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The climate model is an important tool for simulating and predicting the mean state and
variability of the climate system. The First Institute of Oceanography-Climate Prediction
System (FIO-CPS), built on a climate model with the oceanic observation initialization, has
been updated from version 1.0 to 2.0, with a finer resolution and more reasonable physical
processes. Previous assessments show that the mean state was well simulated in version
2.0, and its influence on the prediction was further analyzed in this study. Hindcast
experiments were conducted using FIO-CPS v1.0 and v2.0, and their prediction abilities
based on 27 years (1993–2019) experiment data were analyzed. The results show that the
sea surface temperature (SST) biases over the eastern Pacific and the Southern Ocean are
improved in the initial condition of FIO-CPS v2.0. Moreover, this new system has a higher
skill for predicting El Niño-Southern Oscillation (ENSO). The prediction skill represented by
the anomaly correlation coefficient (ACC) of the Niño3.4 index is greater than 0.78 at the 6-
month lead time, which increases by 11.09% compared to the value of 0.70 in FIO-CPS
v1.0. The root mean square error (RMSE) decreases by 0.20, which accounts for 28.59%
of the FIO-CPS v1.0 result. Furthermore, the improvement of the prediction skill changes
seasonally, featured by the ACC significantly increasing in the boreal winter and early
spring. The improvement in the annual mean SST prediction over the Equatorial Pacific
mainly contributes to the enhanced ENSO prediction skill in FIO-CPS v2.0. These results
indicate that a state-of-the-art climate model with a well-simulated mean state is critical in
improving the prediction skill on the seasonal time scale.

Keywords: short-term climate prediction system, seasonal prediction, ENSO, climate model, sea surface
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INTRODUCTION

The climate model, also known as the coupled general circulation model, is an important tool for
simulating the processes and interactions among the atmosphere, ocean, land, and other components
(Dai et al., 2014; Zhou et al., 2020). Furthermore, it is one of the most important methods of future
climate prediction and has been widely used in operational prediction from seasonal to decadal time
scales (Ren et al., 2019; Barnston et al., 2019).

Accurate seasonal predictions based on state-of-the-art climate models can prevent and mitigate
climate-related disasters in the coming season and have aroused wide concern by international
climate researchers and society (Jin et al., 2008; Barnston et al., 2012; Luo et al., 2016). Over the past

Edited by:
Ruihuang Xie,

Ocean University of China, China

Reviewed by:
Fei Zheng,

Institute of Atmospheric Physics,
Chinese Academy of Sciences (CAS),

China
Libin Ma,

Chinese Academy of Meteorological
Sciences, China

*Correspondence:
Zhenya Song

songroy@fio.org.cn

Specialty section:
This article was submitted to

Atmospheric Science,
a section of the journal

Frontiers in Earth Science

Received: 16 August 2021
Accepted: 29 September 2021

Published: 25 October 2021

Citation:
Song Y, Shu Q, Bao Y, Yang X and

Song Z (2021) The Short-Term Climate
Prediction System FIO-CPS v2.0 and

its Prediction Skill in ENSO.
Front. Earth Sci. 9:759339.

doi: 10.3389/feart.2021.759339

Frontiers in Earth Science | www.frontiersin.org October 2021 | Volume 9 | Article 7593391

ORIGINAL RESEARCH
published: 25 October 2021

doi: 10.3389/feart.2021.759339

http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2021.759339&domain=pdf&date_stamp=2021-10-25
https://www.frontiersin.org/articles/10.3389/feart.2021.759339/full
https://www.frontiersin.org/articles/10.3389/feart.2021.759339/full
https://www.frontiersin.org/articles/10.3389/feart.2021.759339/full
http://creativecommons.org/licenses/by/4.0/
mailto:songroy@fio.org.cn
https://doi.org/10.3389/feart.2021.759339
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2021.759339


