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Near surface air temperature (NSAT) is one of the most important climatic parameters and
its variability plays a vital role in natural processes associated with climate. Based on an
improved ANUSPLIN (short for Australian National University Spline) model which
considers more terrain-related factors, this study analyzed the trends, anomalies,
change points, and variations of NSAT in Southwest China from 1969 to 2018. The
results revealed that the improved approach performed the best in terms of Mean Absolute
Error (MAE), Root Mean Square Error (RMSE) and R-squared (R2) comparing to the
conventional ANUSPLIN and co-kriging methods. It has great potential for future
meteorological and climatological research, especially in mountainous regions with
diverse topography. In addition, Southwest China experienced an overall warming
trend of 0.21°C/decade for annual mean NSAT in the period 1969–2018. The warming
rate was much higher than mainland China and global averages, and statistically significant
warming began in the late 1990s. Moreover, consistent warming and significant elevation-
dependent warming (EDW) were observed in most parts of Southwest China, and the
hiatus or slowdown phenomenon after the 1997/1998 EL Niño event was not observed as
expected. Furthermore, the remarkable increase in winter and minimum NSATs
contributed more to the whole warming than summer and maximum NSATs. These
findings imply that Southwest China responds to global warming more sensitively than
generally recognized, and climate change in mountainous regions like Southwest China
should be of particular concern.

Keywords: temperature changes, improved ANUSPLIN method, change-point detection, spatial variation, temporal
variation

INTRODUCTION

Near surface air temperature (NSAT) is a key meteorological parameter involved in exchanges of
energy and water in land-atmosphere interactions. It is also a key atmospheric variable with direct
influence on physical and biological processes, including energy and water balances, nutrient cycling,
growth and yield, carbon dynamics, and ecosystem adaption (Joly et al., 2011; Wang et al., 2017; Cui
and Shi, 2021). NSAT is typically measured at a height of 2.0 m above the ground with high precision
and high temporal resolution, through irregularly distributed meteorological stations (Wang et al.,
2017). Understanding about the spatial-temporal variability of NSAT is required in hydrology,
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meteorology, and ecology (Peng et al., 2019). Thus, it is important
to assess how climate change has altered the NSAT in spatial and
temporal terms, and to enhance our understanding of its
variability. However, this is often limited by the spatial
coverage of instrumental records, especially in regions where
meteorological stations are insufficient and distributed unevenly
in space (Ilori and Ajayi, 2020).

A typical way to fill in this gap is by adopting the interpolation
method, which estimates plausible values based on the
discrete known values (Nalder and Wein, 1998). As a result,
interpolation is commonly applied to estimate the spatial
distribution of NSAT for regional scales (Fick and
Hijmans, 2017). However, it is known that no single
interpolation method is optimal for all regions, and the
performance of an interpolating method is strongly
affected by many factors, e.g., sample distribution and
density, surface type, data variance, data normality, grid
resolution, as well as the interactions among these factors
(Li and Heap, 2011). Consequently, there has been growing
interest in the development of methods for interpolating in-
situ gauged data from sparse networks (Khosravi and Balyani,
2019). So far, a number of interpolation methods have been
developed to obtain spatially continuous NSAT from point
station measurements, including inverse distance weighting,
regression analysis, kriging, and spline methods (Wu and Li,
2013; Kayikci and Kazanci, 2016; Hadi and Tombul, 2018;
Jiang et al., 2019; Collados-Lara et al., 2021).

Many studies have evaluated the spatial-temporal
variations of NSAT around the globe. In general, they
reported the consistent and significant increase in NSAT
over the past 100 years (Ding et al., 2007; Ren et al., 2016;
Luo and Lau, 2017; Amato et al., 2019; Zhou et al., 2020). For
example, the global average NSAT was trending upward at
0.145°C/decade in 1951–2019 (Li et al., 2021). In China, the
NSAT was increasing at 0.150°C/decade in 1959–2014 (Cui
et al., 2017). Moreover, there was a hiatus or slowdown in the
warming period following the 1997/1998 EL Niño event at
both global and regional scales (Easterling and Wehner, 2009;
Cahill et al., 2015; Fyfe et al., 2016; Sun et al., 2018;
Lewandowsky et al., 2018; Risbey et al., 2018; Li et al.,
2021). For China, some studies have also indicated about a
slowdown in the warming trend since 1998 (Tang et al., 2012;
Li et al., 2015), which is more pronounced than the global
mean (Du et al., 2019).

The challenge of estimating NSAT is primarily in
mountainous or high elevation areas, where instrumental
records are not always available due to the paucity of
weather stations (Wang et al., 2017; Collados-Lara et al.,
2021). Earlier studies have demonstrated that co-kriging
and ANUSPLIN (abbreviation for Australian National
University Spline) are more suitable for sparse data in these
regions (Hutchinson and Gessler, 1994; Price et al., 2000; Islam
and Déry, 2017; Mohammadi et al., 2017; Zhao et al., 2019;
Belkhiri et al., 2020; Cheng et al., 2020; Guo et al., 2020). An
advantage of these two interpolation methods is that they can
model the terrain effect by considering additional variables
during interpolation process (Cuervo-Robayo et al., 2014).

Nevertheless, in most cases, both co-kriging and
ANUSPLIN would ignore some important terrain-related
factors (such as slope and aspect), which could influence
the amount of Sun radiation on land surface and then affect
NSAT (Minder et al., 2010; Zhao et al., 2019; Persaud et al.,
2020). Thus, it is reasonable to refine the interpolation results
of NSAT by incorporating more terrain-related variables,
especially in topographically heterogeneous regions (Price
et al., 2000).

It was reported that mountainous areas are especially sensitive
and vulnerable to climate change (Diaz and Bradley, 1997). Even
relatively small climate changes could have major implications for
animal, plant, and people living in these regions (Fan et al., 2011).
Hence, man studies have been conducted to understand the
associated impacts of climate change in mountainous regions
(Lin et al., 2017; Li et al., 2020). Nevertheless, biases in results are
generally inevitable due to limited in-situ instrumental records,
which make quantifying the climate trend, and variability
inherently difficult (Chen et al., 2018; Sun et al., 2018).
Therefore, one of the current research challenges is to seek
ways to fill these gaps and reduce uncertainties for the climate
change investigation in data-scarce mountainous areas.

Southwest China, a region with varied and complex
topography, has abundant mountainous regions, and is one of
the most sensitive areas to climate change (Du et al., 2017; Qian
et al., 2019). In addition, it is one of the key regions of grain
production in China, with a grain yield of ∼12% of national total.
There were no consistent findings about the trends and variabilities
of NSAT in Southwest China. For example, cooling trends in the
southwestern parts of China were reported in 1951–2001 (Hu et al.,
2003) and 1963–2012 (Dong et al., 2015). However, other studies
have shown that in response to global warming, Southwest China
has exhibited warming trends in 1961–2004 (Fan et al., 2011) and
1961–2012 (Wang, 2018). In addition, Ren et al. (2016) indicated
about the warming in Southwest China during 1992–2011, against
its cooling during 1973–1992. Except for the different study
periods, another important reason for this inconsistency might
be related to the failure of sparse weather stations in Southwest
China to fully satisfy the requirements for NSAT estimation (Yang
and Jiang, 2017).

Consequently, despite some previous reports on the general
characteristics of NSAT in Southwest China, no consistent results
were identified. Moreover, to date, few attentions have been paid
to the accurate interpolation of climate variables, and the spatial
and temporal features of NSAT over Southwest China are not well
recognized. Thus, Southwest China presents a good opportunity
to improve and test the interpolationmethod by comprehensively
taking into account the terrain effects on NSAT. The key
objectives of the current study are: 1) optimization of
ANUSPLIN by incorporating more terrain-related factors to
improve the accuracy of NSAT estimation; 2) evaluation of the
performance of the improved interpolation method by
comparing interpolated values to withheld station data, the
WorldClim datasets and the HMTC datasets (short for
gridded data sets cover China at 1 km × 1 km resolution); and
3) identification of the trends and spatio-temporal variability of
NSAT during 1969–2018 over Southwest China.
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STUDY AREA AND MATERIALS

Study Area
The study area (83.87°E–112.07°E and 21.14°N–36.49°N) is
located in Southwest China, including Guangxi, Guizhou,
Chongqing, Yunnan, Sichuan, southern Qinghai and some
parts of the Tibet Autonomous Region, with a total area of
2.33 × 106 km2 (Xu et al., 2020) (Figure 1). The elevation in
Southwest China presents a considerable variation with a
difference of ∼8,000 m, exhibiting complicated topographic
structures (e.g., mountains, plateaus, hills, basins, and
plains). Due to the wide range of latitudes and complex
topography, Southwest China is characterized by a variety
of climates and environments, ranging from monsoon region
in the southeast zone to semi-arid region in the northwest
zone (Jin and Wang, 2016). There are various ecosystems,
including tropical rain forest, tropical seasonal rain forest,
subtropical evergreen broad-leaved forest, and alpine
vegetation (Gao et al., 2018).

