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The presence and content of water will certainly affect the gas adsorption capacity of shale
and the evaluation of shale gas content. In order to reasonably evaluate the gas adsorption
capacity of shale under actual reservoir conditions, the effect of water on methane
adsorption capacity needs to be investigated. Taking the Da’anzhai Member of the
Lower Jurassic Ziliujing Formation in the northeastern Sichuan Basin, China as an
example, this study attempts to reveal the effect of pre-adsorbed water on methane
adsorption capacity in shale-gas systems by conducting methane adsorption experiments
in two sequences, firstly at different temperatures under dry condition and secondly at
different relative humidity levels under the same temperature. The results show that
temperature and relative humidity (i.e., water saturation) are the main factors affecting
the methane adsorption capacity of shale for a single sample. The key findings of this study
include: 1) Methane adsorption capacity of shale first increases then decreases with depth,
reaching a peak at about 1,600–2,400m. 2) Lower relative humidity correlates to greater
maximum methane adsorption capacity and greater depth to reach the maximum
methane adsorption capacity. 3) 20% increase of relative humidity results in roughly
10% reduction of maximum methane adsorption capacity. As a conclusion, methane
adsorption capacity of shale is predominately affected by water saturation, pore type and
pore size of shale. This study could provide a theoretical basis for the establishment of a
reasonable evaluation method for shale adsorbed gas content.
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INTRODUCTION

Shales have large accumulations of hydrocarbons and are not merely regarded nowadays as source
rocks and seals anymore (Krooss et al., 1995; Hill et al., 2007; Tian et al., 2013; Chen et al., 2017a; Gao
et al., 2020). Shale gas is known for its self-generation and self-storage characteristics and large-scale
continuous accumulations (Jarvie et al., 2007; Zou et al., 2017; Xu et al., 2020). Appraisal of
recoverable shale gas reserves is the very basis for evaluating the development potential of a shale play
and thereafter formulating a suitable gas field development plan (Li et al., 2016). In shale reservoirs,
natural gas is usually stored in three different types of geological environment which include free gas
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in pores and fractures, adsorbed gas in organic matters and clay
minerals and dissolved gas in residual oil and water (Curtis, 2002;
Zhang et al., 2012). As nano-scale pores are most developed in
shales (Zou et al., 2017; Chen et al., 2019a; Liu et al., 2020), the
adsorbed gas content generally accounts for 20–85% of the total
gas content (Curtis, 2002; Chen et al., 2019b; Qiao et al., 2020).
The research of gas adsorption capacity forms the foundation for
effective and efficient development of shale gas because it is
paramount to appraising gas content in-situ as well as
pinpointing the target areas (Gai et al., 2020). Shales have
extremely low permeability, so more than 90% of shale gas
wells need to rely on hydraulic fracturing and other
stimulation measures to connect natural fractures for
improving the conductivity of the reservoir in order to
promote the economic development of shale gas (Zou et al.,
2017; Gao et al., 2021; Liu et al., 2021). The average water
saturation of shale gas reservoirs in Barnett, Marcellus and
Woodford Formations in the US ranges from 15 to 35%
(Ambrose et al., 2012), compared to 10–95% for the marine
shale plays found in South China (Liu and Wang, 2013; Fang
et al., 2014). Fang et al. (2014) explained the root cause of the
ultra-low water saturation of marine shales in South China,
pointing out that certain shale reservoirs have natural
occurrence of water. Therefore, it is of great significance to
study the methane adsorption capacity of water-bearing shales.