thirty years, seasonal prediction skills have improved due to the
availability of more reasonable initial conditions, increased
ensembles and the rapid development of climate models (Wyrtki,
1975; Cane et al., 1986; Drosdowsky, 2006, Zheng et al., 2006; Zheng
et al., 2007). Meanwhile, the changes of climate mean state and
variability raise new challenges to the seasonal prediction (Zheng and
Yu, 2017). Based on the increasing amount of available observations,
sophisticated data assimilation techniques can incorporate more
observations into the climate models and provide optimal initial
conditions for seasonal predictions (Zheng and Zhu, 2010; Zhao
et al., 2019; Zhang et al., 2020). Furthermore, the development of
climate models on account of the deeper understanding of air-sea
interactions also contributes to improving the prediction skill (Chen
et al., 2004; Hu et al., 2013; Zheng and Zhu, 2016). Previous studies
show that the mean state in coupled model has significant influence
on seasonal prediction capability. However, the mean state, used for
calculating the anomalies, still has systematic errors in coupled
prediction system, hence the simulated bias of climate variability is
identified by the differences between predicted physical fields and the
unreal mean state. Zheng and Yu (2017) show that the errors
characterized by a warm bias in the eastern Pacific and a cold bias
in the central part of the basin indicate a stronger spring prediction
barrier for the central Pacific El Niño. Moreover, The climatological
cold bias of SST in the upper tropical Pacific Ocean influences the
predictive capability of the climate model in predicting the amplitude
of El Niño-Southern Oscillation (ENSO) (Kim et al., 2017). Zhu et al.
(2017) demonstrated that improving the mean state simulation by
amending the physical parameterization scheme inmodel is helpful to
enhance the seasonal prediction skill. Therefore, improving the mean
state in the climate model can ameliorate the simulation of variability,
it might further improve prediction capability.

The First Institute of Oceanography-Climate Prediction System
(FIO-CPS) is a seasonal prediction system, based on an
atmosphere-wave-ocean-sea ice-land surface coupled climate
model and an oceanic assimilation module. In version 1.0, the
role of the ocean surface waves in the climate system was
considered by incorporating the non-breaking surface wave-
induced mixing effect (Qiao et al., 2004; Qiao et al., 2010). We
had assessed the seasonal prediction of the SST based on the

hindcast results of FIO-CPS v1.0 in the North Pacific. The wave-
induced vertical mixing plays a key role in the seasonal prediction
of the SST. The results show that the prediction error is
significantly reduced at high latitudes in the North Pacific when
the effects of the surface waves were considered (Zhao et al., 2019;
Song et al., 2020). In addition, FIO-CPS v1.0 was also employed to
predict the El Niño evolution in 2015/16. The predicted strength
more than 2.0°C is comparable to the observations (Song et al.,
2015). The new version of FIO-CPS (v2.0) was developed based on
the First Institute of Oceanography-Earth System Model version
2.0 (FIO-ESM v2.0), which participates in phase 6 of the Coupled
Model Intercomparison Project (CMIP6). Each new version
component has been updated by including more reasonable
physical processes and improved horizontal and vertical
resolutions. In addition, more physical processes related to air-
sea interactions were considered in FIO-ESM v2.0 (Figure 1). FIO-
ESM v2.0 can capture the major features of the observed
climatology in the historical period. In particular, the results
based on historical experiments show that the new model has
fairly good skill in simulating the climatological state of the
atmosphere and ocean (Bao et al., 2020). The influence of the
improved mean state on the prediction ability requires further
analysis.

In this study, the prediction skill of FIO-CPS v2.0 in predicting
the ENSOwas evaluated and compared with that of FIO-CPS v1.0
based on two hindcast experiments. The paper is organized as
follows. The details of the climate model, initialization method,
experiments, and datasets are described in Model and Datasets.
Results presents the initiation conditions and prediction results
for FIO-CPS v1.0 and v2.0. Finally, the conclusions and
discussion are presented in Conclusion.

MODEL AND DATASETS

Climate Prediction System and Experiments
The seasonal prediction systems FIO-CPS, developed by the First
Institute of Oceanography, Ministry of Natural Resources of
China, was built on the FIO-ESM and an oceanic assimilation

FIGURE 1 | Flowcharts for FIO-CPS v1.0 and FIO-CPS v2.0.
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module. FIO-ESM includes the physical model and a
biogeochemical module. The FIO-CPS was developed based on
the physical model of FIO-ESM, while the biogeochemical
processes were not considered. The FIO-CPS v1.0 was based
on the First Institute of Oceanography-Earth System Model
version 1.0 (FIO-ESM v1.0), which had participated in phase 5
of the Coupled Model Intercomparison Project (CMIP5) and
conducted the required experiments. The numerical simulations
show that the basic patterns and variability of the ocean and
atmosphere, including the ENSO, are well simulated during the
historical period (Qiao et al., 2013). An ocean surface wave model
named Marine Science and Numerical Modeling (MASNUM)
was incorporated into the system. So FIO-CPS v1.0 consists of
five component models: the atmospheric general circulation
model, the land surface model, the oceanic general circulation
model, the sea ice model, and the ocean surface wave model.

