub-seasonal forecasting. Here, we develop multi-module daily deterministic and
probabilistic forecast models by the residual structure and finally establish a complete
set of sub-seasonal high temperature forecasting system in the eastern part of China. The
experimental results indicate that our method is effective and outperforms the European
hindcast results in all aspects: absolute error, anomaly correlation coefficient, and other
indicators are optimized by 8–50%, and the equitable threat score is improved by up to
400%. We conclude that the residual network has a sharper insight into the high
temperature in sub-seasonal high temperature forecasting compared to traditional
methods and convolutional networks, thus enabling more effective early warnings of
extreme high temperature weather.
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1 INTRODUCTION

Most of the existing high temperature forecasts are short term, with forecasts of a few hours to a few
days with no time to prepare more adequately for extreme weather. Therefore, the establishment of
forecasting models with longer extension periods meets the public’s need for longer lead times. Such
models will provide early warnings of extreme weather that may come, making it easier for people to
prepare in advance. The sub-season, a time scale between weather and seasons, soon entered the
limelight. As early as 2010, the World Weather Research Programme (WWRP) and the World
Climate Research Programme (WCRP) identified the need for in-depth research on the sub-seasonal to
seasonal (S2S) scale to improve the prediction of extreme weather events, such as droughts, floods, and
cyclones (Brunet et al., 2010). As the research continues, researchers have repeatedly argued the value of
sub-seasonal forecasting studies as a key component of completing seamless forecasts (Pegion et al., 2019;
Xiang et al., 2019; Phakula et al., 2020; Vijverberg et al., 2020; Manrique-Suñe´n et al., 2020; Merryfield
et al., 2020). However, this timescale is hard to forecast due to the fact that the lead time is sufficiently long
that the memory of the atmospheric initial conditions is lost and it is too short a time range for the
variability of the ocean to have a strong influence on the atmosphere. Researchers have tried to study it
through Kalman filtering and integrated models (Zhu, 2005; Gel, 2007; Durai and Bhradwaj, 2014).
Although some results have been achieved, the high maintenance and development costs of the models
and the large deviations in some areas, such as mountainous areas, have been difficult to solve.
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The advent of artificial intelligence now provides a very
different approach to alleviate these problems, with greater
flexibility in extracting relationships in the data and building
forecast models for target areas. In the field of deterministic
forecasting, with this technology, researchers have made good
progress in proposing several artificial intelligence models for
sub-seasonal studies, showing that the application of these
methods in the field of sub-seasonal forecasting is feasible
(Cohen et al., 2019; Hwang et al., 2019; He et al., 2020). In
2019, researchers corrected and analyzed the systematic errors of
sub-seasonal forecasts from the U.S. National Weather Center,
and the experiments showed that the accuracy of the corrected
forecasts was improved significantly. This provides a new idea for
sub-seasonal-scale forecasting: error correction of existing
forecasts (Guan et al., 2019). To implement this idea, we select
hindcast data from the ECMWF (Son et al., 2020), which reflects
sub-seasonal characteristics, and correct it for systematic errors
over a 30-day period. To build a complete set of forecasting
system from deterministic to probabilistic forecast, we focus on
probabilistic forecasting at sub-seasonal scales. In the sub-
seasonal domain, the integrated probabilistic model (Vigaud
et al., 2019) and the machine learning (Peng et al., 2020)
model achieve good results. After reflecting on the previous
studies, we establish the connection between it and the
probability distribution based on the error correction results in
deterministic forecasts, and finally, build probabilistic forecast
models for the next 30 days at the sub-seasonal scale. Unlike
traditional methods and machine learning approaches, we used
convolutional networks to consider interactions between grids,
drawing on residual structures that have been successful in
computer vision to complete the design of the model details.
Ultimately, we tested and analyzed them.