At present, the evaluation of adsorbed gas content is mainly
based on methane adsorption experiments. Most researchers
used dry shale samples for methane adsorption experiments
and did not account for the effect of water
(Chareonsuppanimit et al., 2012; Gasparik et al., 2012; Ji et al.,
2015; Tian et al., 2016; Sander et al., 2018; Song et al., 2018; Shang
et al., 2020). For example, Gasparik et al. (2013) studied the high-
pressure methane sorption isotherms of black shales from
Netherlands and found that clay minerals can contribute
significantly to the overall adsorption capacity of shales. Ji
et al. (2015) studied the Lower Silurian Longmaxi formation
in the Upper Yangtze Platform and pointed out that total organic
carbon (TOC) content, temperature and pressure are the most
important factors affecting the methane adsorption capacity of
shale. Tian et al. (2016) reported that TOC is a key parameter that
dominates methane adsorption capacity because organic matter
is the main contributor to specific surface area and micropore
volume for shale. Sander et al. (2018) studied the controls on
methane sorption capacity of Mesoproterozoic gas shales and
found that for organic-lean shales with a TOC <2% clay may be
the primary control onmethane adsorption.Wang Y. et al. (2019)
pointed out that the methane adsorption capacity shows a great
positive correlation with TOC content, and clays also make some
contribution to methane adsorption on organic-rich shales.
Shang et al. (2020) reported that the methane adsorption
capacity of shales is often, but not always, closely related to
the TOC content, but not to clay minerals. All the above studies
did not consider the influence of water on the methane
adsorption of shale. Thus, methane adsorption experiments on
moisture-equilibrated shale samples were produced.

Some researchers carried out equilibrium moisture treatment
on rock samples prior to the experiments (Ross and Bustin, 2009;

Gasparik et al., 2013; Merkel et al., 2015; Wang et al., 2018; Tian
et al., 2020). For example, Ross and Bustin (2009) studied the
methane adsorption capacity of shale under moisture-
equilibrated condition and reported a 20–90% reduction
compared to the value under dry condition. Gasparik et al.
(2013) studied the adsorption characteristics of shales at
different relative humidity levels under 0–25 MPa equilibrium
pressure and found that when the water content is increased at a
given temperature, shale gas adsorption capacity reduces and the
adsorption isotherm moved downward as a result. Merkel et al.
(2015) conducted the similar experiments and arrived at the same
conclusions reported by Gasparik et al. (2013). Wang et al. (2018)
investigated the influences of water on methane adsorption in
three partially saturated shales. They found that a hint of water
affects the methane adsorption less in samples with lower water
contents and when the water content is increased, water clearly
impedes methane adsorption. Zou et al. (2018) investigated the
effect of water onmethane adsorption capacity of shale and found
that the water effect on methane adsorption in shales decreases
with increasing pore diameter: small pores like micropores can be
thoroughly blocked by adsorbed water, but bigger pores like
mesopores are less likely to be blocked. Then, Zou et al.
(2019) also investigated the combined effect of high
temperature and moisture on methane adsorption in shale and
found that moisture and high temperature can reduce the
adsorbed gas content in shale individually, and the two factors
have a synergistic-negative effect on methane adsorption in shale.
Ren et al. (2019) studied the high-pressure methane adsorption of
wet shales and found that the methane adsorption capacities of
wet shales are controlled by TOC content, kerogen maturity, and
the content of clay minerals, which is due to the fact that adsorbed
water molecules have a large impact on the methane adsorption
capacities of clay minerals but little effect on that of high maturity
kerogen. Li et al. (2020) pointed out that the water content
directly inhibits shale adsorption. In the process of increasing
the water content, the relationship between the adsorption
amount and the moisture content is negatively correlated.
Tian et al. (2020) investigated the influence of pore water on
the gas storage of organic-rich shale and pointed out that the
adsorption space of methane onto clay mineral sufaces in micro-
andmesopores is occupied by water, which results in a decrease of
adsorbed gas, and the occurrence of adsorbed gas is dominated by
organic matter adsorption. In addition, some scholars have also
investigated the influence of water on methane adsorption
through molecular simulation and found that water has an
important effect on methane adsorption (Huang et al., 2018;
Li et al., 2019; Chen G. et al., 2021).

