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The northeastern Tibetan Plateau (NE TP) has long been thought to be the last part of the
Plateau to be raised, but this assumption has been challenged by recent analyses of fossil
leaf energy, which have pointed to the possibility that the present surface altitude of
∼3,000m above sea level (asl) in the Qaidam Basin (QB) was attained during the
Oligocene. Here, for the first time, we present a record of glycerol dialkyl glycerol
tetraethers (GDGTs) from a well-dated Cenozoic section in the QB. This record
appears to demonstrate that the mean annual average paleotemperature of the QB
was 28.4 ± 2.9°C at ∼18.0 Ma. This would suggest that the paleoelevation of the QB was
only ∼1,488m asl at that time and that a ∼1,500 m uplift was attained afterwards, in
agreement with the massive shortening of the QB and the rapid drying of inland Asia since
the late Miocene.
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INTRODUCTION

The tectonic collision between India and Asia resulted in the formation of the Himalayan orogen, the
largest and best known orogen in the world. The successive geologic evolution of the Himalayan
orogen eventually led to the formation of the TP (Dewey et al., 1988; Yin and Harrison, 2000). At
present, in contrast to the southern and central TP, where a variety of modern paleoaltimetries have
been applied to reconstruct generally high paleoelevation during the Eocene (Rowley and Currie,
2006; Wang et al., 2008; Ding et al., 2014), the topographic history of the NE TP has been less well
studied, with far fewer well-dated archives compiled (Zhuang et al., 2014; Song et al., 2020). This
region has long been thought to have been uplifted much later, mostly during the Plio-Quaternary
(Tapponnier et al., 2001), or since the late Miocene (Fang et al., 2005, 2007; Li et al., 2014). This
process is thought to have exerted a significant impact on the East Asian Monsoon (EAM) and the
aridification of Central Asia (Liu et al., 2015). Very notable is the recent finding of fossil leaves in the
QB, indicating that the central part of the NE TP, i.e., the QB, was already at its present height
(∼3,000 m asl) in the Oligocene (Song et al., 2020). This challenges the tectonic model and dry
climate predictions above and highlights a large discrepancy with a study that reconstructed much
lower topographies using the hydrogen isotopes of n-alkanes (Zhuang et al., 2014).

The huge QB received very thick and continuous deposits and therefore provides a great
opportunity for detecting the Cenozoic uplift history of NE TP (Figures 1A,B). One the other
hand, branched glycerol dialkyl glycerol tetraethers (brGDGTs), a suit of membrane lipids produced
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FIGURE 1 | (A,B) The map of the northern Tibetan Plateau (TP) showing the locations studied and mentioned: the Hongliugou (HLG) section, Dahonggou (DHG)
section, Huaitoutala (HT) section, Sugan Lake, Hurleg Lake, and Tuosu Lake in the Qaidam Basin (QB); (C) the simplified geological map of the northwestern QB
(modified from Wu et al., 2021), E1-2L, Lulehe Formation (early Eocene); E3g, Xia Ganchaigou Formation (middle-late Eocene); N1g, Shang Ganchaigou Formation
(Oligocene); N2y, Youshashan Formation including N1

2y, Xia Youshashan Formation (early-middle Miocene) and N2
2y, Shang Youshashan Formation (middle-late

Miocene); N2s, Shizigou Formation (late Miocene-Pliocene); Q1q, Qigequan Formation (Pliocene-Pleistocene); Q2, late Pleistocene and Holocene.
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by unknown bacteria, offer a potential tool for paleoaltimetry
reconstruction (Decelles et al., 2016; Bai et al., 2018; Deng and Jia,
2018; Chen et al., 2019, 2020; Zhuang et al., 2019). This is due to
the fact that brGDGTs are sensitive to temperature variation
(Weijers et al., 2007), while temperature decreases with increasing
altitude. Significant relationships between brGDGT distributions
and altitude have been observed along several altitudinal
gradients on the TP (Peterse et al., 2009; Deng et al., 2016; Li
X. M. et al., 2017; Wang et al., 2017; Bai et al., 2018; Feng et al.,
2019).