Data Sources
Meteorological Data
NSAT datasets during 1969–2018 were downloaded from China
Meteorological Data Service Center (http://data.cma.cn),
covering 494 meteorological stations in Southwest China
(Table 1). Its quality and uniformity were assessed by the
National Meteorological Information Center. The data include
daily and monthly averages, maximum and minimum
temperatures. The annual and seasonal temperatures for each
station were obtained by averaging the corresponding month

temperatures. Specifically, the spring (Tspring), summer (Tsummer),
autumn (Tautumn), and winter (Twinter) denote the averages of
March–May, June–August, September–November, and
December–February, respectively.

Terrain Morphology Data
The Digital Elevation Model (DEM) at the spatial resolution of
90 m that was measured by the NASA Shuttle Radar Topographic
Mission (SRTM). The DEM data were collected from the
Computer Network Information Center, Chinese Academy of
Sciences (http://www.gscloud.cn). In this study, the measures
used were elevation, slope, and aspect. Prior to formal
interpolation, we evaluated the performances of the DEM data
with different spatial resolutions. We noticed that with the
resolution of 500 m, the interpolation process can be
completed with speed and the quality was satisfactory. Thus,
all the terrain data were resampled to 500 m × 500 m, and the
medians in each grid cell were used.

Other Air Temperature Datasets
The monthly mean near surface air temperature data for
1970–2000 on a 30 arc-second resolution grid were obtained
from the WorldClim Data Portal (https://www.worldclim.org).
The gridded data sets cover China at 1 km × 1 km resolution
(HMTC) for the same period (Peng et al., 2019) were obtained
from the National Earth System Science Data Center (http://
www.geodata.cn). Specifically, WorldClim dataset is a set of
global climate layers, while HMTC dataset was spatially
downscaled from the 30 arc-minute resolution Climatic
Research Unit (CRU) time series dataset. These reference

FIGURE 1 | Study area and 494 meteorological stations in Southwest China.
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datasets could provide detailed climatology data, and
could be evaluated against the land-based observations.
Moreover, they could reflect orographic effects, and are
available for monthly mean, minimum and maximum
NSATs.

METHODOLOGY

Improved ANUSPLIN Model
The ANUSPLIN is created using thin-plate smoothing
splines, which make it suitable for interpolating climate
data with large noises (Hutchinson and Gessler, 1994;
Price et al., 2000; Guo et al., 2020). The noisy multivariable
climatic data are treated as a function with one or more
independent variables during the fitting process of a
climatic surface, and thus can produce mean error lower
than other interpolation methods (Islam and Déry, 2017;
Zhao et al., 2019; Cheng et al., 2020). The theoretical
statistical model is expressed as:

Zi � f(xi) + bTyi + ei(i � 1, . . . , N) (1)

where Zi represents the predicted value at location i; xi is the
spline independent variable as a multidimensional vector, and f
represents a smoothing function of xi which needs to be
estimated; yi is the independent covariable as a
multidimensional vector, and b is the unknown coefficients for
the yi; n is the number of observational data. Each ei is an
independent, zero mean error term with variance wiσ2, where
Wi is the known relative error variance and σ2 is the error
variance which is constant across all data points.

The traditional ANUSPLIN treats longitude and
latitude as independent variables, with elevation as a
covariate. To optimize the ANUSPLIN model, we
improved it by incorporating more terrain-related factors,
with slope, and aspect also as covariates (hereafter called
M-ANUSPLIN).

Interpolation Methods
The NSAT parameters in Southwest China are estimated
using co-kriging, ANUSPLIN and M-ANUSPLIN models,
respectively. Due to the complex topography of
the domain over Southwest China, we tested the
performance of these models using different combinations
of covariates (Table 4) to identify the best model in this
region, and to find which variable contributes more to NSAT
variability.

Model Assessment
To evaluate these models, a 10-fold cross validation test was
conducted to assess the overall error of the interpolated NSAT
grid. The advantage of 10-fold cross validation is that all
observations are used for both training and validation, and
each observation is used for validation exactly once. Thus, it is
widely used to validate gridded observations (Appelhans et al.,
2015; Yoo et al., 2018). In 10-fold cross validation for this study,
the original observation data of 494 meteorological stations were
randomly partitioned into ten subsamples. Of the ten subsamples,
a single subsample was retained as the validation data for testing
the model, and the remaining nine subsamples were used as
training data. The cross validation process was then repeated ten
times, with each of the ten subsamples used exactly once as the
validation data. Hence, 10 different combinations of training and
test sets were formed, and each of training and test pair was
applied and evaluated. Final evaluation of 10-fold cross validation
test was determined by the average mis-classification probability
over the ten test sets to produce a single estimation.

Based on the results of 10-fold cross validation test, the
statistical indices of Mean Absolute Error (MAE), Root Mean
Square Error (RMSE) and R-squared (R2) between predicted and
observed values were selected as interpolation performance
evaluation criteria. Briefly, MAE provides a measure of how
far the estimate can be in error; RMSE provides a measure
that is, sensitive to outliers; and R2 provides the proportion of
variation that is, explained by the predictor variables. The
performance and bias were then compared by using the three
indices, and the interpolation method with better performance
was further selected. The calculation formulas of them are shown
below:

MAE � 1
n
∑n

i�1|Pi − Oi| (2)

RMSE �
�������������
1
n
∑n

i�1(Pi − Oi)2
√

(3)

R2 � 1 − ∑n
i�1(Pi − Oi)2∑n
i�1(Oi − �O)2 (4)

where Pi and Oi are the estimated NSAT and original
observational NSAT at each station, respectively; �O is the
mean of observational NSAT; and n is the sample number.

Accuracy Comparison
To further examine the accuracy of obtained data set, two
published and widely used air temperature products were
compared. One is the 30 arc-second resolution grid product

TABLE 1 | Datasets used to analyze NSAT in Southwest China.

Datasets Year Resolution Sources

Time Space

Meteorological data 1969–2018 Day 90 m China Meteorological Data Service Center (http://data.cma.cn)
DEM Computer Network Information Center, Chinese Academy of Sciences (http://www.gscloud.cn)
HMTC 1970–2000 Month 1 km National Earth System Science Data Center (http://www.geodata.cn)
WorldClim 1970–2000 Month 30′ WorldClim Data Portal (https://www.worldclim.org)
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obtained from WorldClim Data Portal (hereafter called
WorldClim2), the other is the gridded data sets cover China at
1 km × 1 km resolution (hereafter called HMTC). Mean
temperature values in time series of 1970–2000 derived from
all datasets were compared. The M-ANUSPLIN andWorldClim2
values were resampled to 1 km × 1 km to render them consistent
with the HMTC reference products.

Trend Analysis
A trend slope ratio analysis was examined to investigate the
changing trends of NSAT for each pixel in 1969–2018 at both
annual and seasonal scales. The formula is as follows (Vogelsang
and Nawaz, 2017):

slope � n × ∑n
i�1i × Temi −∑n

i�1i∑n
i�1Temi

n × ∑n
i�1i2 − (∑n

i�1i)2 (5)

where slope is the degree of change in Tem; n is the number of
studied years; i is the order of year from 1 to 50 in the study
period; and Temi is the average Tem in the ith year. Slope >0
means that the air temperature over n years increased (warming
trend); while slope<0 signifies a decreasing trend (cooling trend).
To test the significance of these trends, a significance test (F-test)
was applied. According to the F-test, the trends were divided into
categories of extremely significant (p < 0.01), significant (0.01 <
p< 0.05), and non-significant level (p > 0.05).