The findings above show that water content is key to the
methane adsorption capacity of shale. Consequently, the
experiments under wet and dry conditions shall inevitably
yield completely different evaluation results. Furthermore, the
current geological analyses show that the actual shale reservoirs
generally have a certain water saturation under original
formation conditions (Ambrose et al., 2012; Liu and Wang,
2013; Fang et al., 2014). The presence of water shall undoubtedly
affect the gas adsorption capacity evaluation of shale and, more
importantly, the appraisal of shale gas content in the region.
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This necessitates the study of how water affects the gas
adsorption capacity of shale.

Although some scholars have analysed the influence of water
on the methane adsorption in shale, some details of the
adsorption mode of methane in pore systems at different
water saturation levels are not well understood. In particular,
the effect of pore water on methane adsorption at different water
saturation levels is unclear, and the model for illustrating how
methane adsorption capacity of shale changes with depth at
different water saturation levels has not been established. In
this study, in order to investigate the influence of pre-
adsorbed water on the methane adsorption capacity of shale
and attempt to solve the above problems, the Da’anzhai Member
of the Lower Jurassic Ziliujing Formation in the northeastern
Sichuan Basin, China was selected as an example to conduct
methane adsorption experiments in two sequences, firstly at
different temperatures under dry condition and secondly at
different relative humidity levels under the same temperature.
On this basis, a model was established illustrating how methane
adsorption capacity of shale changes with depth at different
relative humidity levels. In the end, the influence of pre-
adsorbed water on methane adsorption capacity in shale-gas
systems was discussed. Our studies are of great significance to
establish a theoretical basis for building more precise empirical
correlations to quantify shale adsorbed gas content.

MATERIALS AND METHODS

Materials Preparation
The samples, cored at 3756.2 m vertical depth from the Da’anzhai
Member of the Lower Jurassic Ziliujing Formation in the
northeastern Sichuan Basin, China, have an average TOC
content of 1.43% and an average vitrinite reflectance of 1.75%
reflecting high organic matter maturity, which mainly generate
wet gas. The mineralogy is characterized by a high proportion of
clay minerals (52.3%), moderate amount of quartz (32.5%), and
low abundance of carbonates (10.1%), feldspar (2.9%) and pyrite
(2.2%). The samples were crushed to 40–100 mesh and dried to
constant weight at 100°C for 24 h. Both the purity of methane and
helium used in the experiments are 99.999%.

Methane Adsorption Experiments
Two series of methane adsorption experiments were carried out
in this study, one at different temperatures under dry condition,
and the other at different relative humidity levels under the same
temperature.

A part of the dried shale samples were selected to conduct
methane adsorption experiments at 20, 30, 40, and 50°C,
respectively. All methane adsorption isotherms were measured
up to 32 MPa and fluctuations in temperature during a given
isotherm were <0.2°C. The detailed steps of methane adsorption
experiments can be referred to Tian et al. (2016).

Another part of the dried shale samples were used to conduct
water vapor adsorption experiments using a water vapor
adsorption analyzer. In the analyzer, the shale sample adsorbs
water molecules until reaching an equilibrium state when the

sample water content becomes stable. Four groups of shale
samples were obtained using the water vapor adsorption
analyzer where the relative humidity was set at 20, 40, 60, and
80%, respectively. Following the water vapor adsorption
experiments, methane adsorption experiments were carried out
on these four groups of samples at the same temperature.
Considering the fact that methane adsorption experiments are
very time-consuming and evaporation of water usually occurs at
high temperature, methane adsorption experiments were only
conducted at 20°C in this study. All methane adsorption
isotherms were also measured up to 32 MPa and fluctuations
in temperature during a given isotherm were <0.2°C. The detailed
steps of water vapor adsorption experiments can be referred to
Dang et al. (2021), Yang et al. (2021).