Here, we present new GDGTs data from fossils and precisely
paleomagnetically dated Cenozoic sedimentary rocks identified
in the Hongliugou (HLG) section of the QB (Figure 1B), and
quantitatively reconstruct the paleotemperature and the
paleoelevation of the early Miocene in the QB.

GEOLOGICAL SETTING

The QB (35°55′ - 39°10′ N, 90°00’ - 98°20′ E; ∼58,000 km2) is the
largest rhombic intermontane basin on the NE TP (Figure 1A).
The QB has an average elevation of ca. 3,000 m asl and is bounded
by the Kunlun Mountains, Altyn Mountains, Qilian Mountains,
and Ela Mountains (elevations ∼4,500–5,500 m asl) to the south,
west, north, and east, respectively (Figure 1B). The QB is covered
by thick deposits of Cenozoic sediments of up to 12,000 m in
depth. These have recorded a detailed history of plateau uplift,
basin evolution, and climate change, making this the ideal area to
reveal the growth of the TP and the mechanisms controlling this
growth, and to test tectonic models. It has generally been believed
that the QB was formed in response to the collision of the Indian
subcontinent with Asia; this area has been subjected to
continuous compression deformation and sink, although much
of the shortening and uplift have occurred since the late
Miocene–Pliocene (Zhou et al., 2006; Fang et al., 2007; Bao
et al., 2017).

The QB lies in a continental desert climatic zone. The mean
annual average temperature (MAAT) and mean annual
average precipitation (MAAP) are 3.5°C and <20–200 mm,
respectively, but the mean annual average evaporation is
>2,000 mm. The vegetation in the QB is very sparse and
mostly of desert species, e.g., Ephedra przewalskii,
Haloxylon ammodendron, Salsola collina, Kalidium foliatum,
Sympegma regelii, Ceratoides lateens, Nitraria roborowskii, N.
tangutorum, Tamarix chinensis, and Artemisia spp. (Zhou
et al., 1990). The higher-elevation slopes on the QB’s
surrounding mountains are covered by shrubs adapted to
cold, windy, semi-arid conditions, chiefly Berberis and Salix
amnematchinesis (Wu, 1995). The QB’s soils are also desert
soils (National Soil Survey Office, 1998).

The Cenozoic stratigraphy is almost completely exposed along
the northern flank of the QB, where the HLG section (38°07.50′
N, 94°41.07′E) is one of the most representative outcrops
(Figure 1B). It contains sediments ranging from the Eocene
Lulehe Formation to the Quaternary Qigequan Formation,
with a total thickness of 5,030 m (Figure 1C, Zhang et al.,
2006; Fang et al., 2019; Wu et al., 2021). High-resolution

paleomagnetism has dated the formation of the section to
between 54.2 Ma and 1.8 Ma (Zhang et al., 2006; Fang et al.,
2019; Figures 2A–F).

MATERIALS AND METHODS

Samples were freeze-dried, ground to fine powder (100 mesh),
and homogenized. As for their lithology and ages, they are shown
in Figures 2C,F; Supplementary Table S1. Then, to perform
Soxhlet extraction, aliquots of samples (∼100 g) were used with
dichloromethane (DCM):methanol (MeOH) (2:1, v/v) at 60°C for
72 h. The total lipid extracts were classified into polar and
nonpolar fractions using n-hexane (HEX)/DCM (9:1, V:V) and
DCM/MeOH (1:1, V:V) by adopting column chromatography
with a neutral alumina column over activated silica gel (100–200
mesh). The polar fraction was re-dissolved in n-hexane:
isopropanol (99:1, v/v), followed by being filtered through a
0.2-μm PTFE filter for GDGT analysis.