A coefficient of variation (CV) index was also considered to
evaluate the spatio-temporal variation of NSAT. The CV was
calculated as follows (Yang and Jiang, 2017):

CV � 1

Tem
×

���������
1

n − 1
∑n

i�1

√ (Temi − Tem)2 × 100% (6)

where CV is the coefficient of variation for NSAT; Tem is the
mean temperature; Temi is the temperature for year i; n is the
number of studied years; i is the order of year from 1 to 50 in the
study period. The significance test is carried out based on the p
value. The CV is classified into three categories of weak variation
(0 < CV ≤ 10%), medium variation (10% < CV ≤ 100%) and
strong variation (CV > 100%).

Change Points Detection
For a long-term climatic dataset, it is expected to experience
multiple changes rather than a single break (Khapalova et al.,
2018). To detect and identify the time when significant changes
for NSAT happened in the time series of 1969–2018, pruned exact
linear time (PELT) was also conducted in this study. The
superiority of PELT exists in the ability of accurate and fast
detection and identification of multiple change-points (Killick
et al., 2012).

RESULTS

Model Performance
Table 2 compares the MAE, RMSE and R2 of the predicted NSAT
parameters using different models over Southwest China in
1969–2018. Apparently, the prediction of M-ANUSPLIN

model gave lower MAE and RMSE compared to the
ANUSPLIN and co-kriging models for both annual and
seasonal NSATs. The R2 values of the M-ANUSPLIN model
were 0.077–0.328°C above those of the other two models.
Specifically, for annual parameters, relative to the ANUSPLIN
and co-kriging models, the MAEs and RMSEs for the
M-ANUSPLIN model were 0.02–0.04°C lower for mean
temperature (Tmean); 0–0.02°C lower for maximum
temperature (Tmax); and 0.03–0.07°C lower for minimum
temperature (Tmin). For seasonal parameters, the MAEs and
RMSEs for the M-ANUSPLIN model were also 0.01–0.04°C
and 0–0.05°C lower than the ANUSPLIN and co-kriging
models. These results indicate the improvement of the
M-ANUSPLIN model by incorporating slope and aspect as
interpolators. Moreover, Table 2 also reflects the seasonal
dependence of the model performance. In general, the MAEs
and RMSEs decline in the order from winter to autumn to spring
then to summer, while the R2 basically has the opposite trend.

Figure 2 and Table 3 show the performances of co-kriging,
ANUSPLIN and M-ANUSPLIN models along altitudinal
gradients. It can be seen that in general, the M-ANUSPLIN
model has obvious advantages in regions with altitude
<4,000 m, followed by the ANUSPLIN and co-kriging models.
However, with the exception of elevation >4000 m, the MAE and
RMSE of the M-ANUSPLIN model were slightly higher than
those of the ANUSPLIN model. Moreover, in areas with altitude
>4,000 m, all the three models generally gave overestimated
values.

A summary of the performances of the ANUSPLIN and
M-ANUSPLIN models were further compared using different
combinations of covariates (Table 4). It can be seen that the
incorporation of additional terrain-related factors resulted in
more accurate results, and slope angle contribute more to
NSAT than slope orientation.

Temporal Variation
Trends of Annual Temperature
The magnitude of change for annual mean NSAT ranged
15.20–16.81°C. Figure 3 shows the annual variation of NSAT
in the last 5 decades in Southwest China. It can be seen that over
the whole region, with respect to the mean temperature during
the period 1969–2018, the anomalies of mean temperature
(Tmean) ranged −0.80 to 0.80°C; maximum temperature (Tmax)
ranged −0.93 to 1.07°C; while minimum temperature (Tmin)
ranged −0.77 to 0.96°C. In addition, Tmean, Tmax, and Tmin

increased by 0.21°C/decade, 0.23°C/decade, and 0.28°C/decade
over the past 50 years, respectively. Moreover, the warming rates
for minimum temperature (0.28°C/decade) were greater than
those for maximum temperature (0.23°C/decade), with Tmin

about 1.22 times of Tmax.

Trends of Seasonal Temperature
The changes of seasonal NSAT for spring, summer, autumn and
winter were 15.54–18.06°C, 22.15–24.13°C, 14.63–16.82°C, and
6.26–8.88°C, respectively. Figure 4 indicates the similarity
between the temporal patterns of the seasonal NSAT and the
annual NSAT trends. Nevertheless, compared with annual NSAT,
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TABLE 2 | 10-fold cross-validation results of the co-kriging, ANUSPLIN, and M-ANUSPLIN models.

Index Models Annual Seasonal

Tmean Tmax Tmin Tspring Tsummer Tautumn Twinter

MAE (°C) M-ANUSPLIN 0.49 0.64 0.52 0.62 0.43 0.70 1.51
ANUSPLIN 0.51 0.64 0.55 0.64 0.45 0.71 1.55
Co-Kriging 1.16 1.27 1.86 1.26 1.15 1.39 1.83

RMSE(°C) M-ANUSPLIN 0.77 1.02 0.79 0.95 0.68 1.15 2.37
ANUSPLIN 0.81 1.04 0.86 0.98 0.73 1.18 2.37
Co-Kriging 1.78 1.92 3.25 1.94 1.73 2.09 2.66

R2 M-ANUSPLIN 0.974 0.939 0.979 0.967 0.978 0.935 0.715
ANUSPLIN 0.970 0.937 0.975 0.964 0.975 0.932 0.713
Co-Kriging 0.858 0.785 0.651 0.860 0.857 0.786 0.638

FIGURE 2 | The MAEs of co-kriging, ANUSPLIN, and M-ANUSPLIN models along altitudinal gradients.

TABLE 3 | Accuracy metrics of co-kriging, ANUSPLIN, and M-ANUSPLIN for the different altitudinal gradients.

Index Models H0∼1000 m H1000∼2000 m H2000∼3000 m H3000∼4000 m H4000∼6000 m

MAE (°C) M-ANUSPLIN 0.32 0.5 1.12 0.84 1.38
ANUSPLIN 0.33 0.54 1.15 1.09 1.25
Co-Kriging 0.74 1.26 2.42 3.16 1.83

RMSE (°C) M-ANUSPLIN 0.47 0.71 1.53 1.11 1.83
ANUSPLIN 0.46 0.75 1.68 1.37 1.78
Co-Kriging 1.10 1.66 3.46 3.8 2.67

R2 M-ANUSPLIN 0.953 0.880 0.643 0.778 0.535
ANUSPLIN 0.954 0.863 0.572 0.666 0.561
Co-Kriging 0.738 0.338 −0.822 −1.598 0.008
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the temporal variations of seasonal NSAT could not be divided
into cooling and warming phases clearly. Specifically, the
temperature variations in summer were more stable than that
in other seasons. Moreover, for spring, autumn and winter, the
temperature variations showed stronger inter-annual
fluctuations. This could lead to extreme weather events in
Southwest China.

In Figure 4, the warming rate in summer (0.16°C/decade) was
lower than those in spring (0.22°C/decade), winter (0.22°C/
decade), and autumn (0.23°C/decade). This means that the
most unnotable contribution to the warming in Southwest
China as a whole comes from summer.

Change-Points of NSAT
Annual and seasonal variations of NSAT anomalies show that the
overall warming over Southwest China started in the late 1990s
and accelerated after it (Figures 3, 4). Specifically, for mean
temperature (Tmean), 18 out of 21 years were above the long-term
average after 1998, while it was 3 out of 29 before 1998. This
indicates that the NSAT of Southwest China was characterized by
the transitions from cold to warm phases in the late 1990s.

To detect and identify the time when significant changes of
NSAT occurred, the significant changes of each NSAT
parameters were identified by using the PELT method at both
annual and seasonal scales (as shown in Figure 5). It can be seen
that the annual changes for maximum, average and minimum
NSATs were quite similar to the seasonal changes. Moreover,
there is strong evidence for the changes in all variables in the late
1990s and early 2000s. Specifically, for the annual mean
temperature (Tmean) and maximum temperature (Tmax), the
significant changes began after 1997. While for the minimum
temperature (Tmin), there were two significant change points with
both of them indicating a warming phase. The first change also
started after 1997, and the second change began after 2011.
Regarding the seasonal parameters, the change began after
1997, 2004, 1997, and 1985 for spring, summer, autumn and
winter, respectively.