Now the FIO-CPS has been updated from version 1.0 to 2.0,
accompanied by higher horizontal-vertical resolution and
improved physical processes. The atmospheric model
component was updated from the Community Atmosphere
Model Version 3.0 (CAM 3.0) to CAM 5.0. In the
atmospheric component, the Eulerian dynamical core in
CAM3 is replaced by a finite-volume dynamical core in CAM
5.0. The resolution was also improved. Specifically, the horizontal
resolution in CAM 3.0 is T42 (about 2.875° in latitude and
longitude), with 26 vertical layers. In CAM 5.0, the horizontal
resolution is f09 (1.25° in longitude and 0.9° in latitude), with 30
vertical layers. In addition, the Parallel Ocean Program 2 (POP2),
an oceanic general circulation model, also has a refined
resolution, with the vertical layers increased from 40 to 61.
The land surface model was updated from Community Land

Model version 3.5 (CLM3.5) to CLM4.0, and the sea ice model
component is the Los Alamos sea ice model version 4 (CICE4)
with the same horizontal resolution as POP2. All the components
are connected by the coupler. The coupler receives data from each
component to calculate the flux, then returns the flux and related
physical state to respective components. For example, in FIO-CPS
v1.0, the coupler receives the hourly atmospheric data and daily
oceanic data, then calculates and returns the flux to each
component. More details can be found in Bao et al. (2020).

In addition to the effect of the wave-induced vertical mixing,
three other distinctive physical processes related to air-sea
interactions, including the effect of the Stokes drift, the sea
spray, and the SST diurnal cycle, were included in FIO-ESM
v2.0 (Bao et al., 2020). The horizontal residual velocity caused by
the Stokes drift motion can influence relative surface speed when
calculating heat and momentum fluxes. Sea spray also has
significant effects on the air-sea heat transport when water
droplets are emitted into the air by broken ocean surface
waves. In addition, the difference between the day and night
temperatures at the ocean surface, represented by the SST diurnal
cycle parameterization, was considered to modulate the heat and
gas fluxes. All these physical processes play important roles in the
heat and mass transport at the air-sea interface.

FIGURE 2 | Climatological SST differences (units: °C) between the initial
conditions and COBE SST: (A) FIO-CPS v1.0 and (B) FIO-CPS v2.0. The
CRMSD is listed in the top right corners.

FIGURE 3 | The SSTA ACC between the COBE SST and the initial
conditions. (A) FIO-CPS v1.0; (B) FIO-CPS v2.0; and (C) FIO-CPS v2.0–FIO-
CPS v1.0.
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The initial oceanic condition is also crucial in the seasonal
prediction. FIO-CPS v1.0 uses the ensemble adjustment Kalman
filter (EAKF) method to assimilate the daily SST and sea level
anomaly for the initialization (Chen et al., 2015). The key
variables in the upper ocean, such as the ocean temperature,
salinity, and velocity, are harmonious during the assimilation and
prediction. The assimilation experiment was conducted from
1992 to 2019, and the EAKF data assimilation included ten
ensembles under the three-dimensional ocean temperature
perturbation method with a magnitude of 10–3°C (Song et al.,
2020). Then, the seasonal hindcast experiment for 1993–2019 was
started on the first day of each month. In FIO-CPS v2.0, the
assimilation experiment was started from 1948 to acquire more
stable results. With one ensemble simulation, the nudging
approach was utilized to consider the ocean satellite
observations in the initial conditions. The upper ocean
temperature in the mixed layer was assimilated to the
observation. The assimilation window is 30 days. Here, a
threshold method with the temperature criterion (the
temperature is less than 1°C relative to SST) was chosen to
determine the mixed layer depth (MLD). Meanwhile, a factor
representing the nudging degree is multiplied, changing linearly
from 1 at sea surface to 0 at the bottom of the mixed layer. In the
polar region, there is no assimilation in the ocean where covered
by sea ice. Ten ensembles were produced in the hindcasts using
the three-dimensional ocean temperature perturbation method
mentioned above. In FIO-CPS v1.0, each hindcast runs for
6 month, and the prediction time extends to 13 month in FIO-
CPS v2.0. The information of the prediction system and
experiments are shown in Figure 1. The experimental results
for the common years from 1993 to 2019 with 6 months hindcast
results were analyzed in this study.