The GDGTs analysis was conducted at the Key Laboratory of
Tibetan Environment Changes and Land Surface Processes, the
Chinese Academy of Sciences, when an Agilent 1,200 High
Performance Liquid Chromatography device coupled to an
Agilent 6,100 Mass Spectrometry device with Atmospheric
Pressure Chemical Ionization (HPLC-APCI-MS) is adopted.
To be specific, normal phase chromatography (Grace Prevail
Cyano, 150 mm × 2.1 mm, 3.0 μm) was applied at 40°C, and there
was the injection volume of 20 μl and a flow rate of 0.2 ml/min to
achieve the separation. Besides, mobile phase A was n-hexane,
while B was n-hexane/isopropanol (9:1, v/v), when an elution
gradient was adopted following Yang et al. (2014). Furthermore,
to enhance detection sensitivity and reproducibility, a Single Ion
Monitoring (SIM) mode was established at (M + H) + values of
1,302, 1,300, 1,298, 1,296, 1,292, 1,050, 1,048, 1,046, 1,036, 1,034,
1,032, 1,022, 1,020, and 1,018 (see Figure 3 for GDGT structures).
We used the integral area of each brGDGTs component to
calculate the relevant proxies, and the brGDGTs indices used
in this study are calculated as follows:

MBT � [|a + |b + |c]/[|a + |b + |c + ||a + ||b + ||c + |||a + |||b + |||c]

(Weijers et al., 2007)

CBT � -log([|b + ||b]/[|a + ||a])
(Weijers et al., 2007)

RESULTS

We extracted and tested 33 samples from the whole section; only
two GDGTs data of 18.3 Ma and 18.8 Ma were identified from the
HPLC-APCI-MS (Figure 2G). GDGTs compounds were not
extracted from other sample horizons, possibly related to their
lithologies (Figure 2C). In the QB, it would appear that reddish
mudstone is more conducive to the generation and preservation
of GDGTs. In this study, the sedimentary lithologies for 18.3 Ma
and 18.8 Ma are all of reddish mudstone. Additionally, all of the
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lacustrine sample lithologies of GDGTs compounds measured in
the study of Zhuang et al. (2019) were also of reddishmudstone. It
is possible that the temperature, salinity, and dissolved oxygen
conditions found in Cenozoic reddish mudstones in the QB are
more beneficial to the formation of GDGTs compounds. Although
only two GDGTs datasets were obtained from the HLG section,
these two datasets constitute a critical resource for the Cenozoic
paleotemperature reconstruction of the NE TP, filling a
quantitative paleotemperature and paleoelevation gap in our
understanding of the early to middle Miocene period of the QB.

The MBT ratio of these two samples were 0.82 and 0.59,
respectively; the CBT ratio were −0.141 and 0.006, respectively
(Supplementary Table S2). Diagenesis, maturation, and
exposure to oxygen during sedimentation are all likely to
lead to the degradation of GDGTs (Schouten et al., 2013).
Although the degradation of brGDGTs is inevitable, and can be
relatively rapid, the fidelity of paleotemperature
reconstructions based on brGDGTs is less affected by their
preservation (Schouten et al., 2013). In an artificially simulated
thermal maturation experiment, the MBT index changes little,

while the CBT index increases with the temperature increase,
indicating that the components containing five membered rings
are relatively unstable, but also that the temperature change in
the MBT/CBT calculation is small (Schouten et al., 2013). The
stability of the MBT index and the MBT/CBT-reconstructed
temperature were also evident in an artificially simulated
oxidation experiment (Ding et al., 2013). In other words,
although the degradation will lead to the reduction of
GDGTs content in the formation, the environmental
temperature information preserved is less affected, meaning
that the paleotemperatures calculated in this study can be
assumed to be relatively reliable.

Consistent with the distribution of GDGTs compounds in the
surface sediments of other lakes on the TP (Günther et al., 2014;
Wang et al., 2016; Wang et al., 2021), the distribution of GDGTs
in the two samples in this study was principally of brGDGTs, in
which the contents of Ia, Ib, and Ic were the highest. The contents
of GDGT-2 and GDGT-3 in isoprenoid glycerol dialkyl glycerol
tetraethers (iGDGTs) were higher, with the crenarchaeol (cren)
and its isomers (cren’) content being the lowest (Figures 2H,I).