It is important to note that the amount of methane adsorbed in
the experiments is the surface excess adsorption amount, not the
absolute or actual adsorption amount. Therefore, conversion
from excess adsorption to absolute adsorption is required for
the evaluation of shale gas adsorption capacity (Rexer et al., 2013,
2014; Yang et al., 2017; Zhou et al., 2018; Chen L. et al., 2021). To
simplify the calculations, the liquid density of methane at boiling
temperature and ambient pressure (0.421 g/cm3) was used as the
adsorbed phase density for the methane excess adsorption
correction.

Langmuir Equation Fitting of Absolute
Adsorption Isotherms
At present, there are two most commonly used equations for
fitting methane adsorption isotherms of shale, which are
Langmuir equation and DR equation (Ji et al., 2015; Tian
et al., 2016; Li et al., 2018; Song et al., 2018; Wang Y. et al.,
2019; Dang et al., 2020). We have conducted relevant researches
about the difference between these two equations and believe that
Langmuir equation is adequate for most of the practical reservoir
assessments since it gives quite similar results with the DR model
(Chen et al., 2017b). Therefore, Langmuir equation was used in
this study for fitting the methane adsorption isotherms of shale.

Langmuir adsorption isotherm equation is the first and most
widely used equation for monolayer adsorption (Ji et al., 2015;
Ibad and Padmanabhan, 2020). The equation is as follows:

V � VLP

PL + P
(1)

where, V (cm3/g) is the adsorbed gas content, P (MPa) is the gas
pressure, VL (cm3/g) is the Langmuir volume reflecting the
maximum gas adsorption capacity at a given temperature, and
PL (MPa) is the Langmui pressure when the adsorbed gas is a half
of the Langmuir volume.

RESULTS AND DISCUSSION

Methane Adsorption Isotherms
The absolute methane adsorption isotherms of four different
temperatures are shown in Figure 1A. It can be seen that the
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absolute adsorption amount of methane shows a gradually
increasing trend as pressure increases, and the absolute
adsorption isotherms are similar to the type I adsorption
isotherm recommended by the International Union of Pure
and Applied Chemistry (IUPAC). The characteristic of type I
is that it is close to adsorption saturation after a certain pressure,
which is often called Langmuir type. The maximum absolute
methane adsorption amount shows a negative relationship with
temperature. At the same temperature, the absolute methane
adsorption amount first increases rapidly, and then slowly
increases with increasing pressure, indicating slower
adsorption rate at higher pressure. At the same pressure, the
absolute methane adsorption amount shows a negative
relationship with temperature. These understandings are
similar to our previous research (Chen et al., 2019b).
Subsequently, the absolute methane adsorption isotherms were
fitted using the Langmuir equation, where the Langmuir volume
values of the shale sample range from 1.54 to 1.69 cm3/g, and the
Langmuir pressure values range from 1.75 to 2.39 MPa.

The absolute methane adsorption isotherms at different
relative humidity levels are shown in Figure 1B. It can also be
seen that the absolute adsorption amount of methane shows a
gradually increasing trend as pressure increases, and the absolute
adsorption isotherms are also similar to the type I adsorption
isotherm. The maximum absolute methane adsorption amount
shows a negative relationship with relative humidity. At the same
relative humidity, the absolute methane adsorption amount first
increases rapidly, and then slowly increases with increasing
pressure. At the same pressure, the absolute methane
adsorption amount shows a negative relationship with relative
humidity. The absolute methane adsorption isotherms were also
fitted using the Langmuir equation, where the Langmuir volume
values of the shale sample range from 1.12 to 1.49 cm3/g, and the
Langmuir pressure values range from 2.39 to 3.22 MPa.