2 DATA, MODELS, AND OTHER DETAILS

2.1 Data Processing
To research the forecast of sub-seasonal high temperature, we use
two datasets at a resolution of 1.5°×1.5°. One is the hindcast data
of the maximum temperature at 2 m from ECMWF with four
versions (2015, 2016, 2017, and 2018) from 1995 to 2014 and the
other is 2-m temperature daily observation data by natural
neighborhood interpolation from more than 2,400 stations in
China. Our study area is part of China with a spatial range of
19.5°N–45°N and 105°E–132°E.

The European hindcast data uses the Universal Time and a
six-hourly forecast cycle. To match the data to be input to the
network with the observations, we convert the European hindcast
data to Beijing time and reselect the maximum of four
consecutive sets of forecasts as the hindcast high temperature
data for the day of the observation. As is well-known, the
European hindcast data contains eleven ensemble members
which are represented below by “channel”: one control
forecast and ten perturbed forecasts. Following the temporal
treatment described earlier, for each forecast, it will
correspond to eleven unordered high temperature data. We
artificially specify their arrangement rules: the eleven

unordered data are arranged in ascending order, and the same
forecast days are selected from the different starting time to
generate 30 different forecast day datasets, respectively, named
eleven channel datasets. In Table 1, 0 to 10 is the sequence
numbers after channel sorting. We take equal spacing to select
channels to filter the dataset with six different channel numbers of
1, 2, 3, 4, 5, and 11. A checkmark indicates that the dataset
contains the channel at that sequence. To verify the excellence of
the eleven channel data, we performed regular channel selection
according to Table 1 and generate five datasets with the different
number of channels to compare the effect of various datasets. In
addition, we use the ensemble mean of eleven channel data as a
forecast baseline for European hindcast data.

In Table 2, the testing results for different datasets are listed
and five forecast days (2nd, 9th, 16th, 23rd, and 30th) are chosen
as test subjects to compare the errors of the six datasets in the case
of three residual modules (the experiments are like Section 3.1).
LF and EI denote loss function and evaluation index, respectively.
It can be noticed that the error decreases with the number of
channels until it reaches a minimum at the eleven-channel dataset
bolded in the table. This indicates that unnecessary filtering
channels can lose some hidden feature information and, thus,
reduce the prediction performance of the model, so the eleven-
channel dataset is the best choice for the experiments.

2.2 Framework and Model
As shown in Figure 1A, the proposed overall framework consists
of two modules: a deterministic forecast module (red box) and a
probabilistic forecast module (blue box). In the deterministic
forecast module, the data of eleven channels as the input feed the
trained network with Parameter 1 to obtain the revised forecast
data. It is known that the high temperature probability satisfies
the Gaussian distribution. To strengthen the connection between
the deterministic module and the probabilistic forecast module,
the output of the deterministic prediction module is taken as the
input of the probabilistic forecast module and becomes the
expectation of the probability distribution. The same network
with Parameter 2 has been trained to obtain the corresponding
standard deviation of the distribution. Finally, the expectation
and the standard deviation are substituted into the Gaussian
probability distribution formula to get the probability needed.
The network structure of the deterministic forecast and the
probabilistic forecast is the same on the same forecast day.
Only the numbers of residual modules are the same, but the
parameters are different, so they are denoted as Parameter 1 and
Parameter 2, respectively. Our experiment has a total of 30
forecast days. We repeat the experimental process in the
overall framework (Figure 1A) for each forecast day and select
the optimal number of residual modules. Thirty groups of model
structures and 60 groups of model parameters have been obtained
at last.

The network structure is shown in Figure 1B. The size of the
input data is 11*18*19(channels*width*height) in the
deterministic forecast and 1*18*19 in the probabilistic forecast,
which will pass through the single convolution module of the first
layer and enter the residual module of the n-layer. Finally, the
data will be output through the single convolution module in the
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size of 1*18*19. Our data will always keep the dimension of
32*18*19, without any other complex transformations during the
whole process.