Datasets and Method
In FIO-CPS v1.0, the daily Optimum Interpolation Sea Surface
Temperature (OISST v2) based on the Advanced Very High
Resolution Radiometer (AVHRR) satellite data from the

National Oceanic and Atmospheric Administration (NOAA)
National Climate Data Center (NCDC), and sea level anomaly
from the Archiving, Validation, and Interpretation of Satellite Data
(AVISO) were assimilated using the EAKF assimilation method
(Ducet et al., 2000; Reynolds et al., 2007). The horizontal resolution
of both datasets is 0.25° in a uniform grid. In FIO-CPS v2.0, the
daily Sea Surface Analysis for Climate Monitoring and Prediction
(COBE) with a resolution of 1° × 1° were incorporated using the
nudging method from 1948 to 1981 (Hirahara et al., 2014), and
then, the 1/4° daily SST from improved estimationOISST v2.1 were
nudged since 1982 (Banzon et al., 2020). The initial condition was
compared with COBE SST from 1993 to 2019, and the predicted
result was compared with OISST v2.1. To evaluate the subsurface
ocean temperature, the National Centers for Environmental
Prediction (NCEP) Global Ocean Assimilation System
(GODAS) datasets was analyzed (Behringer et al., 1998). All the
observations and simulations were linearly interpolated to a 1° grid
before the validation. The monthly anomalies for each experiment
and the observations were defined by concerning their own
climatology for the same period. To measure the relationship
between the predicted and observed anomalies, several statistical
indicators, including the anomaly correlation coefficient (ACC),
the root mean square error (RMSE), the centered root mean square
difference (CRMSD, calculated as the RMSE of the predication and
observation after subtracting their own mean value), and the
absolute average errors (AAE, calculated as the absolute mean
value of differences between prediction and observation time
series), were used to evaluate the performances of those
prediction systems.

RESULTS

Initial State
The monthly mean initial results based on FIO-CPS v1.0 and
FIO-CPS v2.0 were analyzed for 1993–2019 by comparing the
differences in the annual mean SST of the simulation and OISST

FIGURE 4 | (A) ACC and (B) RMSE of the Niño 3.4 index between the OISST v2.1 and the simulation for 1993–2019. The red and blue lines represent the
assimilated and predicted results of FIO-CPS v1.0 and FIO-CPS v2.0 for 1-month to 6-month lead times, and the shaded area in (A) indicates the 95% confidence
interval.
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v2.1. As shown in Figure 2, the bias of FIO-CPS v2.0 is generally
smaller than that of FIO-CPS v1.0. There are negative biases in
the equatorial Pacific, the western boundary current region in the
North Pacific and Atlantic, and several areas in the Southern
Ocean, indicating that the simulated SST in these areas is lower
than the observations. In addition, the SST differences for FIO-
CPS v1.0 exhibit a large warm bias in the eastern boundary of the
Pacific and the Southern Ocean. In FIO-CPS v2.0, these biases are
obviously improved. Both the spatial correlation coefficients in
FIO-CPS v1.0 and v2.0 are greater than 0.99, and the bias
represented by the CRMSD decreases from 0.43 to 0.33. The
annual mean results reveal that the initial values simulated using
FIO-CPS v2.0 are more consistent with the observations.