FIGURE 2 | (A–G) Stratigraphy, thickness, lithology, magnetostratigraphy (Zhang et al., 2006; Gradstein and Ogg, 2012; Fang et al., 2019) and the GDGT sample
horizon (the blue square is the horizon of the GDGTs not obtained, and the red is the two sample horizons of the compound obtained); (H,I) the distribution of GDGTs for
18.3 Ma and 18.8 Ma in the HLG Section.
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DISCUSSION

GDGTS and Paleotemperature
In this study, the early Miocene samples (dated to 18.3 Ma and
18.8 Ma) from the HLG section contained sufficient fractional
concentrations to calculate the brGDGT-based paleotemperature

proxy. Sedimentary facies analyses revealed that the two samples
were composed of lacustrine sediments (Figure 2C). We
therefore chose lake brGDGT-temperature calibration
equations to calculate the paleotemperature (Tierney et al.,
2010; Pearson et al., 2011; Sun et al., 2011; Loomis et al., 2012;
Günther et al., 2014; Wang et al., 2016).

FIGURE 3 | Structure of GDGT compounds (from Yang et al., 2014).

FIGURE 4 | (A,B) Reconstructed temperature in 18.3 Ma and 18.8 Ma of the HLG section using different lake brGDGT-temperature calibrations; S, G,W, T, P, and
L respectively represent the temperature equation from Sun et al. (2011), Günther et al. (2014), Wang et al. (2016), Tierney et al. (2010), Pearson et al. (2011), and Loomis
et al. (2012).
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The MAAT value reconstructed by the three equations of
samples mainly from Africa is obviously too high (Figure 4;
Supplementary Table S3; Tierney et al., 2010; Pearson et al.,
2011; Loomis et al., 2012). To be specific, the MAAT of 18.3 Ma
was 40.4°C, 45.0°C, and 43.5°C, respectively, while that at 18.8 Ma
was 31.7°C, 38.0°C, and 36.4°C, accordingly. Compared with the
equations whose samples are mainly from Africa, the other three
equations whose samples are mainly collected from China
(Figure 4 and Supplementary Table S3; Sun et al., 2011;
Günther et al., 2014; Wang et al., 2016) seem to be more
reliable. Then, the mean MAAT for 18.3 Ma and 18.8 Ma was
taken as the possible paleotemperature in this area at 18.0 Ma
(Figure 5), whereas at 18.0 Ma, the MAAT values calculated
using these three formulae were 31.3 ± 4.3°C, −0.3 ± 1.2°C, and
25.6 ± 1.5°C, separately. Among the three equations, it is believed
that the reconstructed-MAAT of Sun et al. (2011) andWang et al.
(2016) is the most reliable for the following reasons. Firstly, Sun
et al. (2011) and Wang et al. (2016) have a larger number of
samples (n � 100 and n � 27), including a wide range of lakes
featured with various climatic conditions, lake size, and depths.
Secondly, the reconstructed-MAAT values of Sun et al. (2011)
and Wang et al. (2016) are closer. Thirdly, the MAAT value of
18.0 Ma calculated by Günther et al. (2014) is much lower than
the late Miocene long-chain alkenone temperature (18.9 ± 0.5°C)
and lacustrine carbonate oxygen isotope temperature (19.0 ±
0.5°C) in the Dahonggou (DHG) section (Figures 1B, 5, Sun
et al., 2012) and Xitieshan area of the QB (Figure 5, Wu et al.,
2007), which is inconsistent with the global cooling trend during
Middle Miocene to late Miocene (Figure 5, Wang et al., 2003).
We therefore felt it fair to assume that 31.3 ± 4.3°C and 25.6 ±
1.5°C could be taken as reliable paleotemperature values. In order
to reduce any errors in the paleotemperature calculations further,
our final 18.0 Ma temperature took the mean value of 31.3 ± 4.3°C
and 25.6 ± 1.5°C to be 28.4°C, with the error being calculated as
half of the difference between 31.3°C and 25.6°C (i.e., 2.9°C)
(Figure 5).