We further introduce the model in this article. The model
consists of a convolution module and a residual module. The first
layer of convolution transforms the input data into 32 channels of
data to facilitate the subsequent calculation of the residual
structure. The residual part consists of several residual modules,
each consisting of a convolution module and a jump connection
with constant mapping (He et al., 2016a; He et al., 2016b). Suppose
the input of the ith layer is x, with the convolutional structure
(Conv) and the jump connection layer, we obtain Conv(x) and x.
Then, they are added together and the output y of the ith residual
module is obtained after the activation function (AF). For details,
see Equation 1. The use of multiple layers of residuals can always
retain the data features of the previous layer, while continuously
digging deeper into the data relationships so that the network can
memorize previous information in the process of extracting
information, and has better training performance compared to
the convolutional network, as detailed in Section 4.2.

y � AF Conv x( ) + x( ). (1)

2.3 Index and Experimental Setting
Our experiment is divided into the deterministic forecast and
probabilistic forecast, corresponding to different evaluation
indexes, respectively. We use the mean absolute error (MAE)
(Ji et al., 2019), root mean square error (RMSE) (Gneiting et al.,
2005), equitable threat score (ETS) (Hamill and Juras, 2006), and
anomaly correlation coefficient (ACC) (Ji et al., 2019) as the
evaluation index of the deterministic forecast and use brier score
(BS) (Weigel et al., 2008), brier skill scores (BSS) (Hamill and

Juras, 2006), and continuous ranked probability score (CRPS)
(Rasp and Lerch, 2018) as the evaluation index of the probabilistic
forecast. They are, respectively, evaluated from the temperature
value, fall area, the correlation degree, the probabilistic value, and
forecast skill of the probabilistic forecast.

We use a server containing four blocks of Tesla V100 to
experiment, and the language platform is Python3.8.5 and Torch
1.6.0. In the deterministic forecast, MAE is the loss function, and
in probabilistic forecasting, CRPS is the loss function (Möller and
Groß, 2016; Díaz et al., 2020). The optimizer for both experiments
is Adam (Kingma and Ba, 2014). We set the learning rate as
0.0001 and perform 500 epochs of study. To achieve stable and
effective learning results, we set the super parameters through
many experiments and experiences.

In the next section, we compare the multilayer perceptron
approach (MLP) and our deep learning approach (Resnet) with
the forecast baseline (ECMWF).

3 EXPERIMENTS

3.1 Deterministic Forecast
In deterministic forecasts, we use models consisting of 1–40 residual
network modules to conduct experiments and obtain the respective
evaluation results. The next step is to select the optimal model, and it
is not easy to guarantee that all the indexes in each model are
optimal. To address this situation, we further propose an equal
weight voting screening mechanism with the following rules for the
same loss function for the same forecast date:

1) The model with four or three dominant indexes is the
optimal model.

2) The model with two dominant indexes in the first 15 days is
the dominant model, and the model with two dominant
indexes other than the ETS index in the last 15 days is the
optimal model.

3) The two models each have two dominant indexes, and the
model with the loss function corresponding to the dominant
index is the optimal model.

4) Each of the four models occupies a dominant indicator, and
the model in which the indicator corresponding to the loss
function is located is the optimal model.

Finally, we select the 30 best models under each of the two loss
functions, as shown in Table 3.

TABLE 1 | Multi-dataset channel selection.

Members of the sequence

0 1 2 3 4 5 6 7 8 9 10

Number of channels 11 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
5 ✓ ✓ ✓ ✓ ✓
4 ✓ ✓ ✓ ✓
3 ✓ ✓ ✓
2 ✓ ✓
1 ✓

TABLE 2 | Multi-channel dataset filtering results.