Effect of Temperature and Pressure on
Methane Adsorption Capacity
Previous studies have shown that in addition to the
physicochemical properties of shale, external factors such as
temperature and pressure also have important effects on the
methane adsorption capacity of shale (Gasparik et al., 2014; Tian
et al., 2016; Hu H. et al., 2018; Gai et al., 2020). As shown in

Figure 1A, at a given pressure, the absolute methane adsorption
amount decreases with temperature. To further investigate the
relationship between methane adsorption capacity of shale and
temperature, the plot of Langmuir volume versus temperature
was established (Figure 2A). It is obvious that Langmuir volume
is negatively correlated with temperature, to put it differently, the
maximum methane adsorption capacity of shale reduces with
temperature. This negative relationship is highly consistent with
the conclusions of previous studies (Ji et al., 2015; Tian et al.,
2016; Chen et al., 2017b; Li et al., 2017) and is largely owning to
the exothermic process of methane adsorption on shale (Chen
et al., 2019b; Hu et al., 2021).

In order to facilitate the establishment of the extended
Langmuir equation in Methane Adsorption Capacity as
Function of Depth to predict the methane adsorption capacity
of shale, the plot of Langmuir pressure versus temperature was
also established here (Figure 2B). It can be seen that the
relationship between Langmuir pressure and temperature can
be well fitted by a quadratic polynomial equation.

Generally, the adsorbed gas content increases with pressure
and when the pressure exceeds a certain value the increase
becomes marginal constrained by the limited specific surface
area of pores. The methane adsorption isotherms of shale shown
in Figure 1 show that, in low pressure regimes, the amount of gas
adsorbed increases rapidly with pressure. However, beyond a
certain point, adsorption rate significantly slows until adsorption
saturation occurs and almost a straight-line appears towards
the end of the curve. Adsorption saturation means that all the
adsorption sites on the adsorbent have been occupied by
the adsorbate, and the adsorption cannot continue. Ji et al.
(2015) also pointed out that, other than TOC content,
temperature and pressure are the most important factors
affecting the methane adsorption capacity of shale from the
Lower Silurian Longmaxi formation in the Upper Yangtze
Platform, south China.

Effect of Relative Humidity on Methane
Adsorption Capacity
The water content of shale directly affects the content of adsorbed
natural gas (Merkel et al., 2015; Zou et al., 2018). In general, the
higher the water content, the lower the gas adsorption capacity.
Water molecules have stronger adsorption capacity thanmethane

FIGURE 1 | Methane absolute adsorption isotherms at (A) different temperatures under dry condition and (B) different relative humidity levels under 20°C.
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molecules (Liu et al., 2016), so for water-bearing shale, adsorption
sites on the shale pore surface are partially occupied by water
molecules, hence reducing the methane adsorption capacity of
shale (Merkel et al., 2016; Li et al., 2020). It is noteworthy that
typical high productivity shale gas wells in the United States have
low water content (Ambrose et al., 2012), which suggests that
water content is key to shale gas accumulation and production. In
addition, water content also affects gas flow capacity (Hu Z. M.
et al., 2018; Li et al., 2021). In summary, lower water content is
favorable for shale gas exploration and production.

As shown in Figure 1B, under the same pressure, the methane
adsorption capacity gradually decreases as the relative humidity
increases, that is to say, the greater the water content, the lower
the methane adsorption capacity. Meanwhile, the maximum
methane adsorption capacity (Langmuir volume) of shale
shows a negative relationship with relative humidity
(Figure 2C), indicating that water content has an important
effect on the methane adsorption capacity of shale. The greater
the water content, the more the adsorption sites on the shale pore
surface will be occupied by water molecules, thereby reducing
the adsorption spaces for methane molecules and reducing the
methane adsorption capacity of shale. In other words, the higher
the water saturation, the lower the methane adsorption capacity,
which can be represented by Figure 2D. The influence of water
on methane adsorption of shale is mainly reflected in the
following two aspects: 1) At low water saturation, the pore
surface is partially occupied by water molecules, thus reducing
the adsorption spaces for methane molecules. 2) At higher water
saturation, the micropores are completely blocked by water
molecules and thus unable to absorb methane molecules, while
at the surface of mesopores and macropores, water molecules