The climatic environment of the QB during the Miocene was
quite different from that of today. A considerable corpus of
fossils, sedimentary facies, and paleoclimatic evidence has
pointed to this region experiencing a warm period at this
time. For instance, pollen from the genus fupingensis,
representative of the humid environment typical of a
subtropical, warm/temperate zone, was found in the Miocene
sediments of the Naoge section (Miao et al., 2016) in the QB.
Large mammalian fossils from the QB such as rhinoceros and
elephant can be dated to the middle to late Miocene (Wang et al.,
2011). The discovery of Castor fiber fossils in the DHG section
would suggest that the area was warm and humid around 13.0 Ma
(Li and Wang, 2015). The discovery of a large number of
Chalicothere fossils from the early Pliocene would also
intimate that the QB was still a humid and treeless
environment during that period (Chen et al., 2015).
Additionally, during the early and middle Miocene in the QB,
the development of algal limestone and the wide distribution of
homogeneous fine-grained layers would indicate that a megalake
dominated the Basin (Shou et al., 2003; Miao et al., 2011; Zhuang
et al., 2011; Liu et al., 2014; Chang et al., 2015; Guo et al., 2018).
Moreover, the hydrocarbon isotopes of leaf wax identified in the
Honggouzi section in the western QB appear to show that the
climate in this area was relatively warm and wet in the middle
Miocene (Wu et al., 2019).

We also used the brGDGT-temperature calculation
method employed in this study to recalculate the
paleotemperatures of lacustrine sediments during the
9.5–5.1 Ma (mean age 7.3 Ma) period from the Huaitoutala
(HT) section (Figure 1B; Zhuang et al., 2019). These
calculations rendered a mean value of 17.8 ± 2.9°C. As
shown in Figure 6A, the MAAT of the QB decreased from
28.4°C at 18.0 Ma to 17.8°C at 7.3 Ma (△T � 10.6°C),
consistent with the significant late Miocene cooling trend
recorded by the oxygen isotope record in deep-sea
sediments (Zachos et al., 2008; Figure 6B).

FIGURE 5 | Paleotemperatures for the HLG section calculated from Sun et al. (2011) (MAAT1, yellow circle), Wang et al. (2016) (MAAT2, blue circle), and Günther
et al. (2014) (MAAT3, purple circle) and the average value of MAAT1 andMAAT2 (blue hexagon) in comparison with other Miocene paleotemperature records (Wang et al.,
2003; Wu et al., 2007; Sun et al., 2012; green curves, gray squares and triangles, respectively).
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In conclusion, numerous fossils, sedimentary facies, and
paleoclimatic archives in the QB demonstrate the reliability of
this study’s calculated paleotemperatures.

An Early-Middle Miocene Paleoelevation
Reconstruction of the QB
The temperature lapse rate (TLR) is an important indicator of
altitude and gradient. The TLR for the TP derived from long-
term, near-surface air temperatures recorded at meteorological
stations ranges from 4.8°C/km to 6.6°C/km (Guo et al., 2015). Due
to the influence of many less well-constrained parameters such as
underlying surface conditions, elevation, atmospheric circulation,
and humidity (Spicer and Yang, 2010), any assumption of any
paleo-TLR remains uncertain. Therefore, 6.6°C/km was regarded
as the upper limit of the TLR in this study in order that the lower
limit of any change in the elevation of the QB since the early
Miocene might be calculated; 4.8°C/km was taken as the lower
limit of the TLR so as to estimate the upper limit of any change in
elevation for the same period.

In addition to determining the TLR, another important step in
GDGT-paleoelevation calculation is to find the reference point of
the temperature change at “Zero Altitude.” After a large number
of screenings, we found three reference points that were close to
the latitude and age of this study site, with the temperature proxy
being either long chain alkenones or GDGTs. The first reference
point was ODP Site 1,010 (30°N, 118°W) in the Pacific Ocean
(LaRiviere et al., 2012), which is relatively close to the QB, though