LF (EI) Dataset 2 9 16 23 30

MAE (MAE) ECMWF 2.5093 3.0527 3.3887 3.4532 3.4512
1 1.4479 2.4389 2.8051 2.7846 2.8776
2 1.3945 2.3846 2.743 2.7696 2.8431
3 1.377 2.3534 2.7125 2.7478 2.8231
4 1.3577 2.3272 2.6992 2.704 2.7827
5 1.3452 2.3082 2.6997 2.7083 2.7879
11 1.3382 2.2893 2.6631 2.7025 2.7656

The values in bold mean the best results among these options for different advance days.
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In Figure 2, it can be seen that the MLP only outperforms
the forecast baseline in the early stage, while our deep learning
approach can outperform the forecast baseline across the
board. Overall, from the perspective of the whole test set,
the deep learning method shows a more comprehensive
performance in terms of forecast error, forecast fallout, and
correlation coefficient and effectively revises the European
hindcast data.

For more visual analysis of the revision effect, the spatial
distribution of the mean absolute errors for different forecast
durations (1st, 8th, 15th, 22nd, and 29th) is given in Figure 3.
In the continental region, the lighter color, such as white and
yellow, indicates the smaller difference with the observed value
and better effect. Conversely, the darker color, such as orange
and red, means that the difference is greater, and the effect is
worse. For the baseline, the light-colored areas (errors of
0°C–2°C) are only concentrated in the North China Plain,
the middle and lower reaches of the Yangtze River Plain,
and the Northeast China Plain on the first day, while in the
rest of the regions and forecast days, it is basically covered by
darker colors (errors of 2°C–6°C), and even the areas with
larger errors, such as near Wushan, show deep red color

(errors of more than 6°C). In general, some plain areas have
good forecasts, while high mountains, hills, and inland areas
have high forecast errors due to their unique geographical
factors, such as altitude or unpredictable atmospheric
circulation, which makes it difficult for the traditional
numerical model to capture the effects of various factors
flexibly. In the second column, the revised results of the
MLP have improved in the Pearl River and Yangtze River
basins, and the overall color is lighter than that of the ECMWF,
but in other regions, such as the northern part of the North
China Plain and the northeastern corner of Inner Mongolia,
negative optimization is produced. It may be since the method
only explores the variation pattern of independent grids
themselves and lacks attention to the surrounding area. The
last column is the lightest in color from the overall view, and
the errors do not exceed 5°C in all regions and forecast days
which show more regions with errors of 0°C–2°C compared to
the results in the first two columns. In difficult spots of
baseline, such as the Wushan region and the northern part
of the MLP negative optimization, our method can perform
effective positive optimization. This shows that the deep
learning method based on the residual network provides a

FIGURE 1 | (A)Overall framework. The red box is the deterministic forecast module, and the blue box is the probabilistic forecast module. Parameter 1 represents
the weights and biases of the trained network in the deterministic forecast, and so does Parameter 2 in the probabilistic forecast. NET is shown in (B). (B) Network
structure. The network consists of convolution modules and residual modules.
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more significant effect on the error correction of European
hindcast data.

3.2 Probabilistic Forecast
Probabilistic forecasting is a probabilistic estimate of whether the
temperature will be within a certain temperature range based on a
deterministic forecast. The 95th percentile of observations covered
in this article is approximately 35°C, so we use 35°C as the high
temperature threshold for probabilistic forecasting Wulff and
Domeisen (2019). The data generated from the training and test
sets of the deterministic forecasts after the network revise are used
as the training and test sets of the revised probabilistic forecasts,
respectively. The probabilistic forecasts of ECMWF are derived
through the ensemble members, so there is no CRPS index.

According to BS (A), BSS (B), and CRPS(C) in Figure 4, MLP
is superior to ECMWF, which shows that MLP does have some

effect in probabilistic forecasting. However, because MLP ignores
the relationship between lattice points, there is a large gap
between MLP and our deep learning method. In summary,
our deep learning method has the optimal effect in
probabilistic forecasting.