tend to form water film hindering the adsorption of methane
molecules (Li et al., 2016, 2021; Zhu D. et al., 2021). The
schematic diagram of the influence of water molecules on the
methane adsorption capacity of shale is shown in Figure 3. It
should be noted that the occurrence mode of water molecules in
shale pores refers to the research conclusion reported by Li et al.
(2016), and the occurrence mode of adsorbed methane molecules
in shale pores refers to the research conclusion reported by Zhou
et al. (2017). The existence of water remarkably degrades the
methane adsorption capacity of shale, so the failure of taking this
effect into account will result in inaccurate evaluation of shale gas
reserves in-situ.

FIGURE 2 | (A): Correlation between Langmuir volume and temperature. (B): Correlation between Langmuir pressure and temperature. (C): Correlation between
Langmuir volume and relative humidity. (D): Correlation between methane adsorption capacity and water saturation.

FIGURE 3 | Effect of pore water on methane adsorption at different
water saturation levels.
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Methane Adsorption Capacity as Function
of Depth
The discussions above have pointed out that temperature and
relative humidity (water saturation) are the main factors
influencing the methane adsorption capacity for a single shale
sample. To obtain and predict the methane adsorption capacity of
shale, an extended Langmuir equation was built upon the original
equation.

According to multiple linear regression analysis, the
relationship between Langmuir volume and temperature and
relative humidity was best fitted using the following equation:

VL � − 0.0035 · T − 0.0054 · RH + 1.755 (2)

where, T (°C) is the formation temperature, and RH (%) is the
relative humidity.

Using nonlinear regression method, the correlation between
Langmuir pressure and temperature was established as follows:

PL � − 0.0006 · T · T + 0.0651 · T + 0.649 (3)

Substituting Eqs 2, 3 into Eq. 1, an extended Langmuir
equation for methane adsorption capacity estimation under
geological conditions was determined:

V � ( − 0.0035 · T − 0.0054 · RH + 1.755)P
−0.0006 · T · T + 0.0651 · T + 0.649 + P

(4)

Using this extended Langmuir equation, the methane
adsorption capacity of shale under actual geological conditions

can be calculated. To convert temperature and pressure to depth,
a geothermal gradient of 30°C/km, a hydrostatic pressure gradient
of 10 MPa/km and a nominal surface temperature of 15°C were
assumed. Consequently, the methane adsorption capacity of shale
as a function of burial depth was established (Figure 4).

As shown in Figure 4, the methane adsorption capacity first
increases with depth due to the dominating effect of pressure,
then passes through a maximum value and decreases with depth
because the effect of temperature exceeds the pressure. The
maximum adsorption capacity occurs at approximately from
1,600 to 2,400 m. Figure 4 also reveals that lower relative
humidity (water saturation) is associated with greater
maximum methane adsorption capacity and greater
corresponding burial depth, and quantitatively, 20% increase
of relative humidity results in roughly 10% reduction of
maximum methane adsorption capacity.

Effect of Pre-Adsorbed Water on Methane
Adsorption in Pore Systems
The key finding from above is that water saturation has a
significant impact on methane adsorption capacity of shale.
Previous studies have found that methane molecules are
adsorbed to a large extent on the pore surface of organic
matter and clay minerals rather than other minerals (Merkel
et al., 2015; Yang et al., 2015; Ju et al., 2019; Zhu et al., 2020), and
the contribution of organic matter almost doubles that of clay
minerals (Yang et al., 2015). Furthermore, due to strong
hydrophilicity of clay minerals, their adsorption capacity for
water molecules exceeds that of organic matter (Zolfaghari et al.,
2017; Chen J. et al., 2021). Based on discussions above,
distinctive adsorption mode of methane molecules in shale
were constructed in Figure 5 for organic matter and clay
minerals in both low and high water saturations. Generally
speaking, based on the observation of high-resolution electron
microscope, most of the pores related to clay minerals are
fracture type or strip type, and a few are spherical (Zhu H.
et al., 2021). There are significant differences in pore

FIGURE 4 |Methane adsorption capacity of shale as a function of depth.