the age of its base is 13.4 Ma, quite different from that of this
study. The Uk

37-temperature change since 13.4 Ma at this site was
14.0°C. The second reference point was ODP Site 608 (42.8°N,
23.1°W), relatively far away from the QB, but close in age to this
study (with a range of 24–0 Ma). Since 18.8 Ma, the
GDGT-calculated temperature at this site has changed by
13.6°C (Super et al., 2018, 2020). Reference point three was
located in the coastal lowlands of Northwest Europe (51.5°N,
6°E). Although the site is far away from the QB, its basal age is
16.5 Ma, consistent with that of this study. It is also a terrestrial
environment like the QB, meaning any temperature change
should be closer (Donders et al., 2009) to that identified in
this study. From 16.5 Ma to now, the GDGT-based
temperature change at this site was 13.9°C, very similar to
14.0°C at ODP Site 1,010 and 13.6°C at ODP Site 608. We
therefore felt it appropriate to select the Northwest Europe
low elevation site in as a reference point.

However, nothing is known about the latitudinal change
between the low elevation point in Northwest Europe and the
HLG section since the early Miocene, which will inevitably cause
uncertainty in the temperature change (△t). Besides, the
difference of △t between the modern “Zero Altitude” point
and the HLG section was calculated. The △t of the Brussels
Meteorological Station (50.9°N, 4.5°E, 55 m asl) from 1973 to
2020 that is closest to the low elevation point of Northwest
Europe is 3.1°C (https://en.tutiempo.net/climate/ws-64510.
html). Additionally, the △t for the Lenghu Meteorological
Station (38.8°N, 93.4°E, 2,771 m asl) nearest to the HLG
section from 1973 to 2020 was calculated, and it is 2.5°C

FIGURE 6 | (A)Miocene-Quaternary paleotemperature variations in the QB in comparison with (B) global temperatures and ice volume changes recorded by the
oxygen isotopes of marine sediments (Zachos et al., 2008); (C) Cenozoic elevation history of the QB in comparison with (D) the tectonic crustal shortening history of the
QB (Bao et al., 2017).
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(https://en.tutiempo.net/climate/ws-526020.html). During
1973–2020, the difference in △t between the “Zero Altitude”
point and the HLG section was 0.6°C. Furthermore, as the latitude
pattern between the Northwest Europe and the QB in the early
Miocene cannot be obtained, it is assumed that the value, twice of
0.6°C (1.2°C), is the error representing the latitudinal difference
between the “Zero Altitude” point and the HLG section since the
early Miocene.

In order to calculate the paleoelevation of the QB in the early
Miocene, firstly, the MAAT of lake surface sediments in Lake
Sugan, Hurleg, and Tuosu of the QB (raw data from Wang et al.,
2016) was recalculated (Figure 1B), by using the conversion
equations of brGDGT-temperature from Sun et al. (2011) and
Wang et al. (2016). Besides, their mean value was 6.1°C as the
MAAT in the modern QB. From the early Miocene to the present
day, the variation in the low elevationMAAT value for Northwest
Europe is 13.9°C. The modern MAAT of the QB is 6.1°C.
Therefore, if the temperature change caused by uplift in the
QB between the early Miocene and the present day were to be
taken as ΔT � 28.4°C − 13.9°C − 6.1°C � 8.4°C, and the upper limit
of the TLR as 6.6°C/km, then the figure of 8.4°C would be
equivalent to an uplift of ∼1,273 m. When the TLR is 4.8°C/
km, the 8.4°C would be equivalent to an uplift of 1,750 m in the
study area since the early Miocene. We took a mean value of
1,512 m from the lower limit of 1,273 m and the upper limit of
1,750 m as the change in elevation of the QB since the early
Miocene. The modern mean elevation of the QB is ∼3,000 m asl,
meaning that the paleoelevation of the study area would have
been < ∼1,488 m asl during the early Miocene (Figure 4C). The
uncertainty in this modeling was estimated to be 738 m, derived
principally from the uncertainty within the calibrations of Sun
et al. (2011) andWang et al. (2016) being 2.9°C, and the difference
in temperature change (△t) between the low elevation point in
Northwest Europe and the HLG section caused by latitude
variation is 1.2°C.