Overall, it is clear that most of the significant changes of
NSAT occurred either in the late 1990s or in the early 2000s.
Thus, in terms of NSAT variations, the late 1990s and early
2000s can be remarked as the abrupt change period in
Southwest China.

Spatial Variation of NSAT
To further probe into the spatial variation patterns of annual and
seasonal NSATs over Southwest China, the variations with
significance test were analyzed at the pixel scale. The area
proportions occupied by extremely significant, significant and
non-significant NSAT related indices are shown in Figures 6, 7. It
can be seen that the M-ANUSPLIN interpolation datasets can
capture the detailed NSAT very well, and they can accurately
represent the climate characteristics in Southwest China, such as
the extremely significant cooling regions with high elevations
(e.g., the northwest of Qinghai-Tibet Plateau), the non-significant
warming regions with low elevations (e.g., the northeast of
Sichuan Basin), and extremely significant warming regions in
most part of the study area. Moreover, despite slight differences
between the spatial variations of annual NSAT and those of the
seasonal indices, they exhibited highly consistent characteristics.
Specifically, for the mean annual NSAT, during the period
1969–2018, 85.66% of the study area showed extremely
significant warming with the most notable increases in the
southeast region. Areas occupied by non-significant warming
accounted for 2.48%, followed by significant warming with 1.32%,
leading to an overall warming tendency across Southwest China.
Nevertheless, the northwest region experienced a contrary
characteristic, with extremely significant, and significant
cooling accounted for 8.35%. This could be attributed to the
high altitude in this region, which belongs to the Qinghai-Tibetan
Plateau. Regarding the mean seasonal NSAT, areas occupied by

TABLE 4 | Comparisons of the ANUSPLIN model using different combinations of
covariates.

Models EDF freedom
�����
GCV

√ �����
MSR

√ �����
VAR

√

Aele 436.9 0.69 0.61 0.65
Aslope 442.7 1.68 1.50 1.59
Aaspect 443.5 1.69 1.51 1.60
Aele+slope 435.6 0.65 0.57 0.61
Aele+aspect 435.8 0.69 0.61 0.65
Aaspect+slope 441.7 1.68 1.50 1.59
Aele+aspect+slope 434.8 0.66 0.57 0.61
Adem+aspect+slope 434.8 0.66 0.72 0.57

Note. EDF is the abbreviation for error degrees of freedom, GCV is for generalized cross
validation, MSR is for mean square residual, and VAR is for data error variance estimate.

FIGURE 3 | Annual variations of NSAT anomalies in Southwest China for
the period 1969–2018.
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extremely significant warming in spring, summer, autumn and
winter accounted for 63.48, 71.47, 72.36 and 54.77%, respectively.
Otherwise, it can be seen that winter has the highest proportions
for non-significant warming, comparing to other seasons
(Figure 7).

Figure 8 shows the coefficient maps of variation (CV) index
for NSAT over Southwest China. It indicates the high consistency
of the CV index of annual NSAT with that of seasonal index over

the past 50 years. Both annual and seasonal CV indices were
generally stable and mainly dominated by weak or medium
variations. Strong variations were mainly observed in high
altitude regions, or in the combined section for encompassing
plain and mountainous regions. For seasonal NSAT indices, it
also mainly exhibited weak or medium variations, with different
patterns in different seasons. Specifically, strong variations were
identified in autumn and spring, followed by winter, while

FIGURE 4 | Seasonal variations of NSAT anomalies in Southwest China for the period 1969–2018.

FIGURE 5 | Change-points for annual and seasonal NSATs in Southwest China for the period 1969–2018 (p-value < 0.05).
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summer was the most stable, denoting that autumn maybe more
susceptible to the warming.

DISCUSSION

Priority of M-ANUSPLIN
Previous studies indicated that topographic information might be
the key factor in climate indices prediction, especially in
mountainous or high altitude areas with low density of
meteorological stations (Gao et al., 2018; Peng et al., 2019).
Therefore, it is possible that the precision of interpolation
could be further improved by incorporating more detail
terrain-related factors (Cheng et al., 2020). Nevertheless,
traditional interpolation method is usually processed under the
assumption that the NSAT is only dependent on the altitude.
However, Šafanda (1999) demonstrated the strong dependence of
NSAT on slope angle and orientation. Therefore, it is possible that
the precision of interpolation for NSAT could be improved by

considering slope angle and orientation in the interpolation
process.

In this study, we included longitude and latitude as
independent variables, and incorporated elevation, slope and
aspect as covariates. We found that compared to the
ANUSPLIN model, the MAE and RMSE values decreased by
0–5.77 and 1.96–8.86% for annual parameters, and 1.43–4.65 and
0–7.35% for seasonal parameters. As a result, the M-ANUSPLIN
exhibited smaller deviation and performed better against other
interpolation methods, especially in mountainous regions.
However, our results also reflected the relatively poor
performance of the M-ANUSPLIN model in regions with
altitude >4,000 m, suggesting that it is not optimal for all regions.

Our study confirmed that slope is an important terrain-related
factor in the interpolation process for NSAT (Table 4). As slope
angle affects the temperature of surface objects by influencing the
incidence angle and reflectivity of solar radiation, and then alters
NSAT (Li et al., 2015; Peng et al., 2020). However, our study
revealed the much smaller contribution of slope orientation to

FIGURE 6 | Trends of annual NSAT over Southwest China for the period 1969–2018. Panels (A–C) correspond to the mean annual, mean annual maximum, and
minimum temperatures, respectively.
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NSAT estimation than slope angle. This is not consistent with
existing knowledge, which believes that slope orientation plays an
important role in NSAT prediction. Earlier studies reported that
in the middle latitudes of the Northern Hemisphere, the north
slopes are generally colder at the same elevation than the south
slopes because sunny aspects receive more direct solar radiation
than northern aspects (Šafanda, 1999; Li et al., 2015). One
reason for this inconsistent might be due to the different
vegetation types in Southwest China. For example, Šafanda
(1999) explained that the surface temperature in the meadow is
higher than that in the forest because much of the Sun
radiation is absorbed by the trees. Thus, the NSAT for
meadows located at north slopes might be higher than the
NSAT for forests located at south slopes. Another reason

might be due to the existence and duration of the snow
cover in high altitude regions, which can offset the effects
of slope orientation on NSAT. Consequently, the effect of slope
orientation on NSAT in Southwest China was smaller
compared to those in other regions.

Comparisons With Other Datasets
To examine the accuracy of M-ANUSPLIN interpolated dataset,
the predicted results were compared to both the WorldClim 2.0
dataset (Fick and Hijmans, 2017) and the HMTC dataset (Peng
et al., 2019). The 10-fold cross validation test was used to evaluate
the overall error of the interpolated NSAT grid obtained from
each dataset and the original observation data of 494
meteorological stations (Table 5).

FIGURE 7 | Trends of NSAT over southwest China for the period 1969–2018. Panels (A–D) correspond to the mean spring, summer, autumn, and winter NSATs,
respectively.
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FIGURE 8 | Coefficient of variation (CV) index for NSAT over Southwest China for the period 1969–2018. Panels (A–G) correspond to the mean annual, mean
annual maximum, mean annual minimum, mean spring, mean summer, mean autumn, and mean winter NSATs, respectively.
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Table 5 lists the mean, maximum, minimum values for
annual and seasonal NSAT variables obtained from different
datasets. It can be seen that the climatology anomaly of
M-ANUSPLIN dataset is the lowest comparing to the
WorldClim 2.0 and the HMTC datasets. Specifically, the
anomalies are relatively high for HMTC (0.72–1.51°C for
MAE and 1.19–1.97°C for RMSE); intermediate
for WorldClim2 (0.66–0.87°C for MAE and 1.03–1.36°C for
RMSE); and the lowest for M-ANUSPLIN (0.50–0.69°C for
MAE and 0.82–1.14°C for RMSE). The seasonal NSAT
variables shows the similar trend, where HMTC gives the
highest estimation error, followed by WorldClim2 and
M-ANUSPLIN. The good performance of M-ANUSPLIN
can be mainly attributed to two reasons. Firstly, in case of
WorldClim2 and HMTC datasets, only ∼300 sites and ∼500
sites of in-situ observation stations were respectively used for
interpolation, and therefore significant biases occurred due to
the complex terrain (Peng et al., 2019). Secondly, the
M-ANUSPLIN model incorporated more detailed
topographic information than traditional models, and thus
can capture NSAT features with better precision.