FIGURE 5 | Adsorption mode of methane in pore systems at different
water saturation levels.
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morphology between clay minerals-associated pores and
organic matter-hosted pores. However, in order to better
distinguish the adsorption mode of methane in organic
matter-hosted pores and clay minerals-associated pores, we
regard their pore shapes as spherical in this study.

As shown in Figure 5, at low water saturation, most
adsorption sites on the pore surface are occupied by
methane molecules regardless of organic matter or clay
minerals, and yet adsorbed methane molecules are more
concentrated in the pores of organic matter. Meanwhile, at
high water saturation, the micropores of both organic matter
and clay minerals are blocked predominantly by water
molecules and therefore barely capable of adsorbing methane
molecules, while for mesopores and macropores, water
molecules occupy the majority of adsorption sites forming
water film, and yet clay minerals pores have higher water
molecules concentration compared to organic matter
counterparts. In addition, since organic matter tends to
absorb more methane molecules than water molecules (Tian
et al., 2020; Sun et al., 2021), its methane molecules
concentration at low water saturation is higher than its
water molecules concentration at high water saturation.
Likewise, as clay minerals are more prone to adsorb water
molecules (Zolfaghari et al., 2017; Wang T. et al., 2019; Chen
J. et al., 2021), its water molecules concentration at high water
saturation is higher than its methane molecules concentration
at low water saturation.

Implications for Shale Adsorbed Gas
Content Evaluation
Adsorption is one of the important mechanisms of shale gas
occurrence (Rexer et al., 2013, 2014; Gasparik et al., 2014; Hu H.
et al., 2018; Chen et al., 2019b; Gou and Xu, 2019). At present, the
method for evaluating shale gas adsorption capacity is mainly
through high-pressure methane adsorption experiments under
dry condition, which do not account for the effect of water
(Gasparik et al., 2012; Yang et al., 2015; Tian et al., 2016;
Sander et al., 2018; Song et al., 2018; Gou et al., 2020; Shang
et al., 2020). However, under actual formation conditions, the
shale reservoir generally has a certain degree of water saturation
(Ambrose et al., 2012; Fang et al., 2014). Therefore, clarifying how
water affects the gas adsorption capacity of shale is of great
signifiance for scientific and reasonable evaluation of shale
adsorbed gas content.

Firstly, the methane adsorption experiments were conducted
at different temperatures under dry condition and at different
relative humidity levels under the same temperature, respectively.
Then, on this basis, a model was established illustrating how
methane adsorption capacity of shale changes with depth at
different relative humidity levels. In the end, the influence of
pre-adsorbed water on methane adsorption capacity in shale-gas
systems was discussed. Our studies are of great significance to
establish a theoretical basis for building more precise empirical
correlations to quantify shale adsorbed gas content under actual
geological conditions.

CONCLUSION

The main conclusions are made as follows:

1) For a single shale sample, temperature and relative humidity
(water saturation) are the main factors influencing the
methane adsorption capacity of shale. Methane adsorption
capacity shows a decreasing trend with increasing
temperature and relative humidity, respectively.

2) Lower relative humidity (water saturation) is associated with
greater maximum methane adsorption capacity and greater
corresponding burial depth, and quantitatively, 20% increase
of relative humidity results in roughly 10% reduction of
maximum methane adsorption capacity.

3) At low water saturation, most adsorption sites on the pore
surface are occupied by methane molecules, and yet adsorbed
methane molecules are more concentrated in the pores of
organic matter.

4) At high water saturation, the micropores are blocked
predominantly by water molecules and therefore barely
capable of adsorbing methane molecules, while for
mesopores and macropores, water molecules occupy
the majority of adsorption sites forming water film,
and yet clay minerals pores have higher water
molecules concentration compared to organic matter
counterparts.
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