Figures 3A,B shows the ACC of the sea surface temperature
anomaly (SSTA) between the OISST v2.1 and the assimilation
results. It is found that the model that assimilates the observations
captures the SSTA pattern reasonably well in the tropical eastern
Pacific, with the highest ACC distribution in both models’ results.
Generally, the ACC in the tropics is higher than it in the

subtropics and at high-latitudes. In the zonal direction, the
initiation conditions in the Atlantic and Pacific are more
consistent with the observations than those in the Indian
Ocean. The difference of ACC between FIO-CPS v2.0 and v1.0
is shown in Figure 3C. The assimilation results of FIO-CPS v2.0
are improved compared with those of FIO-CPS v1.0, especially in
the Southern Ocean and the tropical region. The ACC of FIO-
CPS v1.0 is less than 0.6 in most Southern Ocean, where the ACC
in FIO-CPS v2.0 exhibits a increase. Generally, the improvement
is more significant in the Southern Hemisphere than the
Northern Hemisphere.

Seasonal Prediction
The ENSO is the dominant natural variability in the equatorial
Pacific on seasonal to interannual timescales. Here, we examined
the predictive skills of the two versions of the system in predicting
the ENSO state indicated by the Niño3.4 index, which is
calculated by the area-averaged SSTA with a 3-month running
mean (Figure 4). The seasonal predictions of the ensemble mean

FIGURE 5 | ACC and RMSE of the Niño 3.4 SSTA as a function of the target month and lead month obtained using the (A, D) FIO-CPS v1.0; (B, E) FIO-CPS v2.0;
(C, F) the differences between FIO-CPS v2.0 and FIO-CPS v1.0.
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results based on FIO-CPS v1.0 and v2.0 were evaluated by
calculating the respective metrics (i.e., the ACC and RMSE).
The horizontal axis represents the initial conditions and the
prediction month for 1-month to 6-month lead times. As
shown in Figure 4A, considering the assimilated results, the
ACC between the FIO-CPS v2.0’s simulation and the
observations is higher than that for the FIO-CPS v1.0. This

result is consistent with the spatial distribution of the ACC
(Figure 3). The ACC of FIO-CPS v2.0 is higher than that of
FIO-CPS v1.0, indicating that FIO-CPS v2.0 is more skillful than
FIO-CPS v1.0 in predicting the Niño3.4 index. As the predicted
month increases, the difference between the two models
increases. At a 6-month lead time, the ACC of FIO-CPS v2.0
is 0.78, which increases by 11.09% compared with the value of

FIGURE 6 | Spatial distribution of the SSTA ACC in the tropical Pacific for different leadmonths, (A, D, G) FIO-CPS v1.0 results, (B, E, H) FIO-CPS v2.0 results, and
(C, F, I) the difference between FIO-CPS v2.0 and FIO-CPS v1.0. The result for (A–C) 2-month lead time, (D–F) 4-month lead time, and (G–I) 6-month lead time.

FIGURE 7 | Spatial distribution of the absolute average error (AAE, units: °C) of the SSTA between the predictions and OISST v2.1, (A, D, G) FIO-CPS v1.0 results,
(B, E, H) FIO-CPS v2.0 results, and (C, F, I) the difference between FIO-CPS v2.0 and FIO-CPS v1.0. (A–C) 2-month lead time, (D–F) 4-month lead time, and (G–I) 6-
month lead time.
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0.70 in FIO-CPS v1.0. In addition, the RMSEs of the two models
are compared in Figure 4B. The RMSE of FIO-CPS v1.0 increases
rapidly from the 2-month lead time. In contrast, FIO-CPS v2.0,
with its smaller RMSE in the initial conditions, exhibits a slower
error growth during the prediction. From lead-4 to lead-6 month,
the RMSE decreases by more than 0.20 that accounts for about
30% of the result of FIO-CPS v1.0. In addition, we also found that
the ability of the model to predict strong ENSO events has a great
impact on the average skill. For example, if the strong ENSO
event index in 2015/16 and the next few years are removed from
the time series, the ACC is 0.85 for a 6-month lead time predicted
using FIO-CPS v2.0, and the value is 0.75 based on the FIO-CPS
v1.0 (not shown).