Overall, the results indicate that the improved M-ANUSPLIN
model can produce more accurate NSAT values than traditional
interpolation models, and has apparent advantages over other
interpolation methods in complex terrain areas like Southwest
China.

Study Limitations
Whilst this study demonstrated that the improved
M-ANUSPLIN method can estimate more accurate NSAT
than traditional models, especially in complex terrain areas
like Southwest China, uncertainties still remain regarding the
density of meteorological stations, input datasets and
urbanization effect. Firstly, as gauge stations are relatively
sparse in the western region of the study area, acquiring a
correct distribution of NSAT through interpolation is difficult.
The interpolated NSAT grid surface might contain some biases,
which could introduce some uncertainty, especially in regions
where the NSAT varies significantly in space and time. In
addition, as the satellite SRTM product represents the average
value in a 500 m × 500 m pixel, it does not provide the fine details
and thus could not fully represent the real situation, which might
also lead to additional biases.

Secondly, another source of uncertainty could be due to the
input datasets. The NSAT is affected not only by topographical
factors, but also closely related to other factors, e.g., vegetation
and soil (Cho and Choi, 2014; Lensky et al., 2018). Moreover, as
mentioned above, the effects of snow cover could be stronger than
general expectation. It implies the need of careful interpretation
of NSAT. Therefore, to further improve the accuracy of NSAT
prediction, more information should be taken into account in the
future.

Thirdly, the urbanization heat effect, which has a strong
warming effect on NSAT (Kalnay and Cai, 2003; Ren et al.,
2008; Luo and Lau, 2021), has not been considered in this study.
This could cause an underestimation of NSAT, especially in the
eastern region of Southwest China with a lot of big cities.
Nonetheless, the results of this work should still, at least
qualitatively, reveal the trends and spatial-temporal variations
of NSAT in Southwest China over the past 50 years.

Lastly, elevation is an important factor affecting spatial
variability of climate (Pepin et al., 2015). It is well known that
for a stationary atmosphere, an increase in elevation leads to a
subsequent decrease in air pressure and NSAT (You et al., 2008).
According to EI Kenawy et al., 2009, different regions can
experience different variations of NSAT, as each region has a
unique terrain (Limsakul & Goes, 2008). Moreover, the variation
of NSAT was not consistent between high and low land areas.
Many studies suggested that NSAT increased more rapidly at
higher than at lower elevations (Beniston, 2003; You et al., 2008;
Pepin et al., 2015), which has been defined as elevation-
dependent warming (EDW). However, this faster warming is
not ubiquitous across the globe (Thakuri et al., 2019). In general,
this study agrees with the previous studies of the EDW
phenomenon with most high-altitude areas show significant
warming. Nevertheless, we also observed a significant cooling
trend in some high altitude regions like the northwestern part of
Southwest China in the past 50 years. The reason for this
phenomenon is still unclear, thus further investigation would
be required.

CONCLUSION

This study enhanced the ANUSPLIN model by incorporating
elevation, slope angle and orientation as covariates; and

TABLE 5 | Comparisons of annual and seasonal climatology indices among different datasets.

Index Datasets Annual (°C) Seasonal (°C)

Tmean Tmax Tmin Tspring Tsummuer Tautumn Twinter

MAE(°C) M-ANUSPLIN 0.50 0.69 0.53 0.64 0.54 0.73 0.60
WorldClim2 0.66 0.87 0.71 0.91 0.66 1.40 0.75
HMTC 0.72 1.51 1.13 0.99 0.68 1.39 0.87

RMSE(°C) M-ANUSPLIN 0.83 1.14 0.82 1.00 1.09 1.18 0.98
WorldClim2 1.03 1.36 1.11 1.35 1.13 2.87 1.14
HMTC 1.19 1.97 1.54 1.57 1.23 2.83 1.30

R2 M-ANUSPLIN 0.97 0.925 0.978 0.963 0.947 0.933 0.965
WorldClim2 0.954 0.894 0.96 0.932 0.943 0.603 0.953
HMTC 0.938 0.778 0.923 0.907 0.932 0.615 0.939
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constructed monthly NSAT datasets with a spatial resolution of
500 m in Southwest China from January 1969 to December 2018.
The accuracy of the M-ANUSPLIN model was evaluated by
analyzing error statistics based on comparisons between
interpolated values against withheld stations data.
Furthermore, we compared the M-ANUSPLIN predicted
dataset against existing datasets. To our knowledge, this is one
of the few studies which considered slope angle and orientation to
account for the terrain effects on NSAT. The independent
validation results confirmed the clear advantages of the
optimized M-ANUSPLIN model against other interpolation
methods in Southwest China. Our methodology therefore
represents a significant and practical improvement in NSAT
estimation. Therefore, it has great potential for meteorological
and climatological research, especially in mountainous regions
with diverse topography.

As mentioned above, during the period 1969–2018, consistent
warming and significant EDW were found in most part of
Southwest China, while some sporadic areas like northwestern
region exhibited opposite trends. In general, Southwest China
experienced an overall warming with a rate of 0.21°C/decade,
obviously higher than mainland China and global averages. This
implies that Southwest China is more sensitive to global warming
than generally recognized. The warming mainly started in the late
1990s, and the hiatus or slowdown phenomenon was not
observed as expected, and the NSAT experienced a persistent
and even more significant warming after the 1997/1998 EL Niño
event. This means that climate change in Southwest China should
be of particular concern. Moreover, the increase of low
temperature was significantly greater than that of high
temperature, where the warming rate of Tmin (0.28°C/decade)

about 1.22 times of Tmax (0.23°C/decade); and that of Twinter
(0.22°C/decade) about 1.38 times of Tsummer (0.16°C/decade).
These indicate that the increases of Tmin and Twinter contribute
the most to the warming effect in Southwest China over the past
50 years.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

JZ and TL conceived the study, performed the analysis, drafted
the manuscript; TL supervised the project. All authors listed have
made a substantial, direct, and intellectual contribution to the
work and approved it for publication.

FUNDING

This research was supported by the Second Tibetan Plateau
Scientific Expedition and Research program
(2019QZKK04020301), the National Natural Science
Foundation of China (42071238, 41371126), the Program for
Biodiversity Protection of Ministry of Ecology and Environment
of the People’s Republic of China (9311341), the National Key
Research and Development Program of China
(2016YFC0502101).

REFERENCES

Amato, R., Steptoe, H., Buonomo, E., and Jones, R. (2019). High-Resolution
History: Downscaling China’s Climate from the 20CRv2c Reanalysis.
J. Appl. Meteorol. Clim. 58 (10), 2141–2157. doi:10.1175/JAMC-D-19-0083.1

Appelhans, T., Mwangomo, E., Hardy, D. R., Hemp, A., and Nauss, T. (2015).
Evaluating Machine Learning Approaches for the Interpolation of Monthly Air
Temperature at Mt. Kilimanjaro, Tanzania. Spat. Stat. 14, 91–113. doi:10.1016/
j.spasta.2015.05.008

Belkhiri, L., Tiri, A., and Mouni, L. (2020). Spatial Distribution of the Groundwater
Quality Using Kriging and Co-kriging Interpolations. Groundwater Sustain.
Dev. 11, 100473. doi:10.1016/j.gsd.2020.100473

Beniston, M. (2003). Climatic Change in Mountain Regions: A Review of Possible
Impacts. Climatic Change 59, 5–31. doi:10.1007/978-94-015-1252-7_2

Cahill, N., Rahmstorf, S., and Parnell, A. C. (2015). Change Points of Global
Temperature. Environ. Res. Lett. 10 (8), 084002. doi:10.1088/1748-9326/10/8/
084002

Chen, X., Li, N., Zhang, Z., Feng, J., and Wang, Y. (2018). Change Features and
Regional Distribution of Temperature Trend and Variability Joint Mode in
mainland China. Theor. Appl. Climatol 132 (3-4), 1049–1055. doi:10.1007/
s00704-017-2148-z

Cheng, J., Li, Q., Chao, L., Maity, S., Huang, B., and Jones, P. (2020). Development
of High Resolution and Homogenized Gridded Land Surface Air Temperature
Data: A Case Study over Pan-East Asia. Front. Environ. Sci. 8, 588570.
doi:10.3389/fenvs.2020.588570

Cho, E., and Choi, M. (2014). Regional Scale Spatio-Temporal Variability of Soil
Moisture and its Relationship with Meteorological Factors over the Korean
peninsula. J. Hydrol. 516, 317–329. doi:10.1016/j.jhydrol.2013.12.053

Collados-Lara, A.-J., Fassnacht, S. R., Pardo-Igúzquiza, E., and Pulido-Velazquez,
D. (2021). Assessment of High Resolution Air Temperature Fields at Rocky
Mountain National Park by Combining Scarce Point Measurements with
Elevation and Remote Sensing Data. Remote Sensing 13 (1), 113.
doi:10.3390/rs13010113

Cuervo-Robayo, A. P., Téllez-Valdés, O., Gómez-Albores, M. A., Venegas-Barrera,
C. S., Manjarrez, J., and Martínez-Meyer, E. (2014). An Update of High-
Resolution Monthly Climate Surfaces for Mexico. Int. J. Climatol. 34 (7),
2427–2437. doi:10.1002/joc.3848

Cui, L. L., Shi, J., Du, H. Q., and Wen, K. M. (2017). Characteristics and Trends of
Climatic Extremes in China during 1959-2014. J. Trop. Meteorol. 23 (4),
368–379. 1006-8775(2017) 04-0368-12.