As mentioned above, the MAAT in the QB from 18.0 Ma to
7.3 Ma decreased by 10.6°C. During this period, the temperature
change in the lowlands of Northwest Europe was 5.6°C (Donders
et al., 2009). When the TLR is taken as 6.6°C/km, the change in
elevation would be 758 m. When the TLR is 4.8°C/km, the
elevational change would be 1,042 m. We took a mean value
of 900 m from the upper limit and the lower limit as the variation
in the paleoelevation of the QB from 18.0 Ma to 7.3 Ma. If the
paleoelevation of the QB at 18.0 Ma is taken to be ∼1,488 m asl, its
paleoelevation during the late Miocene would have been ∼2,388 ±
738 m asl (Figure 6C).

Clarifying the Uplift History of the TP
Using our reconstructed paleoelevations for the QB during the
early Miocene and other previously published data (Meng
et al., 2001; Zhuang et al., 2019), we reconstructed the
Cenozoic altitudinal history of the QB (Figure 6C). This
would suggest that at the initiation of the QB in the
Eocene, the Basin’s surface was close to the sea level
because the QB was connected with the Tarim Basin (Meng
et al., 2001). Our brGDGT-based paleoaltimetry showed that
the QB was still a low-elevation region (∼1,488 m asl) until

∼18.0 Ma. Even at 7.3 Ma, the brGDGT-based recalculated
paleoelevation (∼2,388 m asl) of the QB shows that the Basin’s
modern elevation had not yet been obtained. Subsequently,
the QB was uplifted by ∼600 m, reaching the present elevation
of 3,000 m asl.

However, recent fossilized plant finds in the DHG section have
suggested a much earlier date at which the QB attained its present
height, i.e., during the Oligocene (Figures 1B, 6C; Song et al.,
2020). The plant fossil assemblages belong to a temperate-
deciduous-dominated woodland environment and were buried
in fluvial sandstone beds. We assumed from this finding that
these plants grew on the slopes of the Qilian Mountains and were
transported by river action into the Basin, most probably during
flooding. This assumption can be based on the analyses of pollen
spores from the QB, which indicate that, during the Oligocene,
arid-tolerant species of the genera Ephedra, Chenopodiaceae, and
Artemisia dominated the Basin’s surface (Exploration and
Development Research Institute of Qinghai Petroleum
Administration Bureau., and Nanjing Institute of Geology and
Paleontology, Chinese Academy of Sciences, 1985), while
deciduous Ulmus tree species and fewer numbers of Picea and
Pinaceae coniferous trees grew in the Qilian Mountains (Sun
et al., 1980). This forest composition would suggest an elevational
range of ∼2,000–3,500 m asl when compared with the nearest
modern species (Mosbrugger et al., 2018). The elevations
suggested by these tree fossils thus most likely reflect the
paleoelevations of the Qilian Mountains, rather than the QB.
Furthermore, leaf fossil assemblages dominated by Populus and
Podocarpium were found in the DHG Gulley (Song et al., 2020).
Of these, the same modern Populus indicates a temperate, semi-
humid climate and grows mostly along riverbanks in the Lanzhou
Basin and at an elevation of ∼1,400 m asl (Sun et al., 2004). This
would imply that the fossilized Populus found in the DHG Gulley
in the QB most likely grew in valleys during the Oligocene at an
elevation of ∼1,400 m asl; this would not support an elevation of
∼3,000 m asl for the QB at that time. Moreover, fossilized plant
leaves and fruits of genera Ailanthus found in the Huatugou area
in the northwestern QB and dating from the early Oligocene lend
further support to our inference (Yang et al., 2020), indicating
that the northwestern QB was most likely at low elevations of
500–2,000 m asl during the Oligocene. The recent discovery of
fossilized Paleoschizothorax vertebrates (Cyprinidae, a genus of
freshwater fish living in warm water environments and at low
elevations of ∼500–1,800 m asl in southwestern China) in the
Oligocene stratigraphy in the same area would appear to further
support the inference of a low-elevation QB during the Oligocene
(Yang et al., 2018). The pharyngeal bones of the Schizothorax
subfamily or Barbinidae found in the late Miocene strata of the
HT area exist purely in the original Schizothorax subfamily and
Barbinidae fish, and are only distributed in areas with an
elevation of 1,250–2,500 m asl or lower (Chang and Miao,
2016), indicating that the QB did not reach its modern height
until the late Miocene, consistent with this study.