In Figure 5, the probabilistic forecast distribution under five
forecast days is shown. It can be seen that ECMWF and MLP can
forecast part of the high temperature region in the first forecast
day. Resnet, however, is better in the first forecast day: the fallout
area and the probability values are larger. The poor results of
ECMWF and MLP in the other four forecast days indicate that
the probabilistic forecasts of both methods are not meaningful for
longer extension periods. In contrast, Resnet successfully
forecasts part of the high temperature region for the 8th and
15th forecast days with larger values, which indicates that our
method has meaningful forecasts for the extended period.

TABLE 3 | Number of optimal modules of the model.

Forecast day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
MAE loss 4 8 8 7 8 8 5 8 8 8 8 8 6 7 8

Forecast day 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
MAE loss 8 6 9 4 5 8 7 9 9 8 8 9 8 8 7

FIGURE 2 | Evaluation curves of deterministic forecasts. (A–D) are MAE, RMSE, ETS, and ACC for deterministic forecast assessment, respectively. Different
methods are indicated by different colors.
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FIGURE 3 | Spatial error distribution map for deterministic forecasts. The five rows represent the five forecast days (1st, 8th, 15th, 22nd, and 29th). The three
columns are ECMWF (A, D, G, J, and M), MLP (B, E, H, K, and N), Resnet (C, F, I, L, and O).
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4 DISCUSSION

4.1 Reliability Study of Full Version Data
In the experiments, we directly select the training set
consisting of four versions for training. From the original
re-forecast data, the data of each version only have the
overlapping date, and the forecast values are different,
whose forecast accuracy will improve as the versions are
updated and iterated. So, this then raises the question of
whether different versions of data can be trained together.
To answer it, we conduct a new experiment comparing four
learning methods: same-version learning, cross-version
learning, transfer learning, and full-version learning. The
same version learning is learning on the training set of the
2017 version and testing on the testing set of the 2017 version.
Cross version learning is learning on the training set of the
2016 version and then testing on the testing set of the 2017
version. Transfer learning is learning on the training set of the
2016 version, then learning in small batches on the training set
of the 2017 version, and lastly testing on the testing set of the
2017 version.

As shown in Figure 6, all four methods obtain good results,
among which the full version of the method shows optimal results
in all cases except for slightly worse performance in the late stages
of the ETS index. The performance of all methods in order from
disadvantage to advantage is cross-version learning, transfer
learning, same version learning, and full version learning.

Cross-version learning learns in different versions and
achieves good results in the target version testing set, which
indicates that there is not much difference between versions or
even some correlations. Transfer learning is based on cross-
version learning in small batches and can obtain slightly better
experimental results than cross-versions, which indicates that
learning from different versions to learning in small batches on
the target version learns as many features as possible while
reasonably grasping the feature that there is a correlation
between versions and improving the testing results on the
target version. The same version learning is only the learning
of the target version, which directly finds the data features of the
target version, extracting the own features of the target version
better than the cross-version learning, and learns the target
version more directly than the migration learning. The full-
version learning approach mixing all versions of data takes
advantage of the existence of certain differences and
correlations between different versions to reasonably expand
the dataset which leads that the generalization ability and
feature learning ability of the model are improved again to
finally achieve the best optimal testing results. Thus, different
versions of the data can be trained together, and better results can
be obtained.

4.2 Ablation Experiment of Residual Module
To verify whether the presence of the residual structure is
necessary, we remove the skip branch of the residual module

FIGURE 4 | Evaluation curves of probabilistic forecasts. (A–C) are BS, BSS, and CRPS for probabilistic forecast assessment, respectively. Different methods are
indicated by different colors.
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from the previously screened optimal models keeping only the
main path convolutional structure.

Figure 7 shows the comparison of the curves of the
convolutional model and the residual model under deterministic
and probabilistic forecasts, respectively. The effect of the residual

network is significantly better than that of the convolutional
network, which indicates that the jumping branches of the
network play a significant role in the improvement of the overall
network performance, and the residual network has better
forecasting performance compared with the convolutional network.