Cui, L., and Shi, J. (2021). Evaluation and Comparison of Growing Season Metrics
in Arid and Semi-arid Areas of Northern China under Climate Change. Ecol.
Indicators 121, 107055. doi:10.1016/j.ecolind.2020.107055

Diaz, H. F., and Bradley, R. S. (1997). Temperature Variations during the Last
century at High Elevations Sites. Climatic Change 36 (3-4), 253–279.
doi:10.1023/A:1005335731187

Ding, Y., Ren, G., ZhaoXu, Z. Y., Xu, Y., Luo, Y., Li, Q., et al. (2007). Detection,
Causes and Projection of Climate Change over China: An Overview of
Recent Progress. Adv. Atmos. Sci. 24 (6), 954–971. doi:10.1007/s00376-007-
0954-4

Dong, D., Huang, G., Qu, X., Tao, W., and Fan, G. (2015). Temperature Trend-
Altitude Relationship in China during 1963-2012. Theor. Appl. Climatol. 122,
285–294. doi:10.1007/s00704-014-1286-9

Du, H., Hu, F., Zeng, F., Wang, K., Peng, W., Zhang, H., et al. (2017). Spatial
Distribution of Tree Species in evergreen-deciduous Broadleaf Karst
Forests in Southwest China. Sci. Rep. 7, 15664. doi:10.1038/s41598-017-
15789-5

Frontiers in Earth Science | www.frontiersin.org December 2021 | Volume 9 | Article 75375713

Zhou and Lu Temperature Variation in Southwest China

https://doi.org/10.1175/JAMC-D-19-0083.1
https://doi.org/10.1016/j.spasta.2015.05.008
https://doi.org/10.1016/j.spasta.2015.05.008
https://doi.org/10.1016/j.gsd.2020.100473
https://doi.org/10.1007/978-94-015-1252-7_2
https://doi.org/10.1088/1748-9326/10/8/084002
https://doi.org/10.1088/1748-9326/10/8/084002
https://doi.org/10.1007/s00704-017-2148-z
https://doi.org/10.1007/s00704-017-2148-z
https://doi.org/10.3389/fenvs.2020.588570
https://doi.org/10.1016/j.jhydrol.2013.12.053
https://doi.org/10.3390/rs13010113
https://doi.org/10.1002/joc.3848
https://doi.org/10.1016/j.ecolind.2020.107055
https://doi.org/10.1023/A:1005335731187
https://doi.org/10.1007/s00376-007-0954-4
https://doi.org/10.1007/s00376-007-0954-4
https://doi.org/10.1007/s00704-014-1286-9
https://doi.org/10.1038/s41598-017-15789-5
https://doi.org/10.1038/s41598-017-15789-5
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Du, Q., Zhang, M., Wang, S., Che, C., Ma, R., and Ma, Z. (2019). Changes in Air
Temperature over China in Response to the Recent Global Warming Hiatus.
J. Geogr. Sci. 29 (4), 496–516. doi:10.1007/s11442-019-1612-3

Easterling, D. R., and Wehner, M. F. (2009). Is the Climate Warming or Cooling.
Geophys. Res. Lett. 36, L08706. doi:10.1029/2009GL037810

El Kenawy, A. M., López-Moreno, J. I., Vicente-Serrano, S. M., and Mekld, M. S.
(2009). Temperature Trends in Libya over the Second Half of the 20th century.
Theor. Appl. Climatol 98, 1–8. doi:10.1007/s00704-008-0089-2

Fan, Z.-X., Bräuning, A., Thomas, A., Li, J.-B., and Cao, K.-F. (2011). Spatial and
Temporal Temperature Trends on the Yunnan Plateau (Southwest China)
during 1961-2004. Int. J. Climatol. 31 (14), 2078–2090. doi:10.1002/joc.2214

Fick, S. E., and Hijmans, R. J. (2017). WorldClim 2: New 1-km Spatial Resolution
Climate Surfaces for Global Land Areas. Int. J. Climatol 37 (12), 4302–4315.
doi:10.1002/joc.5086

Fyfe, J. C., Meehl, G. A., England, M. H., Mann, M. E., Santer, B. D., Flato, G. M.,
et al. (2016). Making Sense of the Early-2000s Warming Slowdown. Nat. Clim
Change 6 (3), 224–228. doi:10.1038/nclimate2938

Gao, J., Jiao, K., and Wu, S. (2018). Quantitative Assessment of Ecosystem
Vulnerability to Climate Change: Methodology and Application in China.
Environ. Res. Lett. 13 (9), 094016. doi:10.1088/1748-9326/aadd2e

Guo, B., Zhang, J., Meng, X., Xu, T., and Song, Y. (2020). Long-term Spatio-
Temporal Precipitation Variations in China with Precipitation Surface
Interpolated by ANUSPLIN. Sci. Rep. 10 (1), 81. doi:10.1038/s41598-019-
57078-3

Hadi, S. J., and Tombul, M. (2018). Comparison of Spatial Interpolation Methods
of Precipitation and Temperature Using Multiple Integration Periods. J. Indian
Soc. Remote Sens 46 (7), 1187–1199. doi:10.1007/s12524-018-0783-1

Hu, Z.-Z., Yang, S., and Wu, R. G. (2003). Long-term Climate Variations in China
and Global Warming Signals. J. Geophys. Res. 108 (19), 4614. doi:10.1029/
2003JD003651

Hutchinson, M. F., and Gessler, P. E. (1994). Splines-more Than Just a Smooth
Interpolator. Geoderma 62 (1-3), 45–67. doi:10.1016/0016-7061(94)90027-2

Ilori, O. W., and Ajayi, V. O. (2020). Change Detection and Trend Analysis of
Future Temperature and Rainfall over West Africa. Earth. Syst. Environ. 4 (3),
493–512. doi:10.1007/s41748-020-00174-6

Islam, S. U., and Déry, S. J. (2017). Evaluating Uncertainties in Modelling the Snow
Hydrology of the Fraser River Basin, British Columbia, Canada. Hydrol. Earth
Syst. Sci. 21 (3), 1827–1847. doi:10.5194/hess-21-1827-2017

Jiang, S., Liang, C., Cui, N., Zhao, L., Du, T., Hu, X., et al. (2019). Impacts of
Climatic Variables on Reference Evapotranspiration during Growing Season in
Southwest China. Agric. Water Manag. 216, 365–378. doi:10.1016/
j.agwat.2019.02.014

Jin, J., and Wang, Q. (2016). Assessing Ecological Vulnerability in Western China
Based on Time-Integrated NDVI Data. J. Arid Land 8 (4), 533–545.
doi:10.1007/s40333-016-0048-1

Joly, D., Brossard, T., Cardot, H., Cavailhes, J., Hilal, M., and Wavresky, P. (2011).
Temperature Interpolation Based on Local Information: the Example of France.
Int. J. Climatol. 31 (14), 2141–2153. doi:10.1002/joc.2220

Kalnay, E., and Cai, M. (2003). Impact of Urbanization and Land-Use Change on
Climate. Nature 423 (6939), 528–531. doi:10.1038/nature01675