The above topographical histories of the QB suggest that a
slow rise of the NE TP, and a lowland environment, dominated
the QB for much of the Eocene and Miocene, and that the rapid
uplift of the Plateau’s surface to the present-day elevation of
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∼3,000 m asl occurred from the late Miocene onwards
(Figure 6C).

The reconstructed Cenozoic tectonic history of the QB shows a
highly variable crustal shortening rate (Figure 6D; Bao et al.,
2017), being high from 43.8 Ma to 35.5 Ma and from 15.3 Ma to
0 Ma, and low from 53.5 Ma to 43.8 Ma and from 35.5 Ma to
15.3 Ma. TheMiocene represents the dividing lines between these
high and low rates, with ∼50% of the Basin’s total shortening
occurring by the onset of the Miocene.

The reconstructed Cenozoic paleoelevation evolution of the
QB can also be confirmed by overwhelming geological evidence.
For instance, a low topography in the QB during the Paleogene is
indicated by the age of the last-remaining marine units in the area
(Meng et al., 2001), which was connected with the southwestern
Tarim Basin when the region was occupied by the Paratethys Sea
between the Cretaceous and the early Paleogene (e.g., Popov et al.,
2004). Additionally, Yin et al. (2008) suggested that the Paleogene
(65–24 Ma) Qaidam and Hoh Xil basins on both sides of the
Eastern Kunlun Mountains may have been parts of a single
topographic depression called the “Paleo-Qaidam Basin,”
which would imply that the QB experienced a process of slow
uplift during the Paleogene. During the period from the early to
middle Miocene, the sedimentology, paleomagnetism,
thermochronology, and structural geology (Jolivet et al., 2003;
Fang et al., 2007; Clark et al., 2010; Li B. et al., 2017) all point to a
rapid denudation and uplift of the QB and its surrounding
mountain ranges. This body of evidence is consistent with this
study’s brGDGT-based paleoelevation reconstruction. A
significant number of stratigraphic, petrographic,
sedimentological, thermochronological, and climate records
have also demonstrated that since the late Miocene, the
Qaidam region and even the entire NE TP have undergone a
period of intensive uplift, laying the foundations for the region’s
present-day geomorphic patterns and elevation, and causing huge
climatic and environmental change (Fang et al., 2005; Li et al.,
2014).

In summary, all the aforementioned geological evidence agrees
well with our reconstructed Cenozoic paleoelevation history of
the QB on the NE TP, a reconstruction that supports a rapid late
Miocene uplift and growth of the NE TP. However, due to the
difficulty in preservation of the GDGTs, the interpretation and
resulting conclusion in this study is based primarily on limited
datasets. Further studies with more samples from a broad region
can subsequently verify and reinforce the results from this study.

CONCLUSION

We used a new, organic, quantitative paleotemperature/
paleoaltimeter-GDGTs ratio to constrain the Cenozoic
paleogeomorphology of the NE TP, so as to improve our
understanding of the uplift history of the region. The GDGTs
temperature indicated that the MAAT of the QB was relatively

high in the early Miocene (28.4 ± 2.9°C). This would suggest that
the paleoelevation of the QB at that time was relatively very low,
at ∼1,488 m asl. Combined with other published paleoelevation/
geological records, we reconstructed the uplift history of the
Cenozoic era in the Qaidam area, and showed that at the
beginning of the Eocene, the Basin’s surface was close to sea
level. Until in the early Miocene, the QB was still a low-elevation
region (∼1,488 m asl). Even at 7.3 Ma, the recalculated
paleoelevation (∼2,388 m asl) of the QB showed that the
Basin’s modern elevation had not yet been obtained.
Subsequently, the QB was uplifted by ∼600 m, reaching its
present elevation of 3,000 m asl.
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