FIGURE 5 | Spatial distribution of probabilistic forecasts. The five rows represent the five forecast days (1st, 8th, 15th, 22nd, and 29th). The four columns are
Observation (A, E, I, M, and Q), ECMWF (B, F, J, N, and R), MLP (C, G, K, O, and S), and Resnet (D, H, L, P, and T).
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FIGURE 6 | Evaluation curves for diverse learning methods. (A–D) are MAE, RMSE, ETS, and ACC, respectively.

FIGURE 7 | Evaluation curves of CNN and Resnet. (A–D) are MAE, RMSE, ETS, and ACC for deterministic forecast assessment, respectively, (E–G) are BS, BSS,
and CRPS for probabilistic forecast assessment. Different methods are indicated by different colors.
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The indexes are only a presentation of the overall effect and
cannot be analyzed from the model itself. Therefore, it is
discussed from the view of training point and model
parameters. The first forecast day is taken for example: the
residual model is four residual blocks, and the corresponding
convolution model is four convolution blocks.

The first is the training perspective. Figure 8A shows the loss
curve of the first forecast day. The red curve has a lower starting

error value while also decreasing and converging faster which is
always smaller than the error value of the blue curve inscribed at
the same time during the training. This indicates that the
residual model trains better and is more suitable for the
current research work than the convolutional model. The
second is the model parameter angle. Choosing any forecast
result in the first forecast day, the observation for that day is
shown in Figure 8B.

FIGURE 8 | (A) Loss plot of CNN and Resnet on the first forecast day. Different methods are indicated by different colors. (B) Observation for the
corresponding date.

FIGURE 9 | Heat map of network parameters and spatial absolute error distribution. It shows changes of average parameters (A–H) of the four modules and the
absolute errors (I, J) in the deterministic forecasts. (A–J) are related to the CNN (Resnet).
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In the deterministic forecasting, as shown in Figure 9, the
parameters of the convolutional model after training are always
kept below 0.5, and the variation between the parameters of each
layer and different regions is small, which indicates that the
model is always trained in a shallow layer only to explore limited
superficial connections, and the parameters are adjusted in a
relatively stable training way to obtain limited revisions. Such a
training approach tends to ignore the deeper data relationships
and cannot escape from the local optimum of the model. The
parameters of the trained residual model increase from 0 to 0.9
layer by layer, and there is a significant difference between the
southeast coastal region and the inland region. This great
variation in parameters pushes the model to break the local
shackles of stable training and keep searching for a larger
range of optimal parameters in each layer of training to obtain
a better revision effect. In the error distribution plot on the right,
we can see that the red areas with larger errors in the residual
model are lighter, meaning that the residual model has a better
revised effect on the forecast errors.

In the probabilistic forecasting, as shown in Figure 10, the
parameters of the convolutional model drop from 10 to less
than 1.5 after training, and the color variety of the parameter
visualization decreases layer by layer, which demonstrates that
the model has captured a considerable amount of feature
information from the beginning, but the surface feature
extraction is always performed around the output of the
previous layer in the subsequent layers of the module. At
this point, the extraction capacity of the model is close to
saturation, and the model performance has reached the upper
limit. The pattern of parameter variation after training of the
residual model is just the opposite of the convolutional model,
where the parameter visualization progresses from shallow to

deep, with each layer revealing new features at a deeper level,
resulting in more significant parameter variation. The most
intuitive manifestation of this change is in the probabilistic
forecasts in the last column, where the residual model forecasts
a larger range of high probability high temperature regions
concerning the observed values (Figure 8B).

The superiority of the residual model over the convolutional
model is reflected by the almost complete lead of the seven
indexes in Figure 7. Overall, the residual module is more
advantageous than the convolutional module, and the presence
of the residual structure is necessary for this study.