Khapalova, E. A., Jandhyala, V. K., Fotopoulos, S. B., and Overland, J. E. (2018).
Assessing Change-Points in Surface Air Temperature over Alaska. Front.
Environ. Sci. 6, 121. doi:10.3389/fenvs.2018.00121

Khosravi, Y., and Balyani, S. (2019). Spatial Modeling of Mean Annual
Temperature in Iran: Comparing Cokriging and Geographically Weighted
Regression. Environ. Model. Assess. 24 (3), 341–354. doi:10.1007/s10666-
018-9623-5

Killick, R., Fearnhead, P., and Eckley, I. A. (2012). Optimal Detection of
Changepoints with a Linear Computational Cost. J. Am. Stat. Assoc. 107,
1590–1598. doi:10.1080/01621459.2012.737745

Lensky, I. M., Dayan, U., and Helman, D. (2018). Synoptic Circulation Impact on
the Near-Surface Temperature Difference Outweighs that of the Seasonal Signal
in the Eastern Mediterranean. J. Geophys. Res. Atmos. 123, 11333–11347.
doi:10.1029/2017JD027973

Lewandowsky, S., Cowtan, K., Risbey, J. S., Mann, M. E., Steinman, B. A., Oreskes,
N., et al. (2018). Erratum: The ’pause’ in GlobalWarming in Historical Context:
II. Comparing Models to Observations (2018 Environ. Res. Lett . 13 123007).
Environ. Res. Lett. 14 (4), 049601. doi:10.1088/1748-9326/aafbb7

Li, J., and Heap, A. D. (2011). A Review of Comparative Studies of Spatial
Interpolation Methods in Environmental Sciences: Performance and Impact
Factors. Ecol. Inform. 6, 228–241. doi:10.1016/j.ecoinf.2010.12.003

Li, Q., Sun, W., Yun, X., Huang, B., Dong, W., Wang, X. L., et al. (2021). An
Updated Evaluation of the Global Mean Land Surface Air Temperature and
Surface Temperature Trends Based on CLSAT and CMST. Clim. Dyn. 56 (1-2),
635–650. doi:10.1007/s00382-020-05502-0

Li, X., Li, L., Yuan, S., Yan, H., and Wang, G. (2015). Temporal and Spatial
Variation of 10-day Mean Air Temperature in Northwestern China. Theor.
Appl. Climatol. 119 (1-2), 285–298. doi:10.1007/s00704-014-1100-8

Li, Y., Zhang, D., Andreeva, M., Li, Y., Fan, L., and Tang, M. (2020). Temporal-
spatial Variability of Modern Climate in the Altai Mountains during 1970-2015.
Plos. One 15 (3), e0230196. doi:10.1371/journal.pone.0230196

Limsakul, A., and Goes, J. I. (2008). Empirical Evidence for Interannual and Longer
Period Variability in Thailand Surface Air Temperatures. Atmos. Res. 87,
89–102. doi:10.1016/j.atmosres.2007.07.007

Lin, P., He, Z., Du, J., Chen, L., Zhu, X., and Li, J. (2017). Recent Changes in Daily
Climate Extremes in an Arid Mountain Region, a Case Study in Northwestern
China’s Qilian Mountains. Sci. Rep. 7, 2245. doi:10.1038/s41598-017-02345-4

Luo, M., and Lau, N.-C. (2017). HeatWaves in Southern China: Synoptic Behavior,
Long-Term Change, and Urbanization Effects. J. Clim. 30 (2), 703–720.
doi:10.1175/JCLI-D-16-0269.1

Luo, M., and Lau, N. C. (2021). Increasing Human-Perceived Heat Stress Risks
Exacerbated by Urbanization in China: A Comparative Study Based on
Multiple Metrics. Earth’s Future 9, e2020EF001848. doi:10.1029/2020EF001848

Minder, J. R., Mote, P. W., and Lundquist, J. D. (2010). Surface Temperature Lapse
Rates over Complex Terrain: Lessons from the Cascade Mountains. J. Geophys.
Res. 115, D14122. doi:10.1029/2009JD013493

Mohammadi, S. A., Azadi, M., and Rahmani, M. (2017). Comparison of Spatial
Interpolation Methods for Gridded Bias Removal in Surface Temperature
Forecasts. J. Meteorol. Res. 31, 791–799. doi:10.1007/s13351-017-6135-1

Nalder, I. A., and Wein, R. W. (1998). Spatial Interpolation of Climatic Normals:
Test of a NewMethod in the Canadian Boreal forest. Agric. For. Meteorology 92
(4), 211–225. doi:10.1016/S0168-1923(98)00102-6

Peng, S., Ding, Y., Liu, W., and Li, Z. (2019). 1 Km Monthly Temperature and
Precipitation Dataset for China from 1901 to 2017. Earth Syst. Sci. Data 11 (4),
1931–1946. doi:10.5194/essd-11-1931-2019

Peng, X., Wu, W., Zheng, Y., Sun, J., Hu, T., and Wang, P. (2020). Correlation
Analysis of Land Surface Temperature and Topographic Elements in
Hangzhou, China. Sci. Rep. 10 (1), 10451. doi:10.1038/s41598-020-67423-6

Pepin, N., Bradley, R. S., Diaz, H. F., Baraer, M., Caceres, E. B., Forsythe, N., et al.
(2015). Elevation-dependentWarming inMountain Regions of theWorld.Nat.
Clim. Change 5, 424–430. doi:10.1038/nclimate2563

Persaud, B. D., Whitfield, P. H., Quinton, W. L., and Stone, L. E. (2020). Evaluating
the Suitability of Three Gridded-datasets and Their Impacts on Hydrological
Simulation at Scotty Creek in the Southern Northwest Territories, Canada.
Hydrological Process. 34 (4), 898–913. doi:10.1002/hyp.13663

Price, D. T., McKenney, D. W., Nalder, I. A., Hutchinson, M. F., and Kesteven, J. L.
(2000). A Comparison of Two Statistical Methods for Spatial Interpolation of
Canadian Monthly Mean Climate Data. Agr. For. Meteorol. 101 (2-3), 81–94.
doi:10.1016/S0168-1923(99)00169-0

Qian, H., Deng, T., Jin, Y., Mao, L., Zhao, D., and Ricklefs, R. E. (2019).
Phylogenetic Dispersion and Diversity in Regional Assemblages of Seed
Plants in China. Proc. Natl. Acad. Sci. USA 116 (46), 23192–23201.
doi:10.1073/pnas.1822153116

Ren, G., Zhou, Y., ChuZhou, Z. J. X., Zhou, J., Zhang, A., Guo, J., et al. (2008).
Urbanization Effects on Observed Surface Air Temperature Trends in north
China. J. Clim. 21 (6), 1333–1348. doi:10.1175/2007JCLI1348.1

Ren, Y., Parker, D., Ren, G., and Dunn, R. (2016). Tempo-spatial Characteristics of
Sub-daily Temperature Trends in mainland China. Clim. Dyn. 46 (9-10),
2737–2748. doi:10.1007/s00382-015-2726-7

Risbey, J. S., Lewandowsky, S., Cowtan, K., Oreskes, N., Rahmstorf, S., Jokimäki, A.,
et al. (2018). A Fluctuation in Surface Temperature in Historical Context:
Reassessment and Retrospective on the Evidence. Environ. Res. Lett. 13 (12),
123008. doi:10.1088/1748-9326/aaf342

Šafanda, J. (1999). Ground Surface Temperature as a Function of Slope Angle and
Slope Orientation and its Effect on the Subsurface Temperature Field.
Tectonophysics 306, 367–375. doi:10.1016/S0040-1951(99)00066-9

Frontiers in Earth Science | www.frontiersin.org December 2021 | Volume 9 | Article 75375714