Figure 5 shows the ACC and RMSE of the Niño 3.4 SSTA of
FIO-CPS v1.0 and v2.0 as a function of the predicted target
month and lead time. The ACC distributions of the two systems
generally exhibit similar patterns. Both predictions indicate a
spring predictability barrier in the ENSO, with relatively lower
prediction skills in the boreal spring and extending to later
seasons for longer lead times. Generally, the FIO-CPS v2.0 has
a higher correlation skill in contrast to FIO-CPS v1.0, especially in
boreal winter and spring. The significant positive difference in the
ACC as the target month ranging from February to May
demonstrates that the predictability in winter has been
improved in FIO-CPS v2.0. Furthermore, we found that the
most significant improvement in the skill was for 3- to 6-

month lead times in spring. Both the well initial conditions
and the improved climate model provide more skillful
predictions for a longer lead time. In addition, the RMSE of
FIO-CPS v1.0 increases significantly in the boreal summer from
2-month lead times, while the RMSE of FIO-CPS v2.0 is obvious
smaller than that of v1.0. In boreal winter and early spring, the
RMSE decreases by 0.5 for 5-month to 6-month lead times, and it
decreases by more than 0.3 in boreal summer for 3-month to 5-
month lead times. Overall, based on the ACC and RMSE
indicators, the predicted ENSO is dramatically improved in
the boreal winter and summer. Besides, the spring
predictability barrier is still obvious in FIO-CPS v2.0, but
there is a clear improvement of this problem and its persistence.

To explore the improvement in the ENSO prediction in more
detail, the spatial distributions of the SSTA ACC for 2-, 4-, and 6-
month lead times are shown in Figure 6. The ACC is higher in the
central and eastern tropical Pacific but is lower in the western
tropical Pacific and subtropical Pacific. The spatial patterns for the
different lead times are similar, but the magnitude differs for the
different lead months. FIO-CPS v2.0 exhibits an improved skill in
terms of the SSTA prediction in the tropical Pacific. As previously
discussed, the skill of FIO-CPS v2.0 in predicting the Niño3.4 index
is improved (Figure 4A). However, the most obvious improvement
is not in the equatorial Pacific. The SSTA in the western Pacific and
subtropical eastern Pacific are predicted considerably better than the
SSTA in the equatorial Pacific. As shown by the differences in the
ACC of SSTA, there is a positive value in the western Pacific and the
extra-equatorial area.

The annual mean AAE of SSTA calculated using the absolute
value of the differences between the predictions and OISST v2.0
reflects the model’s ability to predict the mean state of the SSTA.
As shown in Figure 7, a large AAE exists in the equatorial Pacific,
with a maximum larger than 0.5°C for FIO-CPS v1.0. As the
prediction time increases, the error persists in the equator Pacific
and even increases. A clear improvement, with a reduced AAE, in
the equatorial Pacific is seen for FIO-CPS v2.0 over the whole
range of lead times. The difference in the AAE is negative along
the equator, and the improvement is more obvious in the
northern tropical Pacific. It is found that the negative
difference of less than 0.3°C is distributed in the northern
tropical Pacific for 2- and 4-month lead times.

The vertical profile of upper ocean temperature differences
averaged between 5°S and 5°N between the prediction and
GODAS datasets is shown in Figure 8. The solid line represents
the mixed layer depth (determined by the criteria: a temperature
change from the ocean surface of 0.5°C) of GODAS (red line) and
prediction results (black line). There are cold biases below the mixed
layer in FIO-CPS v1.0, while the FIO-CPS v2.0 presents warm bias,
especially in the eastern Pacific. The bias gradually magnifies with
the increase of lead month. Moreover, the predicted MLD is deeper
as compared with the GOADS result in FIO-CPS v2.0. The ENSO
variability is closely related to theMLD variation. In the mixed layer,
the FIO-CPS v1.0 has an obvious cold bias in the Niño region, which
tents to produce the La Niña event more frequently, however, the
temperature bias in the FIO-CPS v2.0 is dramatically improved.
Generally, the FIO-CPS v2.0 tends to predict a more reasonable
vertical structure of upper ocean temperature.