4.3 Analysis of the Effectiveness of
Sub-seasonal Forecasting
To analyze the sub-seasonal forecast effects, especially the 35°C
forecast effect, this section selects July 29, 2010, as the sample
with the most remarkable high temperature among the
observations in the testing set (the largest number of 35°C
grids on this day, accounting for nearly 50% of the total
number of grids in the study area). Then, four sets of data
are used in the testing set with an extended period of 30 days and
initial dates of July 7, 2010; July 14, 2010; July 21, 2010; and July
28, 2010, in which the sample date corresponds to the 23rd
forecast day, the 16th forecast day, the 9th forecast day, and the
2nd forecast day, respectively.

As shown in Figure 11, Resnet is closer to the observed values
in the deterministic forecast, indicating that the correction of
ECMWF by our method is effective. Compared with the 2nd and
9th forecast days, the effect of the left grid point forecast is
significantly lower with longer lead time, which may be due to the
spatial distribution of the grid points.

FIGURE 10 | Heat map of network parameters and probabilistic distribution. It shows changes of average parameters (A–H) of the four modules and the
probabilistic forecasts (I, J) in the probabilistic forecasts. (A–J) are related to the CNN (Resnet).
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As shown in Figure 12, in the probabilistic forecasts, the
probability values of some grid points of ECMWF in the
second and ninth forecast days are over 50%, indicating
that it has some probabilistic forecast value. And in these
two forecast days, Resnet can forecast more high temperature
areas with higher probability values, showing better
probabilistic forecast results than ECMWF. In the 16th and
23rd forecast days, it is difficult for ECMWF to forecast high
temperature fallout areas effectively. In contrast, Resnet still
forecasts some of the high-temperature fallout areas, which
means that our method has some forecasting effectiveness
under long extension periods. In addition, we found that

Resnet consistently makes incorrect probabilistic forecasts
for the rightmost grids, possibly due to the model’s
insufficient learning of the probabilistic forecast features for
this part.

In summary, Resnet has superior forecasting capability
compared to ECMWF, which is effective for improving the
forecast value of the extended period in probabilistic forecasts
while reducing the deterministic forecast error. For some of the
grids with poor results, we speculate that there are different sub-
seasonal feature spaces in the whole study area, so we will model
different areas separately in the future in a more targeted
manner.

FIGURE 11 | Curves of the deterministic forecast by grids on 29 July 2010 under different initial dates. (A–D) are the four different initial dates: 7 July 2010, 14 July
2010, 21 July 2010, and 28 July 2010. The horizontal coordinates are the 174 grids which form a one-dimensional sequence in the order of west to east and north to
south in the study area.
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5 CONCLUSION

Efficient sub-seasonal forecasting models will provide early
warnings of extreme hazards, such as droughts, for the
purpose of reducing losses. In this article, the residual
structure is first applied with the S2S dataset to generate sub-
seasonal forecast. From the selection of dataset to the model, the
optimal Resnet model was obtained after a lot of experiments, and
finally, a complete sub-seasonal forecasting system was
established from deterministic forecasting to probabilistic

forecasting. Compared with the forecast benchmark of the
ECMWF, MLP, and CNN, the Resnet model achieved
excellent forecasting results owing to the fact that it can
consider the relationship between grids and has better feature
extraction ability. In deterministic forecasting, it is effective in
most correcting areas and overcoming the problem of large errors
in the Wushan area. In probabilistic forecasting, the probability
distribution is predicted by establishing the association between
deterministic and probabilistic forecasts, where the forecast
positive skill was successfully extended to about 2 weeks and

FIGURE 12 | Curves of the probabilistic forecast by grids on 29 July 2010 under different initial dates. (A–D) are the four different initial dates: 7 July 2010, 14 July
2010, 21 July 2010, and 28 July 2010. The horizontal coordinates are the 174 grids which form a one-dimensional sequence in the order of west to east and north to
south in the study area.
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made research more meaningful for extended period forecasting.
Our experimental approach can provide a reference for future
applications of deep learning in the field of sub-seasonal high
temperature forecasting. In the future, more effective methods
will be found, such as combining circulation data and trying more
advanced models, to improve sub-seasonal high temperature
forecasting.
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