Zhou and Lu Temperature Variation in Southwest China

https://doi.org/10.1007/s11442-019-1612-3
https://doi.org/10.1029/2009GL037810
https://doi.org/10.1007/s00704-008-0089-2
https://doi.org/10.1002/joc.2214
https://doi.org/10.1002/joc.5086
https://doi.org/10.1038/nclimate2938
https://doi.org/10.1088/1748-9326/aadd2e
https://doi.org/10.1038/s41598-019-57078-3
https://doi.org/10.1038/s41598-019-57078-3
https://doi.org/10.1007/s12524-018-0783-1
https://doi.org/10.1029/2003JD003651
https://doi.org/10.1029/2003JD003651
https://doi.org/10.1016/0016-7061(94)90027-2
https://doi.org/10.1007/s41748-020-00174-6
https://doi.org/10.5194/hess-21-1827-2017
https://doi.org/10.1016/j.agwat.2019.02.014
https://doi.org/10.1016/j.agwat.2019.02.014
https://doi.org/10.1007/s40333-016-0048-1
https://doi.org/10.1002/joc.2220
https://doi.org/10.1038/nature01675
https://doi.org/10.3389/fenvs.2018.00121
https://doi.org/10.1007/s10666-018-9623-5
https://doi.org/10.1007/s10666-018-9623-5
https://doi.org/10.1080/01621459.2012.737745
https://doi.org/10.1029/2017JD027973
https://doi.org/10.1088/1748-9326/aafbb7
https://doi.org/10.1016/j.ecoinf.2010.12.003
https://doi.org/10.1007/s00382-020-05502-0
https://doi.org/10.1007/s00704-014-1100-8
https://doi.org/10.1371/journal.pone.0230196
https://doi.org/10.1016/j.atmosres.2007.07.007
https://doi.org/10.1038/s41598-017-02345-4
https://doi.org/10.1175/JCLI-D-16-0269.1
https://doi.org/10.1029/2020EF001848
https://doi.org/10.1029/2009JD013493
https://doi.org/10.1007/s13351-017-6135-1
https://doi.org/10.1016/S0168-1923(98)00102-6
https://doi.org/10.5194/essd-11-1931-2019
https://doi.org/10.1038/s41598-020-67423-6
https://doi.org/10.1038/nclimate2563
https://doi.org/10.1002/hyp.13663
https://doi.org/10.1016/S0168-1923(99)00169-0
https://doi.org/10.1073/pnas.1822153116
https://doi.org/10.1175/2007JCLI1348.1
https://doi.org/10.1007/s00382-015-2726-7
https://doi.org/10.1088/1748-9326/aaf342
https://doi.org/10.1016/S0040-1951(99)00066-9
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Sun, X., Ren, G., Ren, Y., Fang, Y., Liu, Y., Xue, X., et al. (2018). A Remarkable
Climate Warming Hiatus over Northeast China since 1998. Theor. Appl.
Climatol. 133 (1-2), 579–594. doi:10.1007/s00704-017-2205-7

Tang, G. L., Luo, Y., Huang, J. B., Wen, X. Y., Zhu, Y. N., Zhao, Z. C., et al. (2012).
Continuation of the Global Warming. Clim. Chang. Res. 8 (4), 235–242. (in
Chinese). doi:10.3969/j.issn.1673-1719.2012.04.001

Tanır Kayıkçı, E., and Zengin Kazancı, S. (2016). Comparison of Regression-Based
and Combined Versions of Inverse Distance Weighted Methods for Spatial
Interpolation of Daily Mean Temperature Data. Arab. J. Geosci. 9 (17), 690.
doi:10.1007/s12517-016-2723-0

Thakuri, S., Dahal, S., Shrestha, D., Guyennon, N., Romano, E., Colombo, N., et al.
(2019). Elevation-dependent Warming of Maximum Air Temperature in Nepal
during 1976-2015. Atmos. Res. 228, 261–269. doi:10.1016/
j.atmosres.2019.06.006

Vogelsang, T. J., and Nawaz, N. (2017). Estimation and Inference of Linear Trend
Slope Ratios with an Application to Global Temperature Data. J. Time Ser. Anal.
38 (5), 640–667. doi:10.1111/jtsa.12209

Wang, M., He, G., Zhang, Z., Wang, G., Zhang, Z., Cao, X., et al. (2017).
Comparison of Spatial Interpolation and Regression Analysis Models for an
Estimation of Monthly Near Surface Air Temperature in China. Remote Sensing
9 (12), 1278. doi:10.3390/rs9121278

Wang, S.-J. (2018). Spatiotemporal Variability of Temperature Trends on the
Southeast Tibetan Plateau, China. Int. J. Climatol 38, 1953–1963. doi:10.1002/
joc.5308

Wu, T., and Li, Y. (2013). Spatial Interpolation of Temperature in the United States
Using Residual Kriging. Appl. Geogr. 44, 112–120. doi:10.1016/
j.apgeog.2013.07.012

Xu, K., Wang, X., Jiang, C., and Sun, O. J. (2020). Assessing the Vulnerability of
Ecosystems to Climate Change Based on Climate Exposure, Vegetation
Stability and Productivity. For. Ecosyst. 7 (3), 23. doi:10.1186/s40663-020-
00239-y

Yang, K., and Jiang, D. (2017). Interannual Climate Variability Change during the
Medieval Climate Anomaly and Little Ice Age in PMIP3 Last Millennium
Simulations. Adv. Atmos. Sci. 34 (4), 497–508. doi:10.1007/s00376-016-6075-1

Yoo, C., Im, J., Park, S., and Quackenbush, L. J. (2018). Estimation of Daily
Maximum and Minimum Air Temperatures in Urban Landscapes Using
MODIS Time Series Satellite Data. ISPRS J. Photogrammetry Remote Sensing
137, 149–162. doi:10.1016/j.isprsjprs.2018.01.018

You, Q., Kang, S., Pepin, N., and Yan, Y. (2008). Relationship between Trends in
Temperature Extremes and Elevation in the Eastern and central Tibetan
Plateau, 1961-2005. Geophys. Res. Lett. 35, L14704. doi:10.1029/
2007GL032669

Zhao, H., Huang, W., Xie, T., Wu, X., Xie, Y., Feng, S., et al. (2019).
Optimization and Evaluation of a Monthly Air Temperature and
Precipitation Gridded Dataset with a 0.025° Spatial Resolution in China
during 1951-2011. Theor. Appl. Climatol. 138 (1-2), 491–507. doi:10.1007/
s00704-019-02830-y

Zhou, Z., Shi, H., FuLi, Q. T. X., Li, T., Gan, T. Y., Liu, S., et al. (2020). Is the
Cold Region in Northeast China Still Getting Warmer under Climate
Change Impact. Atmos. Res. 237, 104864. doi:10.1016/
j.atmosres.2020.104864

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Zhou and Lu. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Earth Science | www.frontiersin.org December 2021 | Volume 9 | Article 75375715

Zhou and Lu Temperature Variation in Southwest China

https://doi.org/10.1007/s00704-017-2205-7
https://doi.org/10.3969/j.issn.1673-1719.2012.04.001
https://doi.org/10.1007/s12517-016-2723-0
https://doi.org/10.1016/j.atmosres.2019.06.006
https://doi.org/10.1016/j.atmosres.2019.06.006
https://doi.org/10.1111/jtsa.12209
https://doi.org/10.3390/rs9121278
https://doi.org/10.1002/joc.5308
https://doi.org/10.1002/joc.5308
https://doi.org/10.1016/j.apgeog.2013.07.012
https://doi.org/10.1016/j.apgeog.2013.07.012
https://doi.org/10.1186/s40663-020-00239-y
https://doi.org/10.1186/s40663-020-00239-y
https://doi.org/10.1007/s00376-016-6075-1
https://doi.org/10.1016/j.isprsjprs.2018.01.018
https://doi.org/10.1029/2007GL032669
https://doi.org/10.1029/2007GL032669
https://doi.org/10.1007/s00704-019-02830-y
https://doi.org/10.1007/s00704-019-02830-y
https://doi.org/10.1016/j.atmosres.2020.104864
https://doi.org/10.1016/j.atmosres.2020.104864
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles

	Long-Term Spatial and Temporal Variation of Near Surface Air Temperature in Southwest China During 1969–2018
	Introduction
	Study Area and Materials
	Study Area
	Data Sources
	Meteorological Data
	Terrain Morphology Data
	Other Air Temperature Datasets


	Methodology
	Improved ANUSPLIN Model
	Interpolation Methods
	Model Assessment
	Accuracy Comparison
	Trend Analysis
	Change Points Detection

	Results
	Model Performance
	Temporal Variation
	Trends of Annual Temperature
	Trends of Seasonal Temperature
	Change-Points of NSAT

	Spatial Variation of NSAT

	Discussion
	Priority of M-ANUSPLIN
	Comparisons With Other Datasets
	Study Limitations

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