FIGURE 8 | Vertical profile of subsurface ocean temperature along the
equator (averaged between 5°S and 5°N) between prediction and GODAS, (A,
C, E) FIO-CPS v1.0 and (B, D, F) FIO-CPS v2.0 results for the period
1993–2019, (A, B) 2-month lead time, (C, D) 4-month lead time, and (E,
F) 6-month lead time. The red and black line represent the MLD based on
observation and prediction.
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Figure 9 shows the prediction of the Niño3.4 index starting
from 1 September 2021, here the SSTA is respect to the
1982–2020 climatology. The ensemble mean of the Niño3.4
index is close to zero in September and will decrease in
winter, but the Niño3.4 index doesn’t surpass a threshold of
-0.5°C. It indicates that ENSO will be in a neutral state during the
winter time. Then, the Niño3.4 SSTA will increase from January
in 2022. Specifically, the Niño3.4 index of five ensembles will
increase with anomalies of up to 0.5°C in early summer in 2022. It
is found that there is significant differences between different
observational data. The index derived from OISST v2.1 is higher
than the ERSST result. In FIO-CPS v2.0, the daily OISST v2.1 is
assimilated, thus the nudging OISST v2.1 provides a warmer
initial condition for the prediction. A neutral ENSO condition
with negative Niño3.4 index are favored through the winter of
2021 based on the ensemble mean prediction of FIO-CPS v2.0.
However, if the prediction is revised according to the ERSST, a
transition from ENSO-neutral to La Niña is favored in the winter
2021–22.

CONCLUSION

The seasonal prediction system FIO-CPS v2.0 was recently
developed, and its prediction ability indicated by Niño index
and SSTA in the tropical Pacific Ocean was evaluated based on
the hindcast results from 1993 to 2019. Compared with FIO-

CPS v1.0, FIO-CPS v2.0 has an improved skill in predicting
ENSO based on the indicators of ACC and RMSE. The
increases in the spatial and temporal correlations between
the simulation and the observations reveal that the initial
state of FIO-CPS v2.0 is well simulated. The improved
initialization and physical model result in a more skillful
seasonal prediction. Specifically, the ENSO prediction skill,
represented by the ACC, is 0.78 for a 6-month lead time, which
is 11.09% better than that of FIO-CPS v1.0. And the RMSE
decreases by 0.20 that represents 28.59% of the FIO-CPS v1.0
result. The prediction errors of the Niño 3.4 SSTA exhibit a
seasonally dependent evolution, with the lowest ACC in the
boreal spring and early summer. A spring predictability barrier
exists in FIO-CPS v1.0 and v2.0, but this problem is less
pronounced in FIO-CPS v2.0. Moreover, the prediction skill
significantly increases in boreal winter and spring for 3- to 6-
month lead times, and in summer for 1- to 2-month lead times
in FIO-CPS v2.0.

It seems that the well-predicted mean state of the SSTAmainly
contributes to the improvement of the ENSO prediction. In FIO-
CPS v2.0, all model components are improved, with a more
reasonable parameterization scheme and higher horizontal and
vertical resolutions. Bao et al. (2020) and Liao et al. (2021)
pointed out that FIO-ESM v2.0 can simulate the strength and
period of the ENSO fairly well compared with observation. The
improvement in the model’s performance at simulating ENSO
plays a crucial role in enhancing its prediction ability. In this

FIGURE 9 | The Niño 3.4 index with respect to the 1982–2020 climatology based on the prediction starting from 1 September 2021. The black, grey and red lines
are the index of ERSST, OISST v2.1 and the initial state. The blue solid and dashed lines show the prediction of ensemble mean and revised index, and the dashed light
blue line represents each ensemble.
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study, the prediction errors of the mean state were evaluated. In
the equatorial Pacific, the mean state of the SSTA is more
consistent with the observations. However, the change in the
ACC, representing the variability of the SSTA, did not exhibit a
comparable improvement. This further illustrates the importance
of the model’s ability in accurately simulating and predicting the
mean states in the tropical Pacific.

As shown by Barnston et al. (2019), the correlation skill of the
North American multi-model ensemble prediction plume’s
results is greater than 0.6 for 11- to 12-month lead times.
However, the error growth of the Niño3.4 SSTA is accelerated
for a greater than 8-month lead time in FIO-CPS v2.0, and the
prediction skill is reduced to 0.5 for a 12-month lead time. In FIO-
CPS v2.0, only the fine resolution SST is considered in the initial
field using the nudging method, which can only modulate the
ocean temperature in the mixed layer. This implies that the
simple assimilation technique and neglecting the observations
in the subsurface ocean may lead to the growth of the SSTA error
during the prediction. To continually improve the prediction skill
of FIO-CPS v2.0, more observation datasets and reasonable
assimilation methods are needed to reduce the growth of the
prediction error.
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